HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  isch Structured version   Visualization version   GIF version

Theorem isch 29563
Description: Closed subspace 𝐻 of a Hilbert space. (Contributed by NM, 17-Aug-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
isch (𝐻C ↔ (𝐻S ∧ ( ⇝𝑣 “ (𝐻m ℕ)) ⊆ 𝐻))

Proof of Theorem isch
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 oveq1 7275 . . . 4 ( = 𝐻 → (m ℕ) = (𝐻m ℕ))
21imaeq2d 5966 . . 3 ( = 𝐻 → ( ⇝𝑣 “ (m ℕ)) = ( ⇝𝑣 “ (𝐻m ℕ)))
3 id 22 . . 3 ( = 𝐻 = 𝐻)
42, 3sseq12d 3958 . 2 ( = 𝐻 → (( ⇝𝑣 “ (m ℕ)) ⊆ ↔ ( ⇝𝑣 “ (𝐻m ℕ)) ⊆ 𝐻))
5 df-ch 29562 . 2 C = {S ∣ ( ⇝𝑣 “ (m ℕ)) ⊆ }
64, 5elrab2 3628 1 (𝐻C ↔ (𝐻S ∧ ( ⇝𝑣 “ (𝐻m ℕ)) ⊆ 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1541  wcel 2109  wss 3891  cima 5591  (class class class)co 7268  m cmap 8589  cn 11956  𝑣 chli 29268   S csh 29269   C cch 29270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-xp 5594  df-cnv 5596  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fv 6438  df-ov 7271  df-ch 29562
This theorem is referenced by:  isch2  29564  chsh  29565
  Copyright terms: Public domain W3C validator