| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > isch | Structured version Visualization version GIF version | ||
| Description: Closed subspace 𝐻 of a Hilbert space. (Contributed by NM, 17-Aug-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| isch | ⊢ (𝐻 ∈ Cℋ ↔ (𝐻 ∈ Sℋ ∧ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) ⊆ 𝐻)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7417 | . . . 4 ⊢ (ℎ = 𝐻 → (ℎ ↑m ℕ) = (𝐻 ↑m ℕ)) | |
| 2 | 1 | imaeq2d 6052 | . . 3 ⊢ (ℎ = 𝐻 → ( ⇝𝑣 “ (ℎ ↑m ℕ)) = ( ⇝𝑣 “ (𝐻 ↑m ℕ))) |
| 3 | id 22 | . . 3 ⊢ (ℎ = 𝐻 → ℎ = 𝐻) | |
| 4 | 2, 3 | sseq12d 3997 | . 2 ⊢ (ℎ = 𝐻 → (( ⇝𝑣 “ (ℎ ↑m ℕ)) ⊆ ℎ ↔ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) ⊆ 𝐻)) |
| 5 | df-ch 31207 | . 2 ⊢ Cℋ = {ℎ ∈ Sℋ ∣ ( ⇝𝑣 “ (ℎ ↑m ℕ)) ⊆ ℎ} | |
| 6 | 4, 5 | elrab2 3679 | 1 ⊢ (𝐻 ∈ Cℋ ↔ (𝐻 ∈ Sℋ ∧ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) ⊆ 𝐻)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3931 “ cima 5662 (class class class)co 7410 ↑m cmap 8845 ℕcn 12245 ⇝𝑣 chli 30913 Sℋ csh 30914 Cℋ cch 30915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-xp 5665 df-cnv 5667 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fv 6544 df-ov 7413 df-ch 31207 |
| This theorem is referenced by: isch2 31209 chsh 31210 |
| Copyright terms: Public domain | W3C validator |