Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > srabn | Structured version Visualization version GIF version |
Description: The subring algebra over a complete normed ring is a Banach space iff the subring is a closed division ring. (Contributed by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
srabn.a | ⊢ 𝐴 = ((subringAlg ‘𝑊)‘𝑆) |
srabn.j | ⊢ 𝐽 = (TopOpen‘𝑊) |
Ref | Expression |
---|---|
srabn | ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝐴 ∈ Ban ↔ (𝑆 ∈ (Clsd‘𝐽) ∧ (𝑊 ↾s 𝑆) ∈ DivRing))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1139 | . . . 4 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝑊 ∈ CMetSp) | |
2 | eqidd 2738 | . . . . 5 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (Base‘𝑊) = (Base‘𝑊)) | |
3 | srabn.a | . . . . . . 7 ⊢ 𝐴 = ((subringAlg ‘𝑊)‘𝑆) | |
4 | 3 | a1i 11 | . . . . . 6 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) |
5 | eqid 2737 | . . . . . . . 8 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
6 | 5 | subrgss 19801 | . . . . . . 7 ⊢ (𝑆 ∈ (SubRing‘𝑊) → 𝑆 ⊆ (Base‘𝑊)) |
7 | 6 | 3ad2ant3 1137 | . . . . . 6 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝑆 ⊆ (Base‘𝑊)) |
8 | 4, 7 | srabase 20215 | . . . . 5 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (Base‘𝑊) = (Base‘𝐴)) |
9 | 4, 7 | srads 20223 | . . . . . 6 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (dist‘𝑊) = (dist‘𝐴)) |
10 | 9 | reseq1d 5850 | . . . . 5 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) = ((dist‘𝐴) ↾ ((Base‘𝑊) × (Base‘𝑊)))) |
11 | 4, 7 | sratopn 20222 | . . . . 5 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (TopOpen‘𝑊) = (TopOpen‘𝐴)) |
12 | 2, 8, 10, 11 | cmspropd 24246 | . . . 4 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝑊 ∈ CMetSp ↔ 𝐴 ∈ CMetSp)) |
13 | 1, 12 | mpbid 235 | . . 3 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝐴 ∈ CMetSp) |
14 | eqid 2737 | . . . . . 6 ⊢ (Scalar‘𝐴) = (Scalar‘𝐴) | |
15 | 14 | isbn 24235 | . . . . 5 ⊢ (𝐴 ∈ Ban ↔ (𝐴 ∈ NrmVec ∧ 𝐴 ∈ CMetSp ∧ (Scalar‘𝐴) ∈ CMetSp)) |
16 | 3anrot 1102 | . . . . 5 ⊢ ((𝐴 ∈ NrmVec ∧ 𝐴 ∈ CMetSp ∧ (Scalar‘𝐴) ∈ CMetSp) ↔ (𝐴 ∈ CMetSp ∧ (Scalar‘𝐴) ∈ CMetSp ∧ 𝐴 ∈ NrmVec)) | |
17 | 3anass 1097 | . . . . 5 ⊢ ((𝐴 ∈ CMetSp ∧ (Scalar‘𝐴) ∈ CMetSp ∧ 𝐴 ∈ NrmVec) ↔ (𝐴 ∈ CMetSp ∧ ((Scalar‘𝐴) ∈ CMetSp ∧ 𝐴 ∈ NrmVec))) | |
18 | 15, 16, 17 | 3bitri 300 | . . . 4 ⊢ (𝐴 ∈ Ban ↔ (𝐴 ∈ CMetSp ∧ ((Scalar‘𝐴) ∈ CMetSp ∧ 𝐴 ∈ NrmVec))) |
19 | 18 | baib 539 | . . 3 ⊢ (𝐴 ∈ CMetSp → (𝐴 ∈ Ban ↔ ((Scalar‘𝐴) ∈ CMetSp ∧ 𝐴 ∈ NrmVec))) |
20 | 13, 19 | syl 17 | . 2 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝐴 ∈ Ban ↔ ((Scalar‘𝐴) ∈ CMetSp ∧ 𝐴 ∈ NrmVec))) |
21 | 4, 7 | srasca 20218 | . . . . 5 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝑊 ↾s 𝑆) = (Scalar‘𝐴)) |
22 | 21 | eleq1d 2822 | . . . 4 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → ((𝑊 ↾s 𝑆) ∈ CMetSp ↔ (Scalar‘𝐴) ∈ CMetSp)) |
23 | eqid 2737 | . . . . . 6 ⊢ (𝑊 ↾s 𝑆) = (𝑊 ↾s 𝑆) | |
24 | srabn.j | . . . . . 6 ⊢ 𝐽 = (TopOpen‘𝑊) | |
25 | 23, 5, 24 | cmsss 24248 | . . . . 5 ⊢ ((𝑊 ∈ CMetSp ∧ 𝑆 ⊆ (Base‘𝑊)) → ((𝑊 ↾s 𝑆) ∈ CMetSp ↔ 𝑆 ∈ (Clsd‘𝐽))) |
