![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > srabn | Structured version Visualization version GIF version |
Description: The subring algebra over a complete normed ring is a Banach space iff the subring is a closed division ring. (Contributed by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
srabn.a | ⊢ 𝐴 = ((subringAlg ‘𝑊)‘𝑆) |
srabn.j | ⊢ 𝐽 = (TopOpen‘𝑊) |
Ref | Expression |
---|---|
srabn | ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝐴 ∈ Ban ↔ (𝑆 ∈ (Clsd‘𝐽) ∧ (𝑊 ↾s 𝑆) ∈ DivRing))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1130 | . . . 4 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝑊 ∈ CMetSp) | |
2 | eqidd 2796 | . . . . 5 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (Base‘𝑊) = (Base‘𝑊)) | |
3 | srabn.a | . . . . . . 7 ⊢ 𝐴 = ((subringAlg ‘𝑊)‘𝑆) | |
4 | 3 | a1i 11 | . . . . . 6 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) |
5 | eqid 2795 | . . . . . . . 8 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
6 | 5 | subrgss 19226 | . . . . . . 7 ⊢ (𝑆 ∈ (SubRing‘𝑊) → 𝑆 ⊆ (Base‘𝑊)) |
7 | 6 | 3ad2ant3 1128 | . . . . . 6 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝑆 ⊆ (Base‘𝑊)) |
8 | 4, 7 | srabase 19640 | . . . . 5 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (Base‘𝑊) = (Base‘𝐴)) |
9 | 4, 7 | srads 19648 | . . . . . 6 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (dist‘𝑊) = (dist‘𝐴)) |
10 | 9 | reseq1d 5733 | . . . . 5 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) = ((dist‘𝐴) ↾ ((Base‘𝑊) × (Base‘𝑊)))) |
11 | 4, 7 | sratopn 19647 | . . . . 5 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (TopOpen‘𝑊) = (TopOpen‘𝐴)) |
12 | 2, 8, 10, 11 | cmspropd 23635 | . . . 4 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝑊 ∈ CMetSp ↔ 𝐴 ∈ CMetSp)) |
13 | 1, 12 | mpbid 233 | . . 3 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝐴 ∈ CMetSp) |
14 | eqid 2795 | . . . . . 6 ⊢ (Scalar‘𝐴) = (Scalar‘𝐴) | |
15 | 14 | isbn 23624 | . . . . 5 ⊢ (𝐴 ∈ Ban ↔ (𝐴 ∈ NrmVec ∧ 𝐴 ∈ CMetSp ∧ (Scalar‘𝐴) ∈ CMetSp)) |
16 | 3anrot 1093 | . . . . 5 ⊢ ((𝐴 ∈ NrmVec ∧ 𝐴 ∈ CMetSp ∧ (Scalar‘𝐴) ∈ CMetSp) ↔ (𝐴 ∈ CMetSp ∧ (Scalar‘𝐴) ∈ CMetSp ∧ 𝐴 ∈ NrmVec)) | |
17 | 3anass 1088 | . . . . 5 ⊢ ((𝐴 ∈ CMetSp ∧ (Scalar‘𝐴) ∈ CMetSp ∧ 𝐴 ∈ NrmVec) ↔ (𝐴 ∈ CMetSp ∧ ((Scalar‘𝐴) ∈ CMetSp ∧ 𝐴 ∈ NrmVec))) | |
18 | 15, 16, 17 | 3bitri 298 | . . . 4 ⊢ (𝐴 ∈ Ban ↔ (𝐴 ∈ CMetSp ∧ ((Scalar‘𝐴) ∈ CMetSp ∧ 𝐴 ∈ NrmVec))) |
19 | 18 | baib 536 | . . 3 ⊢ (𝐴 ∈ CMetSp → (𝐴 ∈ Ban ↔ ((Scalar‘𝐴) ∈ CMetSp ∧ 𝐴 ∈ NrmVec))) |
20 | 13, 19 | syl 17 | . 2 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝐴 ∈ Ban ↔ ((Scalar‘𝐴) ∈ CMetSp ∧ 𝐴 ∈ NrmVec))) |
21 | 4, 7 | srasca 19643 | . . . . 5 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝑊 ↾s 𝑆) = (Scalar‘𝐴)) |
22 | 21 | eleq1d 2867 | . . . 4 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → ((𝑊 ↾s 𝑆) ∈ CMetSp ↔ (Scalar‘𝐴) ∈ CMetSp)) |
23 | eqid 2795 | . . . . . 6 ⊢ (𝑊 ↾s 𝑆) = (𝑊 ↾s 𝑆) | |
24 | srabn.j | . . . . . 6 ⊢ 𝐽 = (TopOpen‘𝑊) | |
25 | 23, 5, 24 | cmsss 23637 | . . . . 5 ⊢ ((𝑊 ∈ CMetSp ∧ 𝑆 ⊆ (Base‘𝑊)) → ((𝑊 ↾s 𝑆) ∈ CMetSp ↔ 𝑆 ∈ (Clsd‘𝐽))) |
26 | 1, 7, 25 | syl2anc 584 | . . . 4 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → ((𝑊 ↾s 𝑆) ∈ CMetSp ↔ 𝑆 ∈ (Clsd‘𝐽))) |
27 | 22, 26 | bitr3d 282 | . . 3 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → ((Scalar‘𝐴) ∈ CMetSp ↔ 𝑆 ∈ (Clsd‘𝐽))) |
28 | 3 | sranlm 22976 | . . . . . 6 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝐴 ∈ NrmMod) |
29 | 28 | 3adant2 1124 | . . . . 5 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝐴 ∈ NrmMod) |
30 | 14 | isnvc2 22991 | . . . . . 6 ⊢ (𝐴 ∈ NrmVec ↔ (𝐴 ∈ NrmMod ∧ (Scalar‘𝐴) ∈ DivRing)) |
