![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > isch2 | Structured version Visualization version GIF version |
Description: Closed subspace 𝐻 of a Hilbert space. Definition of [Beran] p. 107. (Contributed by NM, 17-Aug-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
isch2 | ⊢ (𝐻 ∈ Cℋ ↔ (𝐻 ∈ Sℋ ∧ ∀𝑓∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isch 28604 | . 2 ⊢ (𝐻 ∈ Cℋ ↔ (𝐻 ∈ Sℋ ∧ ( ⇝𝑣 “ (𝐻 ↑𝑚 ℕ)) ⊆ 𝐻)) | |
2 | alcom 2202 | . . . . 5 ⊢ (∀𝑓∀𝑥((𝑓 ∈ (𝐻 ↑𝑚 ℕ) ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) ↔ ∀𝑥∀𝑓((𝑓 ∈ (𝐻 ↑𝑚 ℕ) ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻)) | |
3 | 19.23v 2038 | . . . . . . . 8 ⊢ (∀𝑓((𝑓 ∈ (𝐻 ↑𝑚 ℕ) ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) ↔ (∃𝑓(𝑓 ∈ (𝐻 ↑𝑚 ℕ) ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻)) | |
4 | vex 3388 | . . . . . . . . . 10 ⊢ 𝑥 ∈ V | |
5 | 4 | elima2 5689 | . . . . . . . . 9 ⊢ (𝑥 ∈ ( ⇝𝑣 “ (𝐻 ↑𝑚 ℕ)) ↔ ∃𝑓(𝑓 ∈ (𝐻 ↑𝑚 ℕ) ∧ 𝑓 ⇝𝑣 𝑥)) |
6 | 5 | imbi1i 341 | . . . . . . . 8 ⊢ ((𝑥 ∈ ( ⇝𝑣 “ (𝐻 ↑𝑚 ℕ)) → 𝑥 ∈ 𝐻) ↔ (∃𝑓(𝑓 ∈ (𝐻 ↑𝑚 ℕ) ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻)) |
7 | 3, 6 | bitr4i 270 | . . . . . . 7 ⊢ (∀𝑓((𝑓 ∈ (𝐻 ↑𝑚 ℕ) ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) ↔ (𝑥 ∈ ( ⇝𝑣 “ (𝐻 ↑𝑚 ℕ)) → 𝑥 ∈ 𝐻)) |
8 | 7 | albii 1915 | . . . . . 6 ⊢ (∀𝑥∀𝑓((𝑓 ∈ (𝐻 ↑𝑚 ℕ) ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) ↔ ∀𝑥(𝑥 ∈ ( ⇝𝑣 “ (𝐻 ↑𝑚 ℕ)) → 𝑥 ∈ 𝐻)) |
9 | dfss2 3786 | . . . . . 6 ⊢ (( ⇝𝑣 “ (𝐻 ↑𝑚 ℕ)) ⊆ 𝐻 ↔ ∀𝑥(𝑥 ∈ ( ⇝𝑣 “ (𝐻 ↑𝑚 ℕ)) → 𝑥 ∈ 𝐻)) | |
10 | 8, 9 | bitr4i 270 | . . . . 5 ⊢ (∀𝑥∀𝑓((𝑓 ∈ (𝐻 ↑𝑚 ℕ) ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) ↔ ( ⇝𝑣 “ (𝐻 ↑𝑚 ℕ)) ⊆ 𝐻) |
11 | 2, 10 | bitri 267 | . . . 4 ⊢ (∀𝑓∀𝑥((𝑓 ∈ (𝐻 ↑𝑚 ℕ) ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) ↔ ( ⇝𝑣 “ (𝐻 ↑𝑚 ℕ)) ⊆ 𝐻) |
12 | nnex 11319 | . . . . . . . 8 ⊢ ℕ ∈ V | |
13 | elmapg 8108 | . . . . . . . 8 ⊢ ((𝐻 ∈ Sℋ ∧ ℕ ∈ V) → (𝑓 ∈ (𝐻 ↑𝑚 ℕ) ↔ 𝑓:ℕ⟶𝐻)) | |
14 | 12, 13 | mpan2 683 | . . . . . . 7 ⊢ (𝐻 ∈ Sℋ → (𝑓 ∈ (𝐻 ↑𝑚 ℕ) ↔ 𝑓:ℕ⟶𝐻)) |
15 | 14 | anbi1d 624 | . . . . . 6 ⊢ (𝐻 ∈ Sℋ → ((𝑓 ∈ (𝐻 ↑𝑚 ℕ) ∧ 𝑓 ⇝𝑣 𝑥) ↔ (𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥))) |
16 | 15 | imbi1d 333 | . . . . 5 ⊢ (𝐻 ∈ Sℋ → (((𝑓 ∈ (𝐻 ↑𝑚 ℕ) ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) ↔ ((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻))) |
17 | 16 | 2albidv 2019 | . . . 4 ⊢ (𝐻 ∈ Sℋ → (∀𝑓∀𝑥((𝑓 ∈ (𝐻 ↑𝑚 ℕ) ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) ↔ ∀𝑓∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻))) |
18 | 11, 17 | syl5bbr 277 | . . 3 ⊢ (𝐻 ∈ Sℋ → (( ⇝𝑣 “ (𝐻 ↑𝑚 ℕ)) ⊆ 𝐻 ↔ ∀𝑓∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻))) |
19 | 18 | pm5.32i 571 | . 2 ⊢ ((𝐻 ∈ Sℋ ∧ ( ⇝𝑣 “ (𝐻 ↑𝑚 ℕ)) ⊆ 𝐻) ↔ (𝐻 ∈ Sℋ ∧ ∀𝑓∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻))) |
20 | 1, 19 | bitri 267 | 1 ⊢ (𝐻 ∈ Cℋ ↔ (𝐻 ∈ Sℋ ∧ ∀𝑓∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 ∀wal 1651 ∃wex 1875 ∈ wcel 2157 Vcvv 3385 ⊆ wss 3769 class class class wbr 4843 “ cima 5315 ⟶wf 6097 (class class class)co 6878 ↑𝑚 cmap 8095 ℕcn 11312 ⇝𝑣 chli 28309 Sℋ csh 28310 Cℋ cch 28311 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-1cn 10282 ax-addcl 10284 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-map 8097 df-nn 11313 df-ch 28603 |
This theorem is referenced by: chlimi 28616 isch3 28623 helch 28625 hsn0elch 28630 chintcli 28715 chscl 29025 nlelchi 29445 hmopidmchi 29535 |
Copyright terms: Public domain | W3C validator |