HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  isch Structured version   Visualization version   GIF version

Theorem isch 31208
Description: Closed subspace 𝐻 of a Hilbert space. (Contributed by NM, 17-Aug-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
isch (𝐻C ↔ (𝐻S ∧ ( ⇝𝑣 “ (𝐻m ℕ)) ⊆ 𝐻))

Proof of Theorem isch
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 oveq1 7417 . . . 4 ( = 𝐻 → (m ℕ) = (𝐻m ℕ))
21imaeq2d 6052 . . 3 ( = 𝐻 → ( ⇝𝑣 “ (m ℕ)) = ( ⇝𝑣 “ (𝐻m ℕ)))
3 id 22 . . 3 ( = 𝐻 = 𝐻)
42, 3sseq12d 3997 . 2 ( = 𝐻 → (( ⇝𝑣 “ (m ℕ)) ⊆ ↔ ( ⇝𝑣 “ (𝐻m ℕ)) ⊆ 𝐻))
5 df-ch 31207 . 2 C = {S ∣ ( ⇝𝑣 “ (m ℕ)) ⊆ }
64, 5elrab2 3679 1 (𝐻C ↔ (𝐻S ∧ ( ⇝𝑣 “ (𝐻m ℕ)) ⊆ 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wss 3931  cima 5662  (class class class)co 7410  m cmap 8845  cn 12245  𝑣 chli 30913   S csh 30914   C cch 30915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-xp 5665  df-cnv 5667  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fv 6544  df-ov 7413  df-ch 31207
This theorem is referenced by:  isch2  31209  chsh  31210
  Copyright terms: Public domain W3C validator