Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atlex Structured version   Visualization version   GIF version

Theorem atlex 39276
Description: Every nonzero element of an atomic lattice is greater than or equal to an atom. (hatomic 32307 analog.) (Contributed by NM, 21-Oct-2011.)
Hypotheses
Ref Expression
atlex.b 𝐵 = (Base‘𝐾)
atlex.l = (le‘𝐾)
atlex.z 0 = (0.‘𝐾)
atlex.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atlex ((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑋0 ) → ∃𝑦𝐴 𝑦 𝑋)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐾   𝑦,𝑋
Allowed substitution hints:   𝐵(𝑦)   (𝑦)   0 (𝑦)

Proof of Theorem atlex
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 atlex.b . . . . 5 𝐵 = (Base‘𝐾)
2 eqid 2734 . . . . 5 (glb‘𝐾) = (glb‘𝐾)
3 atlex.l . . . . 5 = (le‘𝐾)
4 atlex.z . . . . 5 0 = (0.‘𝐾)
5 atlex.a . . . . 5 𝐴 = (Atoms‘𝐾)
61, 2, 3, 4, 5isatl 39259 . . . 4 (𝐾 ∈ AtLat ↔ (𝐾 ∈ Lat ∧ 𝐵 ∈ dom (glb‘𝐾) ∧ ∀𝑥𝐵 (𝑥0 → ∃𝑦𝐴 𝑦 𝑥)))
76simp3bi 1147 . . 3 (𝐾 ∈ AtLat → ∀𝑥𝐵 (𝑥0 → ∃𝑦𝐴 𝑦 𝑥))
8 neeq1 2993 . . . . 5 (𝑥 = 𝑋 → (𝑥0𝑋0 ))
9 breq2 5127 . . . . . 6 (𝑥 = 𝑋 → (𝑦 𝑥𝑦 𝑋))
109rexbidv 3166 . . . . 5 (𝑥 = 𝑋 → (∃𝑦𝐴 𝑦 𝑥 ↔ ∃𝑦𝐴 𝑦 𝑋))
118, 10imbi12d 344 . . . 4 (𝑥 = 𝑋 → ((𝑥0 → ∃𝑦𝐴 𝑦 𝑥) ↔ (𝑋0 → ∃𝑦𝐴 𝑦 𝑋)))
1211rspccv 3602 . . 3 (∀𝑥𝐵 (𝑥0 → ∃𝑦𝐴 𝑦 𝑥) → (𝑋𝐵 → (𝑋0 → ∃𝑦𝐴 𝑦 𝑋)))
137, 12syl 17 . 2 (𝐾 ∈ AtLat → (𝑋𝐵 → (𝑋0 → ∃𝑦𝐴 𝑦 𝑋)))
14133imp 1110 1 ((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑋0 ) → ∃𝑦𝐴 𝑦 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2107  wne 2931  wral 3050  wrex 3059   class class class wbr 5123  dom cdm 5665  cfv 6541  Basecbs 17229  lecple 17280  glbcglb 18326  0.cp0 18437  Latclat 18445  Atomscatm 39223  AtLatcal 39224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-dm 5675  df-iota 6494  df-fv 6549  df-atl 39258
This theorem is referenced by:  atnle  39277  atlatmstc  39279  cvratlem  39382  cvrat4  39404  2llnmat  39485  2lnat  39745
  Copyright terms: Public domain W3C validator