![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > isch | Structured version Visualization version GIF version |
Description: Closed subspace 𝐻 of a Hilbert space. (Contributed by NM, 17-Aug-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
isch | ⊢ (𝐻 ∈ Cℋ ↔ (𝐻 ∈ Sℋ ∧ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) ⊆ 𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7455 | . . . 4 ⊢ (ℎ = 𝐻 → (ℎ ↑m ℕ) = (𝐻 ↑m ℕ)) | |
2 | 1 | imaeq2d 6089 | . . 3 ⊢ (ℎ = 𝐻 → ( ⇝𝑣 “ (ℎ ↑m ℕ)) = ( ⇝𝑣 “ (𝐻 ↑m ℕ))) |
3 | id 22 | . . 3 ⊢ (ℎ = 𝐻 → ℎ = 𝐻) | |
4 | 2, 3 | sseq12d 4042 | . 2 ⊢ (ℎ = 𝐻 → (( ⇝𝑣 “ (ℎ ↑m ℕ)) ⊆ ℎ ↔ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) ⊆ 𝐻)) |
5 | df-ch 31253 | . 2 ⊢ Cℋ = {ℎ ∈ Sℋ ∣ ( ⇝𝑣 “ (ℎ ↑m ℕ)) ⊆ ℎ} | |
6 | 4, 5 | elrab2 3711 | 1 ⊢ (𝐻 ∈ Cℋ ↔ (𝐻 ∈ Sℋ ∧ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) ⊆ 𝐻)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 “ cima 5703 (class class class)co 7448 ↑m cmap 8884 ℕcn 12293 ⇝𝑣 chli 30959 Sℋ csh 30960 Cℋ cch 30961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fv 6581 df-ov 7451 df-ch 31253 |
This theorem is referenced by: isch2 31255 chsh 31256 |
Copyright terms: Public domain | W3C validator |