31 | 30 | baib 536 | . . . . 5 ⊢ (𝐴 ∈ NrmMod → (𝐴 ∈ NrmVec ↔ (Scalar‘𝐴) ∈ DivRing)) |
32 | 29, 31 | syl 17 | . . . 4 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝐴 ∈ NrmVec ↔ (Scalar‘𝐴) ∈ DivRing)) |
33 | 21 | eleq1d 2867 | . . . 4 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → ((𝑊 ↾s 𝑆) ∈ DivRing ↔ (Scalar‘𝐴) ∈ DivRing)) |
34 | 32, 33 | bitr4d 283 | . . 3 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝐴 ∈ NrmVec ↔ (𝑊 ↾s 𝑆) ∈ DivRing)) |
35 | 27, 34 | anbi12d 630 | . 2 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (((Scalar‘𝐴) ∈ CMetSp ∧ 𝐴 ∈ NrmVec) ↔ (𝑆 ∈ (Clsd‘𝐽) ∧ (𝑊 ↾s 𝑆) ∈ DivRing))) |
36 | 20, 35 | bitrd 280 | 1 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝐴 ∈ Ban ↔ (𝑆 ∈ (Clsd‘𝐽) ∧ (𝑊 ↾s 𝑆) ∈ DivRing))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 ∧ w3a 1080 = wceq 1522 ∈ wcel 2081 ⊆ wss 3859 × cxp 5441 ‘cfv 6225 (class class class)co 7016 Basecbs 16312 ↾s cress 16313 Scalarcsca 16397 distcds 16403 TopOpenctopn 16524 DivRingcdr 19192 SubRingcsubrg 19221 subringAlg csra 19630 Clsdccld 21308 NrmRingcnrg 22872 NrmModcnlm 22873 NrmVeccnvc 22874 CMetSpccms 23618 Bancbn 23619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5081 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-cnex 10439 ax-resscn 10440 ax-1cn 10441 ax-icn 10442 ax-addcl 10443 ax-addrcl 10444 ax-mulcl 10445 ax-mulrcl 10446 ax-mulcom 10447 ax-addass 10448 ax-mulass 10449 ax-distr 10450 ax-i2m1 10451 ax-1ne0 10452 ax-1rid 10453 ax-rnegex 10454 ax-rrecex 10455 ax-cnre 10456 ax-pre-lttri 10457 ax-pre-lttrn 10458 ax-pre-ltadd 10459 ax-pre-mulgt0 10460 ax-pre-sup 10461 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rmo 3113 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-tp 4477 df-op 4479 df-uni 4746 df-int 4783 df-iun 4827 df-iin 4828 df-br 4963 df-opab 5025 df-mpt 5042 df-tr 5064 df-id 5348 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-we 5404 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-pred 6023 df-ord 6069 df-on 6070 df-lim 6071 df-suc 6072 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-riota 6977 df-ov 7019 df-oprab 7020 df-mpo 7021 df-om 7437 df-1st 7545 df-2nd 7546 df-wrecs 7798 df-recs 7860 df-rdg 7898 df-1o 7953 df-oadd 7957 df-er 8139 df-map 8258 df-en 8358 df-dom 8359 df-sdom 8360 df-fin 8361 df-fi 8721 df-sup 8752 df-inf 8753 df-pnf 10523 df-mnf 10524 df-xr 10525 df-ltxr 10526 df-le 10527 df-sub 10719 df-neg 10720 df-div 11146 df-nn 11487 df-2 11548 df-3 11549 df-4 11550 df-5 11551 df-6 11552 df-7 11553 df-8 11554 df-9 11555 df-n0 11746 df-z 11830 df-dec 11948 df-uz 12094 df-q 12198 df-rp 12240 df-xneg 12357 df-xadd 12358 df-xmul 12359 df-ico 12594 df-icc 12595 df-ndx 16315 df-slot 16316 df-base 16318 df-sets 16319 df-ress 16320 df-plusg 16407 df-mulr 16408 df-sca 16410 df-vsca 16411 df-ip 16412 df-tset 16413 df-ds 16416 df-rest 16525 df-topn 16526 df-0g 16544 df-topgen 16546 df-mgm 17681 df-sgrp 17723 df-mnd 17734 df-grp 17864 df-minusg 17865 df-sbg 17866 df-subg 18030 df-mgp 18930 df-ur 18942 df-ring 18989 df-subrg 19223 df-abv 19278 df-lmod 19326 df-lvec 19565 df-sra 19634 df-psmet 20219 df-xmet 20220 df-met 20221 df-bl 20222 df-mopn 20223 df-fbas 20224 df-fg 20225 df-top 21186 df-topon 21203 df-topsp 21225 df-bases 21238 df-cld 21311 df-ntr 21312 df-cls 21313 df-nei 21390 df-haus 21607 df-fil 22138 df-flim 22231 df-xms 22613 df-ms 22614 df-nm 22875 df-ngp 22876 df-nrg 22878 df-nlm 22879 df-nvc 22880 df-cfil 23541 df-cmet 23543 df-cms 23621 df-bn 23622 |
This theorem is referenced by: rlmbn 23647 |
Copyright terms: Public domain | W3C validator |