![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > isch | Structured version Visualization version GIF version |
Description: Closed subspace 𝐻 of a Hilbert space. (Contributed by NM, 17-Aug-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
isch | ⊢ (𝐻 ∈ Cℋ ↔ (𝐻 ∈ Sℋ ∧ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) ⊆ 𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7438 | . . . 4 ⊢ (ℎ = 𝐻 → (ℎ ↑m ℕ) = (𝐻 ↑m ℕ)) | |
2 | 1 | imaeq2d 6080 | . . 3 ⊢ (ℎ = 𝐻 → ( ⇝𝑣 “ (ℎ ↑m ℕ)) = ( ⇝𝑣 “ (𝐻 ↑m ℕ))) |
3 | id 22 | . . 3 ⊢ (ℎ = 𝐻 → ℎ = 𝐻) | |
4 | 2, 3 | sseq12d 4029 | . 2 ⊢ (ℎ = 𝐻 → (( ⇝𝑣 “ (ℎ ↑m ℕ)) ⊆ ℎ ↔ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) ⊆ 𝐻)) |
5 | df-ch 31250 | . 2 ⊢ Cℋ = {ℎ ∈ Sℋ ∣ ( ⇝𝑣 “ (ℎ ↑m ℕ)) ⊆ ℎ} | |
6 | 4, 5 | elrab2 3698 | 1 ⊢ (𝐻 ∈ Cℋ ↔ (𝐻 ∈ Sℋ ∧ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) ⊆ 𝐻)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ⊆ wss 3963 “ cima 5692 (class class class)co 7431 ↑m cmap 8865 ℕcn 12264 ⇝𝑣 chli 30956 Sℋ csh 30957 Cℋ cch 30958 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-xp 5695 df-cnv 5697 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fv 6571 df-ov 7434 df-ch 31250 |
This theorem is referenced by: isch2 31252 chsh 31253 |
Copyright terms: Public domain | W3C validator |