![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > srabn | Structured version Visualization version GIF version |
Description: The subring algebra over a complete normed ring is a Banach space iff the subring is a closed division ring. (Contributed by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
srabn.a | ⊢ 𝐴 = ((subringAlg ‘𝑊)‘𝑆) |
srabn.j | ⊢ 𝐽 = (TopOpen‘𝑊) |
Ref | Expression |
---|---|
srabn | ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝐴 ∈ Ban ↔ (𝑆 ∈ (Clsd‘𝐽) ∧ (𝑊 ↾s 𝑆) ∈ DivRing))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1136 | . . . 4 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝑊 ∈ CMetSp) | |
2 | eqidd 2736 | . . . . 5 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (Base‘𝑊) = (Base‘𝑊)) | |
3 | srabn.a | . . . . . . 7 ⊢ 𝐴 = ((subringAlg ‘𝑊)‘𝑆) | |
4 | 3 | a1i 11 | . . . . . 6 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) |
5 | eqid 2735 | . . . . . . . 8 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
6 | 5 | subrgss 20589 | . . . . . . 7 ⊢ (𝑆 ∈ (SubRing‘𝑊) → 𝑆 ⊆ (Base‘𝑊)) |
7 | 6 | 3ad2ant3 1134 | . . . . . 6 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝑆 ⊆ (Base‘𝑊)) |
8 | 4, 7 | srabase 21195 | . . . . 5 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (Base‘𝑊) = (Base‘𝐴)) |
9 | 4, 7 | srads 21209 | . . . . . 6 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (dist‘𝑊) = (dist‘𝐴)) |
10 | 9 | reseq1d 5999 | . . . . 5 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) = ((dist‘𝐴) ↾ ((Base‘𝑊) × (Base‘𝑊)))) |
11 | 4, 7 | sratopn 21208 | . . . . 5 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (TopOpen‘𝑊) = (TopOpen‘𝐴)) |
12 | 2, 8, 10, 11 | cmspropd 25397 | . . . 4 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝑊 ∈ CMetSp ↔ 𝐴 ∈ CMetSp)) |
13 | 1, 12 | mpbid 232 | . . 3 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝐴 ∈ CMetSp) |
14 | eqid 2735 | . . . . . 6 ⊢ (Scalar‘𝐴) = (Scalar‘𝐴) | |
15 | 14 | isbn 25386 | . . . . 5 ⊢ (𝐴 ∈ Ban ↔ (𝐴 ∈ NrmVec ∧ 𝐴 ∈ CMetSp ∧ (Scalar‘𝐴) ∈ CMetSp)) |
16 | 3anrot 1099 | . . . . 5 ⊢ ((𝐴 ∈ NrmVec ∧ 𝐴 ∈ CMetSp ∧ (Scalar‘𝐴) ∈ CMetSp) ↔ (𝐴 ∈ CMetSp ∧ (Scalar‘𝐴) ∈ CMetSp ∧ 𝐴 ∈ NrmVec)) | |
17 | 3anass 1094 | . . . . 5 ⊢ ((𝐴 ∈ CMetSp ∧ (Scalar‘𝐴) ∈ CMetSp ∧ 𝐴 ∈ NrmVec) ↔ (𝐴 ∈ CMetSp ∧ ((Scalar‘𝐴) ∈ CMetSp ∧ 𝐴 ∈ NrmVec))) | |
18 | 15, 16, 17 | 3bitri 297 | . . . 4 ⊢ (𝐴 ∈ Ban ↔ (𝐴 ∈ CMetSp ∧ ((Scalar‘𝐴) ∈ CMetSp ∧ 𝐴 ∈ NrmVec))) |
19 | 18 | baib 535 | . . 3 ⊢ (𝐴 ∈ CMetSp → (𝐴 ∈ Ban ↔ ((Scalar‘𝐴) ∈ CMetSp ∧ 𝐴 ∈ NrmVec))) |
20 | 13, 19 | syl 17 | . 2 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝐴 ∈ Ban ↔ ((Scalar‘𝐴) ∈ CMetSp ∧ 𝐴 ∈ NrmVec))) |
21 | 4, 7 | srasca 21201 | . . . . 5 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝑊 ↾s 𝑆) = (Scalar‘𝐴)) |
22 | 21 | eleq1d 2824 | . . . 4 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → ((𝑊 ↾s 𝑆) ∈ CMetSp ↔ (Scalar‘𝐴) ∈ CMetSp)) |
23 | eqid 2735 | . . . . . 6 ⊢ (𝑊 ↾s 𝑆) = (𝑊 ↾s 𝑆) | |
