HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  isch Structured version   Visualization version   GIF version

Theorem isch 31223
Description: Closed subspace 𝐻 of a Hilbert space. (Contributed by NM, 17-Aug-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
isch (𝐻C ↔ (𝐻S ∧ ( ⇝𝑣 “ (𝐻m ℕ)) ⊆ 𝐻))

Proof of Theorem isch
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 oveq1 7362 . . . 4 ( = 𝐻 → (m ℕ) = (𝐻m ℕ))
21imaeq2d 6016 . . 3 ( = 𝐻 → ( ⇝𝑣 “ (m ℕ)) = ( ⇝𝑣 “ (𝐻m ℕ)))
3 id 22 . . 3 ( = 𝐻 = 𝐻)
42, 3sseq12d 3964 . 2 ( = 𝐻 → (( ⇝𝑣 “ (m ℕ)) ⊆ ↔ ( ⇝𝑣 “ (𝐻m ℕ)) ⊆ 𝐻))
5 df-ch 31222 . 2 C = {S ∣ ( ⇝𝑣 “ (m ℕ)) ⊆ }
64, 5elrab2 3646 1 (𝐻C ↔ (𝐻S ∧ ( ⇝𝑣 “ (𝐻m ℕ)) ⊆ 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2113  wss 3898  cima 5624  (class class class)co 7355  m cmap 8759  cn 12136  𝑣 chli 30928   S csh 30929   C cch 30930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-xp 5627  df-cnv 5629  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fv 6497  df-ov 7358  df-ch 31222
This theorem is referenced by:  isch2  31224  chsh  31225
  Copyright terms: Public domain W3C validator