HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  isch Structured version   Visualization version   GIF version

Theorem isch 29872
Description: Closed subspace 𝐻 of a Hilbert space. (Contributed by NM, 17-Aug-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
isch (𝐻C ↔ (𝐻S ∧ ( ⇝𝑣 “ (𝐻m ℕ)) ⊆ 𝐻))

Proof of Theorem isch
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 oveq1 7344 . . . 4 ( = 𝐻 → (m ℕ) = (𝐻m ℕ))
21imaeq2d 5999 . . 3 ( = 𝐻 → ( ⇝𝑣 “ (m ℕ)) = ( ⇝𝑣 “ (𝐻m ℕ)))
3 id 22 . . 3 ( = 𝐻 = 𝐻)
42, 3sseq12d 3965 . 2 ( = 𝐻 → (( ⇝𝑣 “ (m ℕ)) ⊆ ↔ ( ⇝𝑣 “ (𝐻m ℕ)) ⊆ 𝐻))
5 df-ch 29871 . 2 C = {S ∣ ( ⇝𝑣 “ (m ℕ)) ⊆ }
64, 5elrab2 3637 1 (𝐻C ↔ (𝐻S ∧ ( ⇝𝑣 “ (𝐻m ℕ)) ⊆ 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1540  wcel 2105  wss 3898  cima 5623  (class class class)co 7337  m cmap 8686  cn 12074  𝑣 chli 29577   S csh 29578   C cch 29579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-rab 3404  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-br 5093  df-opab 5155  df-xp 5626  df-cnv 5628  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-iota 6431  df-fv 6487  df-ov 7340  df-ch 29871
This theorem is referenced by:  isch2  29873  chsh  29874
  Copyright terms: Public domain W3C validator