Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atlex Structured version   Visualization version   GIF version

Theorem atlex 39309
Description: Every nonzero element of an atomic lattice is greater than or equal to an atom. (hatomic 32289 analog.) (Contributed by NM, 21-Oct-2011.)
Hypotheses
Ref Expression
atlex.b 𝐵 = (Base‘𝐾)
atlex.l = (le‘𝐾)
atlex.z 0 = (0.‘𝐾)
atlex.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atlex ((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑋0 ) → ∃𝑦𝐴 𝑦 𝑋)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐾   𝑦,𝑋
Allowed substitution hints:   𝐵(𝑦)   (𝑦)   0 (𝑦)

Proof of Theorem atlex
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 atlex.b . . . . 5 𝐵 = (Base‘𝐾)
2 eqid 2729 . . . . 5 (glb‘𝐾) = (glb‘𝐾)
3 atlex.l . . . . 5 = (le‘𝐾)
4 atlex.z . . . . 5 0 = (0.‘𝐾)
5 atlex.a . . . . 5 𝐴 = (Atoms‘𝐾)
61, 2, 3, 4, 5isatl 39292 . . . 4 (𝐾 ∈ AtLat ↔ (𝐾 ∈ Lat ∧ 𝐵 ∈ dom (glb‘𝐾) ∧ ∀𝑥𝐵 (𝑥0 → ∃𝑦𝐴 𝑦 𝑥)))
76simp3bi 1147 . . 3 (𝐾 ∈ AtLat → ∀𝑥𝐵 (𝑥0 → ∃𝑦𝐴 𝑦 𝑥))
8 neeq1 2987 . . . . 5 (𝑥 = 𝑋 → (𝑥0𝑋0 ))
9 breq2 5111 . . . . . 6 (𝑥 = 𝑋 → (𝑦 𝑥𝑦 𝑋))
109rexbidv 3157 . . . . 5 (𝑥 = 𝑋 → (∃𝑦𝐴 𝑦 𝑥 ↔ ∃𝑦𝐴 𝑦 𝑋))
118, 10imbi12d 344 . . . 4 (𝑥 = 𝑋 → ((𝑥0 → ∃𝑦𝐴 𝑦 𝑥) ↔ (𝑋0 → ∃𝑦𝐴 𝑦 𝑋)))
1211rspccv 3585 . . 3 (∀𝑥𝐵 (𝑥0 → ∃𝑦𝐴 𝑦 𝑥) → (𝑋𝐵 → (𝑋0 → ∃𝑦𝐴 𝑦 𝑋)))
137, 12syl 17 . 2 (𝐾 ∈ AtLat → (𝑋𝐵 → (𝑋0 → ∃𝑦𝐴 𝑦 𝑋)))
14133imp 1110 1 ((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑋0 ) → ∃𝑦𝐴 𝑦 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053   class class class wbr 5107  dom cdm 5638  cfv 6511  Basecbs 17179  lecple 17227  glbcglb 18271  0.cp0 18382  Latclat 18390  Atomscatm 39256  AtLatcal 39257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-dm 5648  df-iota 6464  df-fv 6519  df-atl 39291
This theorem is referenced by:  atnle  39310  atlatmstc  39312  cvratlem  39415  cvrat4  39437  2llnmat  39518  2lnat  39778
  Copyright terms: Public domain W3C validator