Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atlex Structured version   Visualization version   GIF version

Theorem atlex 38186
Description: Every nonzero element of an atomic lattice is greater than or equal to an atom. (hatomic 31613 analog.) (Contributed by NM, 21-Oct-2011.)
Hypotheses
Ref Expression
atlex.b 𝐡 = (Baseβ€˜πΎ)
atlex.l ≀ = (leβ€˜πΎ)
atlex.z 0 = (0.β€˜πΎ)
atlex.a 𝐴 = (Atomsβ€˜πΎ)
Assertion
Ref Expression
atlex ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐡 ∧ 𝑋 β‰  0 ) β†’ βˆƒπ‘¦ ∈ 𝐴 𝑦 ≀ 𝑋)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐾   𝑦,𝑋
Allowed substitution hints:   𝐡(𝑦)   ≀ (𝑦)   0 (𝑦)

Proof of Theorem atlex
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 atlex.b . . . . 5 𝐡 = (Baseβ€˜πΎ)
2 eqid 2733 . . . . 5 (glbβ€˜πΎ) = (glbβ€˜πΎ)
3 atlex.l . . . . 5 ≀ = (leβ€˜πΎ)
4 atlex.z . . . . 5 0 = (0.β€˜πΎ)
5 atlex.a . . . . 5 𝐴 = (Atomsβ€˜πΎ)
61, 2, 3, 4, 5isatl 38169 . . . 4 (𝐾 ∈ AtLat ↔ (𝐾 ∈ Lat ∧ 𝐡 ∈ dom (glbβ€˜πΎ) ∧ βˆ€π‘₯ ∈ 𝐡 (π‘₯ β‰  0 β†’ βˆƒπ‘¦ ∈ 𝐴 𝑦 ≀ π‘₯)))
76simp3bi 1148 . . 3 (𝐾 ∈ AtLat β†’ βˆ€π‘₯ ∈ 𝐡 (π‘₯ β‰  0 β†’ βˆƒπ‘¦ ∈ 𝐴 𝑦 ≀ π‘₯))
8 neeq1 3004 . . . . 5 (π‘₯ = 𝑋 β†’ (π‘₯ β‰  0 ↔ 𝑋 β‰  0 ))
9 breq2 5153 . . . . . 6 (π‘₯ = 𝑋 β†’ (𝑦 ≀ π‘₯ ↔ 𝑦 ≀ 𝑋))
109rexbidv 3179 . . . . 5 (π‘₯ = 𝑋 β†’ (βˆƒπ‘¦ ∈ 𝐴 𝑦 ≀ π‘₯ ↔ βˆƒπ‘¦ ∈ 𝐴 𝑦 ≀ 𝑋))
118, 10imbi12d 345 . . . 4 (π‘₯ = 𝑋 β†’ ((π‘₯ β‰  0 β†’ βˆƒπ‘¦ ∈ 𝐴 𝑦 ≀ π‘₯) ↔ (𝑋 β‰  0 β†’ βˆƒπ‘¦ ∈ 𝐴 𝑦 ≀ 𝑋)))
1211rspccv 3610 . . 3 (βˆ€π‘₯ ∈ 𝐡 (π‘₯ β‰  0 β†’ βˆƒπ‘¦ ∈ 𝐴 𝑦 ≀ π‘₯) β†’ (𝑋 ∈ 𝐡 β†’ (𝑋 β‰  0 β†’ βˆƒπ‘¦ ∈ 𝐴 𝑦 ≀ 𝑋)))
137, 12syl 17 . 2 (𝐾 ∈ AtLat β†’ (𝑋 ∈ 𝐡 β†’ (𝑋 β‰  0 β†’ βˆƒπ‘¦ ∈ 𝐴 𝑦 ≀ 𝑋)))
14133imp 1112 1 ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐡 ∧ 𝑋 β‰  0 ) β†’ βˆƒπ‘¦ ∈ 𝐴 𝑦 ≀ 𝑋)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   β‰  wne 2941  βˆ€wral 3062  βˆƒwrex 3071   class class class wbr 5149  dom cdm 5677  β€˜cfv 6544  Basecbs 17144  lecple 17204  glbcglb 18263  0.cp0 18376  Latclat 18384  Atomscatm 38133  AtLatcal 38134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-dm 5687  df-iota 6496  df-fv 6552  df-atl 38168
This theorem is referenced by:  atnle  38187  atlatmstc  38189  cvratlem  38292  cvrat4  38314  2llnmat  38395  2lnat  38655
  Copyright terms: Public domain W3C validator