Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > atlex | Structured version Visualization version GIF version |
Description: Every nonzero element of an atomic lattice is greater than or equal to an atom. (hatomic 30623 analog.) (Contributed by NM, 21-Oct-2011.) |
Ref | Expression |
---|---|
atlex.b | ⊢ 𝐵 = (Base‘𝐾) |
atlex.l | ⊢ ≤ = (le‘𝐾) |
atlex.z | ⊢ 0 = (0.‘𝐾) |
atlex.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
atlex | ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | atlex.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2738 | . . . . 5 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
3 | atlex.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
4 | atlex.z | . . . . 5 ⊢ 0 = (0.‘𝐾) | |
5 | atlex.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | 1, 2, 3, 4, 5 | isatl 37240 | . . . 4 ⊢ (𝐾 ∈ AtLat ↔ (𝐾 ∈ Lat ∧ 𝐵 ∈ dom (glb‘𝐾) ∧ ∀𝑥 ∈ 𝐵 (𝑥 ≠ 0 → ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥))) |
7 | 6 | simp3bi 1145 | . . 3 ⊢ (𝐾 ∈ AtLat → ∀𝑥 ∈ 𝐵 (𝑥 ≠ 0 → ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) |
8 | neeq1 3005 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥 ≠ 0 ↔ 𝑋 ≠ 0 )) | |
9 | breq2 5074 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑦 ≤ 𝑥 ↔ 𝑦 ≤ 𝑋)) | |
10 | 9 | rexbidv 3225 | . . . . 5 ⊢ (𝑥 = 𝑋 → (∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ↔ ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑋)) |
11 | 8, 10 | imbi12d 344 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝑥 ≠ 0 → ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ↔ (𝑋 ≠ 0 → ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑋))) |
12 | 11 | rspccv 3549 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 (𝑥 ≠ 0 → ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → (𝑋 ∈ 𝐵 → (𝑋 ≠ 0 → ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑋))) |
13 | 7, 12 | syl 17 | . 2 ⊢ (𝐾 ∈ AtLat → (𝑋 ∈ 𝐵 → (𝑋 ≠ 0 → ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑋))) |
14 | 13 | 3imp 1109 | 1 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∃wrex 3064 class class class wbr 5070 dom cdm 5580 ‘cfv 6418 Basecbs 16840 lecple 16895 glbcglb 17943 0.cp0 18056 Latclat 18064 Atomscatm 37204 AtLatcal 37205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-dm 5590 df-iota 6376 df-fv 6426 df-atl 37239 |
This theorem is referenced by: atnle 37258 atlatmstc 37260 cvratlem 37362 cvrat4 37384 2llnmat 37465 2lnat 37725 |
Copyright terms: Public domain | W3C validator |