26 | 1, 7, 25 | syl2anc 587 | . . . 4 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → ((𝑊 ↾s 𝑆) ∈ CMetSp ↔ 𝑆 ∈ (Clsd‘𝐽))) |
27 | 22, 26 | bitr3d 284 | . . 3 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → ((Scalar‘𝐴) ∈ CMetSp ↔ 𝑆 ∈ (Clsd‘𝐽))) |
28 | 3 | sranlm 23582 | . . . . . 6 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝐴 ∈ NrmMod) |
29 | 28 | 3adant2 1133 | . . . . 5 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝐴 ∈ NrmMod) |
30 | 14 | isnvc2 23597 | . . . . . 6 ⊢ (𝐴 ∈ NrmVec ↔ (𝐴 ∈ NrmMod ∧ (Scalar‘𝐴) ∈ DivRing)) |
31 | 30 | baib 539 | . . . . 5 ⊢ (𝐴 ∈ NrmMod → (𝐴 ∈ NrmVec ↔ (Scalar‘𝐴) ∈ DivRing)) |
32 | 29, 31 | syl 17 | . . . 4 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝐴 ∈ NrmVec ↔ (Scalar‘𝐴) ∈ DivRing)) |
33 | 21 | eleq1d 2822 | . . . 4 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → ((𝑊 ↾s 𝑆) ∈ DivRing ↔ (Scalar‘𝐴) ∈ DivRing)) |
34 | 32, 33 | bitr4d 285 | . . 3 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝐴 ∈ NrmVec ↔ (𝑊 ↾s 𝑆) ∈ DivRing)) |
35 | 27, 34 | anbi12d 634 | . 2 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (((Scalar‘𝐴) ∈ CMetSp ∧ 𝐴 ∈ NrmVec) ↔ (𝑆 ∈ (Clsd‘𝐽) ∧ (𝑊 ↾s 𝑆) ∈ DivRing))) |
36 | 20, 35 | bitrd 282 | 1 ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝐴 ∈ Ban ↔ (𝑆 ∈ (Clsd‘𝐽) ∧ (𝑊 ↾s 𝑆) ∈ DivRing))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ⊆ wss 3866 × cxp 5549 ‘cfv 6380 (class class class)co 7213 Basecbs 16760 ↾s cress 16784 Scalarcsca 16805 distcds 16811 TopOpenctopn 16926 DivRingcdr 19767 SubRingcsubrg 19796 subringAlg csra 20205 Clsdccld 21913 NrmRingcnrg 23477 NrmModcnlm 23478 NrmVeccnvc 23479 CMetSpccms 24229 Bancbn 24230 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-iin 4907 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-map 8510 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-fi 9027 df-sup 9058 df-inf 9059 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-7 11898 df-8 11899 df-9 11900 df-n0 12091 df-z 12177 df-dec 12294 df-uz 12439 df-q 12545 df-rp 12587 df-xneg 12704 df-xadd 12705 df-xmul 12706 df-ico 12941 df-icc 12942 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-ress 16785 df-plusg 16815 df-mulr 16816 df-sca 16818 df-vsca 16819 df-ip 16820 df-tset 16821 df-ds 16824 df-rest 16927 df-topn 16928 df-0g 16946 df-topgen 16948 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-grp 18368 df-minusg 18369 df-sbg 18370 df-subg 18540 df-mgp 19505 df-ur 19517 df-ring 19564 df-subrg 19798 df-abv 19853 df-lmod 19901 df-lvec 20140 df-sra 20209 df-psmet 20355 df-xmet 20356 df-met 20357 df-bl 20358 df-mopn 20359 df-fbas 20360 df-fg 20361 df-top 21791 df-topon 21808 df-topsp 21830 df-bases 21843 df-cld 21916 df-ntr 21917 df-cls 21918 df-nei 21995 df-haus 22212 df-fil 22743 df-flim 22836 df-xms 23218 df-ms 23219 df-nm 23480 df-ngp 23481 df-nrg 23483 df-nlm 23484 df-nvc 23485 df-cfil 24152 df-cmet 24154 df-cms 24232 df-bn 24233 |
This theorem is referenced by: rlmbn 24258 |
Copyright terms: Public domain | W3C validator |