Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cmslssbn | Structured version Visualization version GIF version |
Description: A complete linear subspace of a normed vector space is a Banach space. We furthermore have to assume that the field of scalars is complete since this is a requirement in the current definition of Banach spaces df-bn 24233. (Contributed by AV, 8-Oct-2022.) |
Ref | Expression |
---|---|
cmslssbn.x | ⊢ 𝑋 = (𝑊 ↾s 𝑈) |
cmslssbn.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
Ref | Expression |
---|---|
cmslssbn | ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp) ∧ (𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆)) → 𝑋 ∈ Ban) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cmslssbn.x | . . . 4 ⊢ 𝑋 = (𝑊 ↾s 𝑈) | |
2 | cmslssbn.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
3 | 1, 2 | lssnvc 23600 | . . 3 ⊢ ((𝑊 ∈ NrmVec ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ NrmVec) |
4 | 3 | ad2ant2rl 749 | . 2 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp) ∧ (𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆)) → 𝑋 ∈ NrmVec) |
5 | simprl 771 | . 2 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp) ∧ (𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆)) → 𝑋 ∈ CMetSp) | |
6 | eqid 2737 | . . . . . . . 8 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
7 | 1, 6 | resssca 16876 | . . . . . . 7 ⊢ (𝑈 ∈ 𝑆 → (Scalar‘𝑊) = (Scalar‘𝑋)) |
8 | 7 | ad2antll 729 | . . . . . 6 ⊢ ((𝑊 ∈ NrmVec ∧ (𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆)) → (Scalar‘𝑊) = (Scalar‘𝑋)) |
9 | 8 | eleq1d 2822 | . . . . 5 ⊢ ((𝑊 ∈ NrmVec ∧ (𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆)) → ((Scalar‘𝑊) ∈ CMetSp ↔ (Scalar‘𝑋) ∈ CMetSp)) |
10 | 9 | biimpd 232 | . . . 4 ⊢ ((𝑊 ∈ NrmVec ∧ (𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆)) → ((Scalar‘𝑊) ∈ CMetSp → (Scalar‘𝑋) ∈ CMetSp)) |
11 | 10 | impancom 455 | . . 3 ⊢ ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp) → ((𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆) → (Scalar‘𝑋) ∈ CMetSp)) |
12 | 11 | imp 410 | . 2 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp) ∧ (𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆)) → (Scalar‘𝑋) ∈ CMetSp) |
13 | eqid 2737 | . . 3 ⊢ (Scalar‘𝑋) = (Scalar‘𝑋) | |
14 | 13 | isbn 24235 | . 2 ⊢ (𝑋 ∈ Ban ↔ (𝑋 ∈ NrmVec ∧ 𝑋 ∈ CMetSp ∧ (Scalar‘𝑋) ∈ CMetSp)) |
15 | 4, 5, 12, 14 | syl3anbrc 1345 | 1 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp) ∧ (𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆)) → 𝑋 ∈ Ban) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ‘cfv 6380 (class class class)co 7213 ↾s cress 16784 Scalarcsca 16805 LSubSpclss 19968 NrmVeccnvc 23479 CMetSpccms 24229 Bancbn 24230 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-map 8510 df-en 8627 df-dom 8628 df-sdom 8629 df-sup 9058 df-inf 9059 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-7 11898 df-8 11899 df-9 11900 df-n0 12091 df-z 12177 df-dec 12294 df-uz 12439 df-q 12545 df-rp 12587 df-xneg 12704 df-xadd 12705 df-xmul 12706 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-ress 16785 df-plusg 16815 df-sca 16818 df-vsca 16819 df-tset 16821 df-ds 16824 df-rest 16927 df-topn 16928 df-0g 16946 df-topgen 16948 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-grp 18368 df-minusg 18369 df-sbg 18370 df-subg 18540 df-mgp 19505 df-ur 19517 df-ring 19564 df-lmod 19901 df-lss 19969 df-lvec 20140 df-psmet 20355 df-xmet 20356 df-met 20357 df-bl 20358 df-mopn 20359 df-top 21791 df-topon 21808 df-topsp 21830 df-bases 21843 df-xms 23218 df-ms 23219 df-nm 23480 df-ngp 23481 df-nlm 23484 df-nvc 23485 df-bn 24233 |
This theorem is referenced by: bncssbn 24271 cssbn 24272 cmslsschl 24274 |
Copyright terms: Public domain | W3C validator |