![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cmslssbn | Structured version Visualization version GIF version |
Description: A complete linear subspace of a normed vector space is a Banach space. We furthermore have to assume that the field of scalars is complete since this is a requirement in the current definition of Banach spaces df-bn 23622. (Contributed by AV, 8-Oct-2022.) |
Ref | Expression |
---|---|
cmslssbn.x | ⊢ 𝑋 = (𝑊 ↾s 𝑈) |
cmslssbn.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
Ref | Expression |
---|---|
cmslssbn | ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp) ∧ (𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆)) → 𝑋 ∈ Ban) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cmslssbn.x | . . . 4 ⊢ 𝑋 = (𝑊 ↾s 𝑈) | |
2 | cmslssbn.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
3 | 1, 2 | lssnvc 22994 | . . 3 ⊢ ((𝑊 ∈ NrmVec ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ NrmVec) |
4 | 3 | ad2ant2rl 745 | . 2 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp) ∧ (𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆)) → 𝑋 ∈ NrmVec) |
5 | simprl 767 | . 2 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp) ∧ (𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆)) → 𝑋 ∈ CMetSp) | |
6 | eqid 2795 | . . . . . . . 8 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
7 | 1, 6 | resssca 16479 | . . . . . . 7 ⊢ (𝑈 ∈ 𝑆 → (Scalar‘𝑊) = (Scalar‘𝑋)) |
8 | 7 | ad2antll 725 | . . . . . 6 ⊢ ((𝑊 ∈ NrmVec ∧ (𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆)) → (Scalar‘𝑊) = (Scalar‘𝑋)) |
9 | 8 | eleq1d 2867 | . . . . 5 ⊢ ((𝑊 ∈ NrmVec ∧ (𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆)) → ((Scalar‘𝑊) ∈ CMetSp ↔ (Scalar‘𝑋) ∈ CMetSp)) |
10 | 9 | biimpd 230 | . . . 4 ⊢ ((𝑊 ∈ NrmVec ∧ (𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆)) → ((Scalar‘𝑊) ∈ CMetSp → (Scalar‘𝑋) ∈ CMetSp)) |
11 | 10 | impancom 452 | . . 3 ⊢ ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp) → ((𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆) → (Scalar‘𝑋) ∈ CMetSp)) |
12 | 11 | imp 407 | . 2 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp) ∧ (𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆)) → (Scalar‘𝑋) ∈ CMetSp) |
13 | eqid 2795 | . . 3 ⊢ (Scalar‘𝑋) = (Scalar‘𝑋) | |
14 | 13 | isbn 23624 | . 2 ⊢ (𝑋 ∈ Ban ↔ (𝑋 ∈ NrmVec ∧ 𝑋 ∈ CMetSp ∧ (Scalar‘𝑋) ∈ CMetSp)) |
15 | 4, 5, 12, 14 | syl3anbrc 1336 | 1 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp) ∧ (𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆)) → 𝑋 ∈ Ban) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1522 ∈ wcel 2081 ‘cfv 6225 (class class class)co 7016 ↾s cress 16313 Scalarcsca 16397 LSubSpclss 19393 NrmVeccnvc 22874 CMetSpccms 23618 Bancbn 23619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5081 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-cnex 10439 ax-resscn 10440 ax-1cn 10441 ax-icn 10442 ax-addcl 10443 ax-addrcl 10444 ax-mulcl 10445 ax-mulrcl 10446 ax-mulcom 10447 ax-addass 10448 ax-mulass 10449 ax-distr 10450 ax-i2m1 10451 ax-1ne0 10452 ax-1rid 10453 ax-rnegex 10454 ax-rrecex 10455 ax-cnre 10456 ax-pre-lttri 10457 ax-pre-lttrn 10458 ax-pre-ltadd 10459 ax-pre-mulgt0 10460 ax-pre-sup 10461 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rmo 3113 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-tp 4477 df-op 4479 df-uni 4746 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-tr 5064 df-id 5348 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-we 5404 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-pred 6023 df-ord 6069 df-on 6070 df-lim 6071 df-suc 6072 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-riota 6977 df-ov 7019 df-oprab 7020 df-mpo 7021 df-om 7437 df-1st 7545 df-2nd 7546 df-wrecs 7798 df-recs 7860 df-rdg 7898 df-er 8139 df-map 8258 df-en 8358 df-dom 8359 df-sdom 8360 df-sup 8752 df-inf 8753 df-pnf 10523 df-mnf 10524 df-xr 10525 df-ltxr 10526 df-le 10527 df-sub 10719 df-neg 10720 df-div 11146 df-nn 11487 df-2 11548 df-3 11549 df-4 11550 df-5 11551 df-6 11552 df-7 11553 df-8 11554 df-9 11555 df-n0 11746 df-z 11830 df-dec 11948 df-uz 12094 df-q 12198 df-rp 12240 df-xneg 12357 df-xadd 12358 df-xmul 12359 df-ndx 16315 df-slot 16316 df-base 16318 df-sets 16319 df-ress 16320 df-plusg 16407 df-sca 16410 df-vsca 16411 df-tset 16413 df-ds 16416 df-rest 16525 df-topn 16526 df-0g 16544 df-topgen 16546 df-mgm 17681 df-sgrp 17723 df-mnd 17734 df-grp 17864 df-minusg 17865 df-sbg 17866 df-subg 18030 df-mgp 18930 df-ur 18942 df-ring 18989 df-lmod 19326 df-lss 19394 df-lvec 19565 df-psmet 20219 df-xmet 20220 df-met 20221 df-bl 20222 df-mopn 20223 df-top 21186 df-topon 21203 df-topsp 21225 df-bases 21238 df-xms 22613 df-ms 22614 df-nm 22875 df-ngp 22876 df-nlm 22879 df-nvc 22880 df-bn 23622 |
This theorem is referenced by: bncssbn 23660 cssbn 23661 cmslsschl 23663 |
Copyright terms: Public domain | W3C validator |