MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srabn Structured version   Visualization version   GIF version

Theorem srabn 24808
Description: The subring algebra over a complete normed ring is a Banach space iff the subring is a closed division ring. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
srabn.a 𝐴 = ((subringAlg ‘𝑊)‘𝑆)
srabn.j 𝐽 = (TopOpen‘𝑊)
Assertion
Ref Expression
srabn ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝐴 ∈ Ban ↔ (𝑆 ∈ (Clsd‘𝐽) ∧ (𝑊s 𝑆) ∈ DivRing)))

Proof of Theorem srabn
StepHypRef Expression
1 simp2 1137 . . . 4 ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝑊 ∈ CMetSp)
2 eqidd 2733 . . . . 5 ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (Base‘𝑊) = (Base‘𝑊))
3 srabn.a . . . . . . 7 𝐴 = ((subringAlg ‘𝑊)‘𝑆)
43a1i 11 . . . . . 6 ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝐴 = ((subringAlg ‘𝑊)‘𝑆))
5 eqid 2732 . . . . . . . 8 (Base‘𝑊) = (Base‘𝑊)
65subrgss 20315 . . . . . . 7 (𝑆 ∈ (SubRing‘𝑊) → 𝑆 ⊆ (Base‘𝑊))
763ad2ant3 1135 . . . . . 6 ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝑆 ⊆ (Base‘𝑊))
84, 7srabase 20743 . . . . 5 ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (Base‘𝑊) = (Base‘𝐴))
94, 7srads 20757 . . . . . 6 ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (dist‘𝑊) = (dist‘𝐴))
109reseq1d 5973 . . . . 5 ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) = ((dist‘𝐴) ↾ ((Base‘𝑊) × (Base‘𝑊))))
114, 7sratopn 20756 . . . . 5 ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (TopOpen‘𝑊) = (TopOpen‘𝐴))
122, 8, 10, 11cmspropd 24797 . . . 4 ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝑊 ∈ CMetSp ↔ 𝐴 ∈ CMetSp))
131, 12mpbid 231 . . 3 ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝐴 ∈ CMetSp)
14 eqid 2732 . . . . . 6 (Scalar‘𝐴) = (Scalar‘𝐴)
1514isbn 24786 . . . . 5 (𝐴 ∈ Ban ↔ (𝐴 ∈ NrmVec ∧ 𝐴 ∈ CMetSp ∧ (Scalar‘𝐴) ∈ CMetSp))
16 3anrot 1100 . . . . 5 ((𝐴 ∈ NrmVec ∧ 𝐴 ∈ CMetSp ∧ (Scalar‘𝐴) ∈ CMetSp) ↔ (𝐴 ∈ CMetSp ∧ (Scalar‘𝐴) ∈ CMetSp ∧ 𝐴 ∈ NrmVec))
17 3anass 1095 . . . . 5 ((𝐴 ∈ CMetSp ∧ (Scalar‘𝐴) ∈ CMetSp ∧ 𝐴 ∈ NrmVec) ↔ (𝐴 ∈ CMetSp ∧ ((Scalar‘𝐴) ∈ CMetSp ∧ 𝐴 ∈ NrmVec)))
1815, 16, 173bitri 296 . . . 4 (𝐴 ∈ Ban ↔ (𝐴 ∈ CMetSp ∧ ((Scalar‘𝐴) ∈ CMetSp ∧ 𝐴 ∈ NrmVec)))
1918baib 536 . . 3 (𝐴 ∈ CMetSp → (𝐴 ∈ Ban ↔ ((Scalar‘𝐴) ∈ CMetSp ∧ 𝐴 ∈ NrmVec)))
2013, 19syl 17 . 2 ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝐴 ∈ Ban ↔ ((Scalar‘𝐴) ∈ CMetSp ∧ 𝐴 ∈ NrmVec)))
214, 7srasca 20749 . . . . 5 ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝑊s 𝑆) = (Scalar‘𝐴))
2221eleq1d 2818 . . . 4 ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → ((𝑊s 𝑆) ∈ CMetSp ↔ (Scalar‘𝐴) ∈ CMetSp))
23 eqid 2732 . . . . . 6 (𝑊s 𝑆) = (𝑊s 𝑆)
24 srabn.j . . . . . 6 𝐽 = (TopOpen‘𝑊)
2523, 5, 24cmsss 24799 . . . . 5 ((𝑊 ∈ CMetSp ∧ 𝑆 ⊆ (Base‘𝑊)) → ((𝑊s 𝑆) ∈ CMetSp ↔ 𝑆 ∈ (Clsd‘𝐽)))
261, 7, 25syl2anc 584 . . . 4 ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → ((𝑊s 𝑆) ∈ CMetSp ↔ 𝑆 ∈ (Clsd‘𝐽)))
2722, 26bitr3d 280 . . 3 ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → ((Scalar‘𝐴) ∈ CMetSp ↔ 𝑆 ∈ (Clsd‘𝐽)))
283sranlm 24132 . . . . . 6 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝐴 ∈ NrmMod)
29283adant2 1131 . . . . 5 ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝐴 ∈ NrmMod)
3014isnvc2 24147 . . . . . 6 (𝐴 ∈ NrmVec ↔ (𝐴 ∈ NrmMod ∧ (Scalar‘𝐴) ∈ DivRing))
