![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > atlex | Structured version Visualization version GIF version |
Description: Every nonzero element of an atomic lattice is greater than or equal to an atom. (hatomic 32164 analog.) (Contributed by NM, 21-Oct-2011.) |
Ref | Expression |
---|---|
atlex.b | ⊢ 𝐵 = (Base‘𝐾) |
atlex.l | ⊢ ≤ = (le‘𝐾) |
atlex.z | ⊢ 0 = (0.‘𝐾) |
atlex.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
atlex | ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | atlex.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2728 | . . . . 5 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
3 | atlex.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
4 | atlex.z | . . . . 5 ⊢ 0 = (0.‘𝐾) | |
5 | atlex.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | 1, 2, 3, 4, 5 | isatl 38766 | . . . 4 ⊢ (𝐾 ∈ AtLat ↔ (𝐾 ∈ Lat ∧ 𝐵 ∈ dom (glb‘𝐾) ∧ ∀𝑥 ∈ 𝐵 (𝑥 ≠ 0 → ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥))) |
7 | 6 | simp3bi 1145 | . . 3 ⊢ (𝐾 ∈ AtLat → ∀𝑥 ∈ 𝐵 (𝑥 ≠ 0 → ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) |
8 | neeq1 2999 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥 ≠ 0 ↔ 𝑋 ≠ 0 )) | |
9 | breq2 5147 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑦 ≤ 𝑥 ↔ 𝑦 ≤ 𝑋)) | |
10 | 9 | rexbidv 3174 | . . . . 5 ⊢ (𝑥 = 𝑋 → (∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ↔ ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑋)) |
11 | 8, 10 | imbi12d 344 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝑥 ≠ 0 → ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ↔ (𝑋 ≠ 0 → ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑋))) |
12 | 11 | rspccv 3605 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 (𝑥 ≠ 0 → ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → (𝑋 ∈ 𝐵 → (𝑋 ≠ 0 → ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑋))) |
13 | 7, 12 | syl 17 | . 2 ⊢ (𝐾 ∈ AtLat → (𝑋 ∈ 𝐵 → (𝑋 ≠ 0 → ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑋))) |
14 | 13 | 3imp 1109 | 1 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ≠ wne 2936 ∀wral 3057 ∃wrex 3066 class class class wbr 5143 dom cdm 5673 ‘cfv 6543 Basecbs 17174 lecple 17234 glbcglb 18296 0.cp0 18409 Latclat 18417 Atomscatm 38730 AtLatcal 38731 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-br 5144 df-dm 5683 df-iota 6495 df-fv 6551 df-atl 38765 |
This theorem is referenced by: atnle 38784 atlatmstc 38786 cvratlem 38889 cvrat4 38911 2llnmat 38992 2lnat 39252 |
Copyright terms: Public domain | W3C validator |