Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atlex Structured version   Visualization version   GIF version

Theorem atlex 36451
Description: Every nonzero element of an atomic lattice is greater than or equal to an atom. (hatomic 30136 analog.) (Contributed by NM, 21-Oct-2011.)
Hypotheses
Ref Expression
atlex.b 𝐵 = (Base‘𝐾)
atlex.l = (le‘𝐾)
atlex.z 0 = (0.‘𝐾)
atlex.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atlex ((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑋0 ) → ∃𝑦𝐴 𝑦 𝑋)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐾   𝑦,𝑋
Allowed substitution hints:   𝐵(𝑦)   (𝑦)   0 (𝑦)

Proof of Theorem atlex
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 atlex.b . . . . 5 𝐵 = (Base‘𝐾)
2 eqid 2821 . . . . 5 (glb‘𝐾) = (glb‘𝐾)
3 atlex.l . . . . 5 = (le‘𝐾)
4 atlex.z . . . . 5 0 = (0.‘𝐾)
5 atlex.a . . . . 5 𝐴 = (Atoms‘𝐾)
61, 2, 3, 4, 5isatl 36434 . . . 4 (𝐾 ∈ AtLat ↔ (𝐾 ∈ Lat ∧ 𝐵 ∈ dom (glb‘𝐾) ∧ ∀𝑥𝐵 (𝑥0 → ∃𝑦𝐴 𝑦 𝑥)))
76simp3bi 1143 . . 3 (𝐾 ∈ AtLat → ∀𝑥𝐵 (𝑥0 → ∃𝑦𝐴 𝑦 𝑥))
8 neeq1 3078 . . . . 5 (𝑥 = 𝑋 → (𝑥0𝑋0 ))
9 breq2 5069 . . . . . 6 (𝑥 = 𝑋 → (𝑦 𝑥𝑦 𝑋))
109rexbidv 3297 . . . . 5 (𝑥 = 𝑋 → (∃𝑦𝐴 𝑦 𝑥 ↔ ∃𝑦𝐴 𝑦 𝑋))
118, 10imbi12d 347 . . . 4 (𝑥 = 𝑋 → ((𝑥0 → ∃𝑦𝐴 𝑦 𝑥) ↔ (𝑋0 → ∃𝑦𝐴 𝑦 𝑋)))
1211rspccv 3619 . . 3 (∀𝑥𝐵 (𝑥0 → ∃𝑦𝐴 𝑦 𝑥) → (𝑋𝐵 → (𝑋0 → ∃𝑦𝐴 𝑦 𝑋)))
137, 12syl 17 . 2 (𝐾 ∈ AtLat → (𝑋𝐵 → (𝑋0 → ∃𝑦𝐴 𝑦 𝑋)))
14133imp 1107 1 ((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑋0 ) → ∃𝑦𝐴 𝑦 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wral 3138  wrex 3139   class class class wbr 5065  dom cdm 5554  cfv 6354  Basecbs 16482  lecple 16571  glbcglb 17552  0.cp0 17646  Latclat 17654  Atomscatm 36398  AtLatcal 36399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-br 5066  df-dm 5564  df-iota 6313  df-fv 6362  df-atl 36433
This theorem is referenced by:  atnle  36452  atlatmstc  36454  cvratlem  36556  cvrat4  36578  2llnmat  36659  2lnat  36919
  Copyright terms: Public domain W3C validator