Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > isch | Structured version Visualization version GIF version |
Description: Closed subspace 𝐻 of a Hilbert space. (Contributed by NM, 17-Aug-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
isch | ⊢ (𝐻 ∈ Cℋ ↔ (𝐻 ∈ Sℋ ∧ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) ⊆ 𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7275 | . . . 4 ⊢ (ℎ = 𝐻 → (ℎ ↑m ℕ) = (𝐻 ↑m ℕ)) | |
2 | 1 | imaeq2d 5966 | . . 3 ⊢ (ℎ = 𝐻 → ( ⇝𝑣 “ (ℎ ↑m ℕ)) = ( ⇝𝑣 “ (𝐻 ↑m ℕ))) |
3 | id 22 | . . 3 ⊢ (ℎ = 𝐻 → ℎ = 𝐻) | |
4 | 2, 3 | sseq12d 3958 | . 2 ⊢ (ℎ = 𝐻 → (( ⇝𝑣 “ (ℎ ↑m ℕ)) ⊆ ℎ ↔ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) ⊆ 𝐻)) |
5 | df-ch 29562 | . 2 ⊢ Cℋ = {ℎ ∈ Sℋ ∣ ( ⇝𝑣 “ (ℎ ↑m ℕ)) ⊆ ℎ} | |
6 | 4, 5 | elrab2 3628 | 1 ⊢ (𝐻 ∈ Cℋ ↔ (𝐻 ∈ Sℋ ∧ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) ⊆ 𝐻)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ⊆ wss 3891 “ cima 5591 (class class class)co 7268 ↑m cmap 8589 ℕcn 11956 ⇝𝑣 chli 29268 Sℋ csh 29269 Cℋ cch 29270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-xp 5594 df-cnv 5596 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fv 6438 df-ov 7271 df-ch 29562 |
This theorem is referenced by: isch2 29564 chsh 29565 |
Copyright terms: Public domain | W3C validator |