| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > srabn | Structured version Visualization version GIF version | ||
| Description: The subring algebra over a complete normed ring is a Banach space iff the subring is a closed division ring. (Contributed by Mario Carneiro, 15-Oct-2015.) |
| Ref | Expression |
|---|---|
| srabn.a | ⊢ 𝐴 = ((subringAlg ‘𝑊)‘𝑆) |
| srabn.j | ⊢ 𝐽 = (TopOpen‘𝑊) |
| Ref | Expression |
|---|---|
| srabn | ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝐴 ∈ Ban ↔ (𝑆 ∈ (Clsd‘𝐽) ∧ (𝑊 ↾s 𝑆) ∈ DivRing))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1137 | . . . 4 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝑊 ∈ CMetSp) | |
| 2 | eqidd 2730 | . . . . 5 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (Base‘𝑊) = (Base‘𝑊)) | |
| 3 | srabn.a | . . . . . . 7 ⊢ 𝐴 = ((subringAlg ‘𝑊)‘𝑆) | |
| 4 | 3 | a1i 11 | . . . . . 6 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) |
| 5 | eqid 2729 | . . . . . . . 8 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 6 | 5 | subrgss 20481 | . . . . . . 7 ⊢ (𝑆 ∈ (SubRing‘𝑊) → 𝑆 ⊆ (Base‘𝑊)) |
| 7 | 6 | 3ad2ant3 1135 | . . . . . 6 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝑆 ⊆ (Base‘𝑊)) |
| 8 | 4, 7 | srabase 21084 | . . . . 5 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (Base‘𝑊) = (Base‘𝐴)) |
| 9 | 4, 7 | srads 21092 | . . . . . 6 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (dist‘𝑊) = (dist‘𝐴)) |
| 10 | 9 | reseq1d 5949 | . . . . 5 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) = ((dist‘𝐴) ↾ ((Base‘𝑊) × (Base‘𝑊)))) |
| 11 | 4, 7 | sratopn 21091 | . . . . 5 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (TopOpen‘𝑊) = (TopOpen‘𝐴)) |
| 12 | 2, 8, 10, 11 | cmspropd 25249 | . . . 4 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝑊 ∈ CMetSp ↔ 𝐴 ∈ CMetSp)) |
| 13 | 1, 12 | mpbid 232 | . . 3 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝐴 ∈ CMetSp) |
| 14 | eqid 2729 | . . . . . 6 ⊢ (Scalar‘𝐴) = (Scalar‘𝐴) | |
| 15 | 14 | isbn 25238 | . . . . 5 ⊢ (𝐴 ∈ Ban ↔ (𝐴 ∈ NrmVec ∧ 𝐴 ∈ CMetSp ∧ (Scalar‘𝐴) ∈ CMetSp)) |
| 16 | 3anrot 1099 | . . . . 5 ⊢ ((𝐴 ∈ NrmVec ∧ 𝐴 ∈ CMetSp ∧ (Scalar‘𝐴) ∈ CMetSp) ↔ (𝐴 ∈ CMetSp ∧ (Scalar‘𝐴) ∈ CMetSp ∧ 𝐴 ∈ NrmVec)) | |
| 17 | 3anass 1094 | . . . . 5 ⊢ ((𝐴 ∈ CMetSp ∧ (Scalar‘𝐴) ∈ CMetSp ∧ 𝐴 ∈ NrmVec) ↔ (𝐴 ∈ CMetSp ∧ ((Scalar‘𝐴) ∈ CMetSp ∧ 𝐴 ∈ NrmVec))) | |
| 18 | 15, 16, 17 | 3bitri 297 | . . . 4 ⊢ (𝐴 ∈ Ban ↔ (𝐴 ∈ CMetSp ∧ ((Scalar‘𝐴) ∈ CMetSp ∧ 𝐴 ∈ NrmVec))) |
| 19 | 18 | baib 535 | . . 3 ⊢ (𝐴 ∈ CMetSp → (𝐴 ∈ Ban ↔ ((Scalar‘𝐴) ∈ CMetSp ∧ 𝐴 ∈ NrmVec))) |
| 20 | 13, 19 | syl 17 | . 2 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝐴 ∈ Ban ↔ ((Scalar‘𝐴) ∈ CMetSp ∧ 𝐴 ∈ NrmVec))) |
| 21 | 4, 7 | srasca 21087 | . . . . 5 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝑊 ↾s 𝑆) = (Scalar‘𝐴)) |
| 22 | 21 | eleq1d 2813 | . . . 4 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → ((𝑊 ↾s 𝑆) ∈ CMetSp ↔ (Scalar‘𝐴) ∈ CMetSp)) |