3130baib 536 . . . . 5 (𝐴 ∈ NrmMod → (𝐴 ∈ NrmVec ↔ (Scalar‘𝐴) ∈ DivRing))
3229, 31syl 17 . . . 4 ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝐴 ∈ NrmVec ↔ (Scalar‘𝐴) ∈ DivRing))
3321eleq1d 2818 . . . 4 ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → ((𝑊s 𝑆) ∈ DivRing ↔ (Scalar‘𝐴) ∈ DivRing))
3432, 33bitr4d 281 . . 3 ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝐴 ∈ NrmVec ↔ (𝑊s 𝑆) ∈ DivRing))
3527, 34anbi12d 631 . 2 ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (((Scalar‘𝐴) ∈ CMetSp ∧ 𝐴 ∈ NrmVec) ↔ (𝑆 ∈ (Clsd‘𝐽) ∧ (𝑊s 𝑆) ∈ DivRing)))
3620, 35bitrd 278 1 ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝐴 ∈ Ban ↔ (𝑆 ∈ (Clsd‘𝐽) ∧ (𝑊s 𝑆) ∈ DivRing)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wss 3945   × cxp 5668  cfv 6533  (class class class)co 7394  Basecbs 17128  s cress 17157  Scalarcsca 17184  distcds 17190  TopOpenctopn 17351  DivRingcdr 20267  SubRingcsubrg 20310  subringAlg csra 20732  Clsdccld 22451  NrmRingcnrg 24019  NrmModcnlm 24020  NrmVeccnvc 24021  CMetSpccms 24780  Bancbn 24781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5357  ax-pr 5421  ax-un 7709  ax-cnex 11150  ax-resscn 11151  ax-1cn 11152  ax-icn 11153  ax-addcl 11154  ax-addrcl 11155  ax-mulcl 11156  ax-mulrcl 11157  ax-mulcom 11158  ax-addass 11159  ax-mulass 11160  ax-distr 11161  ax-i2m1 11162  ax-1ne0 11163  ax-1rid 11164  ax-rnegex 11165  ax-rrecex 11166  ax-cnre 11167  ax-pre-lttri 11168  ax-pre-lttrn 11169  ax-pre-ltadd 11170  ax-pre-mulgt0 11171  ax-pre-sup 11172
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5568  df-eprel 5574  df-po 5582  df-so 5583  df-fr 5625  df-we 5627  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7350  df-ov 7397  df-oprab 7398  df-mpo 7399  df-om 7840  df-1st 7959  df-2nd 7960  df-frecs 8250  df-wrecs 8281  df-recs 8355  df-rdg 8394  df-1o 8450  df-er 8688  df-map 8807  df-en 8925  df-dom 8926  df-sdom 8927  df-fin 8928  df-fi 9390  df-sup 9421  df-inf 9422  df-pnf 11234  df-mnf 11235  df-xr 11236  df-ltxr 11237  df-le 11238  df-sub 11430  df-neg 11431  df-div 11856  df-nn 12197  df-2 12259  df-3 12260  df-4 12261  df-5 12262  df-6 12263  df-7 12264  df-8 12265  df-9 12266  df-n0 12457  df-z 12543  df-dec 12662  df-uz 12807  df-q 12917  df-rp 12959  df-xneg 13076  df-xadd 13077  df-xmul 13078  df-ico 13314  df-icc 13315  df-sets 17081  df-slot 17099  df-ndx 17111  df-base 17129  df-ress 17158  df-plusg 17194  df-mulr 17195  df-sca 17197  df-vsca 17198  df-ip 17199  df-tset 17200  df-ds 17203  df-rest 17352  df-topn 17353  df-0g 17371  df-topgen 17373  df-mgm 18545  df-sgrp 18594  df-mnd 18605  df-grp 18799  df-minusg 18800  df-sbg 18801  df-subg 18977  df-mgp 19949  df-ur 19966  df-ring 20018  df-subrg 20312  df-abv 20376  df-lmod 20424  df-lvec 20665  df-sra 20736  df-psmet 20872  df-xmet 20873  df-met 20874  df-bl 20875  df-mopn 20876  df-fbas 20877  df-fg 20878  df-top 22327  df-topon 22344  df-topsp 22366  df-bases 22380  df-cld 22454  df-ntr 22455  df-cls 22456  df-nei 22533  df-haus 22750  df-fil 23281  df-flim 23374  df-xms 23757  df-ms 23758  df-nm 24022  df-ngp 24023  df-nrg 24025  df-nlm 24026  df-nvc 24027  df-cfil 24703  df-cmet 24705  df-cms 24783  df-bn 24784
This theorem is referenced by:  rlmbn  24809
  Copyright terms: Public domain W3C validator