![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cmslssbn | Structured version Visualization version GIF version |
Description: A complete linear subspace of a normed vector space is a Banach space. We furthermore have to assume that the field of scalars is complete since this is a requirement in the current definition of Banach spaces df-bn 25292. (Contributed by AV, 8-Oct-2022.) |
Ref | Expression |
---|---|
cmslssbn.x | β’ π = (π βΎs π) |
cmslssbn.s | β’ π = (LSubSpβπ) |
Ref | Expression |
---|---|
cmslssbn | β’ (((π β NrmVec β§ (Scalarβπ) β CMetSp) β§ (π β CMetSp β§ π β π)) β π β Ban) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cmslssbn.x | . . . 4 β’ π = (π βΎs π) | |
2 | cmslssbn.s | . . . 4 β’ π = (LSubSpβπ) | |
3 | 1, 2 | lssnvc 24647 | . . 3 β’ ((π β NrmVec β§ π β π) β π β NrmVec) |
4 | 3 | ad2ant2rl 747 | . 2 β’ (((π β NrmVec β§ (Scalarβπ) β CMetSp) β§ (π β CMetSp β§ π β π)) β π β NrmVec) |
5 | simprl 769 | . 2 β’ (((π β NrmVec β§ (Scalarβπ) β CMetSp) β§ (π β CMetSp β§ π β π)) β π β CMetSp) | |
6 | eqid 2728 | . . . . . . . 8 β’ (Scalarβπ) = (Scalarβπ) | |
7 | 1, 6 | resssca 17333 | . . . . . . 7 β’ (π β π β (Scalarβπ) = (Scalarβπ)) |
8 | 7 | ad2antll 727 | . . . . . 6 β’ ((π β NrmVec β§ (π β CMetSp β§ π β π)) β (Scalarβπ) = (Scalarβπ)) |
9 | 8 | eleq1d 2814 | . . . . 5 β’ ((π β NrmVec β§ (π β CMetSp β§ π β π)) β ((Scalarβπ) β CMetSp β (Scalarβπ) β CMetSp)) |
10 | 9 | biimpd 228 | . . . 4 β’ ((π β NrmVec β§ (π β CMetSp β§ π β π)) β ((Scalarβπ) β CMetSp β (Scalarβπ) β CMetSp)) |
11 | 10 | impancom 450 | . . 3 β’ ((π β NrmVec β§ (Scalarβπ) β CMetSp) β ((π β CMetSp β§ π β π) β (Scalarβπ) β CMetSp)) |
12 | 11 | imp 405 | . 2 β’ (((π β NrmVec β§ (Scalarβπ) β CMetSp) β§ (π β CMetSp β§ π β π)) β (Scalarβπ) β CMetSp) |
13 | eqid 2728 | . . 3 β’ (Scalarβπ) = (Scalarβπ) | |
14 | 13 | isbn 25294 | . 2 β’ (π β Ban β (π β NrmVec β§ π β CMetSp β§ (Scalarβπ) β CMetSp)) |
15 | 4, 5, 12, 14 | syl3anbrc 1340 | 1 β’ (((π β NrmVec β§ (Scalarβπ) β CMetSp) β§ (π β CMetSp β§ π β π)) β π β Ban) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 βcfv 6553 (class class class)co 7426 βΎs cress 17218 Scalarcsca 17245 LSubSpclss 20829 NrmVeccnvc 24518 CMetSpccms 25288 Bancbn 25289 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 ax-cnex 11204 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 ax-pre-mulgt0 11225 ax-pre-sup 11226 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7879 df-1st 8001 df-2nd 8002 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-er 8733 df-map 8855 df-en 8973 df-dom 8974 df-sdom 8975 df-sup 9475 df-inf 9476 df-pnf 11290 df-mnf 11291 df-xr 11292 df-ltxr 11293 df-le 11294 df-sub 11486 df-neg 11487 df-div 11912 df-nn 12253 df-2 12315 df-3 12316 df-4 12317 df-5 12318 df-6 12319 df-7 12320 df-8 12321 df-9 12322 df-n0 12513 df-z 12599 df-dec 12718 df-uz 12863 df-q 12973 df-rp 13017 df-xneg 13134 df-xadd 13135 df-xmul 13136 df-sets 17142 df-slot 17160 df-ndx 17172 df-base 17190 df-ress 17219 df-plusg 17255 df-sca 17258 df-vsca 17259 df-tset 17261 df-ds 17264 df-rest 17413 df-topn 17414 df-0g 17432 df-topgen 17434 df-mgm 18609 df-sgrp 18688 df-mnd 18704 df-grp 18907 df-minusg 18908 df-sbg 18909 df-subg 19092 df-mgp 20089 df-ur 20136 df-ring 20189 df-lmod 20759 df-lss 20830 df-lvec 21002 df-psmet 21285 df-xmet 21286 df-met 21287 df-bl 21288 df-mopn 21289 df-top 22824 df-topon 22841 df-topsp 22863 df-bases 22877 df-xms 24254 df-ms 24255 df-nm 24519 df-ngp 24520 df-nlm 24523 df-nvc 24524 df-bn 25292 |
This theorem is referenced by: bncssbn 25330 cssbn 25331 cmslsschl 25333 |
Copyright terms: Public domain | W3C validator |