| 23 | eqid 2729 | . . . . . 6 ⊢ (𝑊 ↾s 𝑆) = (𝑊 ↾s 𝑆) | |
| 24 | srabn.j | . . . . . 6 ⊢ 𝐽 = (TopOpen‘𝑊) | |
| 25 | 23, 5, 24 | cmsss 25251 | . . . . 5 ⊢ ((𝑊 ∈ CMetSp ∧ 𝑆 ⊆ (Base‘𝑊)) → ((𝑊 ↾s 𝑆) ∈ CMetSp ↔ 𝑆 ∈ (Clsd‘𝐽))) |
| 26 | 1, 7, 25 | syl2anc 584 | . . . 4 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → ((𝑊 ↾s 𝑆) ∈ CMetSp ↔ 𝑆 ∈ (Clsd‘𝐽))) |
| 27 | 22, 26 | bitr3d 281 | . . 3 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → ((Scalar‘𝐴) ∈ CMetSp ↔ 𝑆 ∈ (Clsd‘𝐽))) |
| 28 | 3 | sranlm 24572 | . . . . . 6 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝐴 ∈ NrmMod) |
| 29 | 28 | 3adant2 1131 | . . . . 5 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝐴 ∈ NrmMod) |
| 30 | 14 | isnvc2 24587 | . . . . . 6 ⊢ (𝐴 ∈ NrmVec ↔ (𝐴 ∈ NrmMod ∧ (Scalar‘𝐴) ∈ DivRing)) |
| 31 | 30 | baib 535 | . . . . 5 ⊢ (𝐴 ∈ NrmMod → (𝐴 ∈ NrmVec ↔ (Scalar‘𝐴) ∈ DivRing)) |
| 32 | 29, 31 | syl 17 | . . . 4 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝐴 ∈ NrmVec ↔ (Scalar‘𝐴) ∈ DivRing)) |
| 33 | 21 | eleq1d 2813 | . . . 4 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → ((𝑊 ↾s 𝑆) ∈ DivRing ↔ (Scalar‘𝐴) ∈ DivRing)) |
| 34 | 32, 33 | bitr4d 282 | . . 3 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝐴 ∈ NrmVec ↔ (𝑊 ↾s 𝑆) ∈ DivRing)) |
| 35 | 27, 34 | anbi12d 632 | . 2 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (((Scalar‘𝐴) ∈ CMetSp ∧ 𝐴 ∈ NrmVec) ↔ (𝑆 ∈ (Clsd‘𝐽) ∧ (𝑊 ↾s 𝑆) ∈ DivRing))) |
| 36 | 20, 35 | bitrd 279 | 1 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝐴 ∈ Ban ↔ (𝑆 ∈ (Clsd‘𝐽) ∧ (𝑊 ↾s 𝑆) ∈ DivRing))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 × cxp 5636 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 ↾s cress 17200 Scalarcsca 17223 distcds 17229 TopOpenctopn 17384 SubRingcsubrg 20478 DivRingcdr 20638 subringAlg csra 21078 Clsdccld 22903 NrmRingcnrg 24467 NrmModcnlm 24468 NrmVeccnvc 24469 CMetSpccms 25232 Bancbn 25233 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fi 9362 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-ico 13312 df-icc 13313 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ds 17242 df-rest 17385 df-topn 17386 df-0g 17404 df-topgen 17406 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-sbg 18870 df-subg 19055 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-subrng 20455 df-subrg 20479 df-abv 20718 df-lmod 20768 df-lvec 21010 df-sra 21080 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-fbas 21261 df-fg 21262 df-top 22781 df-topon 22798 df-topsp 22820 df-bases 22833 df-cld 22906 df-ntr 22907 df-cls 22908 df-nei 22985 df-haus 23202 df-fil 23733 df-flim 23826 df-xms 24208 df-ms 24209 df-nm 24470 df-ngp 24471 df-nrg 24473 df-nlm 24474 df-nvc 24475 df-cfil 25155 df-cmet 25157 df-cms 25235 df-bn 25236 |
| This theorem is referenced by: rlmbn 25261 |
| Copyright terms: Public domain | W3C validator |