| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > isch | Structured version Visualization version GIF version | ||
| Description: Closed subspace 𝐻 of a Hilbert space. (Contributed by NM, 17-Aug-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| isch | ⊢ (𝐻 ∈ Cℋ ↔ (𝐻 ∈ Sℋ ∧ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) ⊆ 𝐻)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7362 | . . . 4 ⊢ (ℎ = 𝐻 → (ℎ ↑m ℕ) = (𝐻 ↑m ℕ)) | |
| 2 | 1 | imaeq2d 6016 | . . 3 ⊢ (ℎ = 𝐻 → ( ⇝𝑣 “ (ℎ ↑m ℕ)) = ( ⇝𝑣 “ (𝐻 ↑m ℕ))) |
| 3 | id 22 | . . 3 ⊢ (ℎ = 𝐻 → ℎ = 𝐻) | |
| 4 | 2, 3 | sseq12d 3964 | . 2 ⊢ (ℎ = 𝐻 → (( ⇝𝑣 “ (ℎ ↑m ℕ)) ⊆ ℎ ↔ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) ⊆ 𝐻)) |
| 5 | df-ch 31222 | . 2 ⊢ Cℋ = {ℎ ∈ Sℋ ∣ ( ⇝𝑣 “ (ℎ ↑m ℕ)) ⊆ ℎ} | |
| 6 | 4, 5 | elrab2 3646 | 1 ⊢ (𝐻 ∈ Cℋ ↔ (𝐻 ∈ Sℋ ∧ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) ⊆ 𝐻)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 “ cima 5624 (class class class)co 7355 ↑m cmap 8759 ℕcn 12136 ⇝𝑣 chli 30928 Sℋ csh 30929 Cℋ cch 30930 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-xp 5627 df-cnv 5629 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fv 6497 df-ov 7358 df-ch 31222 |
| This theorem is referenced by: isch2 31224 chsh 31225 |
| Copyright terms: Public domain | W3C validator |