24 | srabn.j | . . . . . 6 ⊢ 𝐽 = (TopOpen‘𝑊) | |
25 | 23, 5, 24 | cmsss 25399 | . . . . 5 ⊢ ((𝑊 ∈ CMetSp ∧ 𝑆 ⊆ (Base‘𝑊)) → ((𝑊 ↾s 𝑆) ∈ CMetSp ↔ 𝑆 ∈ (Clsd‘𝐽))) |
26 | 1, 7, 25 | syl2anc 584 | . . . 4 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → ((𝑊 ↾s 𝑆) ∈ CMetSp ↔ 𝑆 ∈ (Clsd‘𝐽))) |
27 | 22, 26 | bitr3d 281 | . . 3 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → ((Scalar‘𝐴) ∈ CMetSp ↔ 𝑆 ∈ (Clsd‘𝐽))) |
28 | 3 | sranlm 24721 | . . . . . 6 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝐴 ∈ NrmMod) |
29 | 28 | 3adant2 1130 | . . . . 5 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝐴 ∈ NrmMod) |
30 | 14 | isnvc2 24736 | . . . . . 6 ⊢ (𝐴 ∈ NrmVec ↔ (𝐴 ∈ NrmMod ∧ (Scalar‘𝐴) ∈ DivRing)) |
31 | 30 | baib 535 | . . . . 5 ⊢ (𝐴 ∈ NrmMod → (𝐴 ∈ NrmVec ↔ (Scalar‘𝐴) ∈ DivRing)) |
32 | 29, 31 | syl 17 | . . . 4 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝐴 ∈ NrmVec ↔ (Scalar‘𝐴) ∈ DivRing)) |
33 | 21 | eleq1d 2824 | . . . 4 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → ((𝑊 ↾s 𝑆) ∈ DivRing ↔ (Scalar‘𝐴) ∈ DivRing)) |
34 | 32, 33 | bitr4d 282 | . . 3 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝐴 ∈ NrmVec ↔ (𝑊 ↾s 𝑆) ∈ DivRing)) |
35 | 27, 34 | anbi12d 632 | . 2 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (((Scalar‘𝐴) ∈ CMetSp ∧ 𝐴 ∈ NrmVec) ↔ (𝑆 ∈ (Clsd‘𝐽) ∧ (𝑊 ↾s 𝑆) ∈ DivRing))) |
36 | 20, 35 | bitrd 279 | 1 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝐴 ∈ Ban ↔ (𝑆 ∈ (Clsd‘𝐽) ∧ (𝑊 ↾s 𝑆) ∈ DivRing))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ⊆ wss 3963 × cxp 5687 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 ↾s cress 17274 Scalarcsca 17301 distcds 17307 TopOpenctopn 17468 SubRingcsubrg 20586 DivRingcdr 20746 subringAlg csra 21188 Clsdccld 23040 NrmRingcnrg 24608 NrmModcnlm 24609 NrmVeccnvc 24610 CMetSpccms 25380 Bancbn 25381 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fi 9449 df-sup 9480 df-inf 9481 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-q 12989 df-rp 13033 df-xneg 13152 df-xadd 13153 df-xmul 13154 df-ico 13390 df-icc 13391 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ds 17320 df-rest 17469 df-topn 17470 df-0g 17488 df-topgen 17490 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 df-minusg 18968 df-sbg 18969 df-subg 19154 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-ring 20253 df-subrng 20563 df-subrg 20587 df-abv 20827 df-lmod 20877 df-lvec 21120 df-sra 21190 df-psmet 21374 df-xmet 21375 df-met 21376 df-bl 21377 df-mopn 21378 df-fbas 21379 df-fg 21380 df-top 22916 df-topon 22933 df-topsp 22955 df-bases 22969 df-cld 23043 df-ntr 23044 df-cls 23045 df-nei 23122 df-haus 23339 df-fil 23870 df-flim 23963 df-xms 24346 df-ms 24347 df-nm 24611 df-ngp 24612 df-nrg 24614 df-nlm 24615 df-nvc 24616 df-cfil 25303 df-cmet 25305 df-cms 25383 df-bn 25384 |
This theorem is referenced by: rlmbn 25409 |
Copyright terms: Public domain | W3C validator |