Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atlex Structured version   Visualization version   GIF version

Theorem atlex 39355
Description: Every nonzero element of an atomic lattice is greater than or equal to an atom. (hatomic 32332 analog.) (Contributed by NM, 21-Oct-2011.)
Hypotheses
Ref Expression
atlex.b 𝐵 = (Base‘𝐾)
atlex.l = (le‘𝐾)
atlex.z 0 = (0.‘𝐾)
atlex.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atlex ((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑋0 ) → ∃𝑦𝐴 𝑦 𝑋)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐾   𝑦,𝑋
Allowed substitution hints:   𝐵(𝑦)   (𝑦)   0 (𝑦)

Proof of Theorem atlex
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 atlex.b . . . . 5 𝐵 = (Base‘𝐾)
2 eqid 2731 . . . . 5 (glb‘𝐾) = (glb‘𝐾)
3 atlex.l . . . . 5 = (le‘𝐾)
4 atlex.z . . . . 5 0 = (0.‘𝐾)
5 atlex.a . . . . 5 𝐴 = (Atoms‘𝐾)
61, 2, 3, 4, 5isatl 39338 . . . 4 (𝐾 ∈ AtLat ↔ (𝐾 ∈ Lat ∧ 𝐵 ∈ dom (glb‘𝐾) ∧ ∀𝑥𝐵 (𝑥0 → ∃𝑦𝐴 𝑦 𝑥)))
76simp3bi 1147 . . 3 (𝐾 ∈ AtLat → ∀𝑥𝐵 (𝑥0 → ∃𝑦𝐴 𝑦 𝑥))
8 neeq1 2990 . . . . 5 (𝑥 = 𝑋 → (𝑥0𝑋0 ))
9 breq2 5090 . . . . . 6 (𝑥 = 𝑋 → (𝑦 𝑥𝑦 𝑋))
109rexbidv 3156 . . . . 5 (𝑥 = 𝑋 → (∃𝑦𝐴 𝑦 𝑥 ↔ ∃𝑦𝐴 𝑦 𝑋))
118, 10imbi12d 344 . . . 4 (𝑥 = 𝑋 → ((𝑥0 → ∃𝑦𝐴 𝑦 𝑥) ↔ (𝑋0 → ∃𝑦𝐴 𝑦 𝑋)))
1211rspccv 3569 . . 3 (∀𝑥𝐵 (𝑥0 → ∃𝑦𝐴 𝑦 𝑥) → (𝑋𝐵 → (𝑋0 → ∃𝑦𝐴 𝑦 𝑋)))
137, 12syl 17 . 2 (𝐾 ∈ AtLat → (𝑋𝐵 → (𝑋0 → ∃𝑦𝐴 𝑦 𝑋)))
14133imp 1110 1 ((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑋0 ) → ∃𝑦𝐴 𝑦 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056   class class class wbr 5086  dom cdm 5611  cfv 6476  Basecbs 17115  lecple 17163  glbcglb 18211  0.cp0 18322  Latclat 18332  Atomscatm 39302  AtLatcal 39303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-dm 5621  df-iota 6432  df-fv 6484  df-atl 39337
This theorem is referenced by:  atnle  39356  atlatmstc  39358  cvratlem  39460  cvrat4  39482  2llnmat  39563  2lnat  39823
  Copyright terms: Public domain W3C validator