| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > isch2 | Structured version Visualization version GIF version | ||
| Description: Closed subspace 𝐻 of a Hilbert space. Definition of [Beran] p. 107. (Contributed by NM, 17-Aug-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| isch2 | ⊢ (𝐻 ∈ Cℋ ↔ (𝐻 ∈ Sℋ ∧ ∀𝑓∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isch 31185 | . 2 ⊢ (𝐻 ∈ Cℋ ↔ (𝐻 ∈ Sℋ ∧ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) ⊆ 𝐻)) | |
| 2 | alcom 2160 | . . . . 5 ⊢ (∀𝑓∀𝑥((𝑓 ∈ (𝐻 ↑m ℕ) ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) ↔ ∀𝑥∀𝑓((𝑓 ∈ (𝐻 ↑m ℕ) ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻)) | |
| 3 | 19.23v 1942 | . . . . . . . 8 ⊢ (∀𝑓((𝑓 ∈ (𝐻 ↑m ℕ) ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) ↔ (∃𝑓(𝑓 ∈ (𝐻 ↑m ℕ) ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻)) | |
| 4 | vex 3442 | . . . . . . . . . 10 ⊢ 𝑥 ∈ V | |
| 5 | 4 | elima2 6021 | . . . . . . . . 9 ⊢ (𝑥 ∈ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) ↔ ∃𝑓(𝑓 ∈ (𝐻 ↑m ℕ) ∧ 𝑓 ⇝𝑣 𝑥)) |
| 6 | 5 | imbi1i 349 | . . . . . . . 8 ⊢ ((𝑥 ∈ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) → 𝑥 ∈ 𝐻) ↔ (∃𝑓(𝑓 ∈ (𝐻 ↑m ℕ) ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻)) |
| 7 | 3, 6 | bitr4i 278 | . . . . . . 7 ⊢ (∀𝑓((𝑓 ∈ (𝐻 ↑m ℕ) ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) ↔ (𝑥 ∈ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) → 𝑥 ∈ 𝐻)) |
| 8 | 7 | albii 1819 | . . . . . 6 ⊢ (∀𝑥∀𝑓((𝑓 ∈ (𝐻 ↑m ℕ) ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) ↔ ∀𝑥(𝑥 ∈ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) → 𝑥 ∈ 𝐻)) |
| 9 | df-ss 3922 | . . . . . 6 ⊢ (( ⇝𝑣 “ (𝐻 ↑m ℕ)) ⊆ 𝐻 ↔ ∀𝑥(𝑥 ∈ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) → 𝑥 ∈ 𝐻)) | |
| 10 | 8, 9 | bitr4i 278 | . . . . 5 ⊢ (∀𝑥∀𝑓((𝑓 ∈ (𝐻 ↑m ℕ) ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) ↔ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) ⊆ 𝐻) |
| 11 | 2, 10 | bitri 275 | . . . 4 ⊢ (∀𝑓∀𝑥((𝑓 ∈ (𝐻 ↑m ℕ) ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) ↔ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) ⊆ 𝐻) |
| 12 | nnex 12153 | . . . . . . . 8 ⊢ ℕ ∈ V | |
| 13 | elmapg 8773 | . . . . . . . 8 ⊢ ((𝐻 ∈ Sℋ ∧ ℕ ∈ V) → (𝑓 ∈ (𝐻 ↑m ℕ) ↔ 𝑓:ℕ⟶𝐻)) | |
| 14 | 12, 13 | mpan2 691 | . . . . . . 7 ⊢ (𝐻 ∈ Sℋ → (𝑓 ∈ (𝐻 ↑m ℕ) ↔ 𝑓:ℕ⟶𝐻)) |
| 15 | 14 | anbi1d 631 | . . . . . 6 ⊢ (𝐻 ∈ Sℋ → ((𝑓 ∈ (𝐻 ↑m ℕ) ∧ 𝑓 ⇝𝑣 𝑥) ↔ (𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥))) |
| 16 | 15 | imbi1d 341 | . . . . 5 ⊢ (𝐻 ∈ Sℋ → (((𝑓 ∈ (𝐻 ↑m ℕ) ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) ↔ ((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻))) |
| 17 | 16 | 2albidv 1923 | . . . 4 ⊢ (𝐻 ∈ Sℋ → (∀𝑓∀𝑥((𝑓 ∈ (𝐻 ↑m ℕ) ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) ↔ ∀𝑓∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻))) |
| 18 | 11, 17 | bitr3id 285 | . . 3 ⊢ (𝐻 ∈ Sℋ → (( ⇝𝑣 “ (𝐻 ↑m ℕ)) ⊆ 𝐻 ↔ ∀𝑓∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻))) |
| 19 | 18 | pm5.32i 574 | . 2 ⊢ ((𝐻 ∈ Sℋ ∧ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) ⊆ 𝐻) ↔ (𝐻 ∈ Sℋ ∧ ∀𝑓∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻))) |
| 20 | 1, 19 | bitri 275 | 1 ⊢ (𝐻 ∈ Cℋ ↔ (𝐻 ∈ Sℋ ∧ ∀𝑓∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∃wex 1779 ∈ wcel 2109 Vcvv 3438 ⊆ wss 3905 class class class wbr 5095 “ cima 5626 ⟶wf 6482 (class class class)co 7353 ↑m cmap 8760 ℕcn 12147 ⇝𝑣 chli 30890 Sℋ csh 30891 Cℋ cch 30892 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-1cn 11086 ax-addcl 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-map 8762 df-nn 12148 df-ch 31184 |
| This theorem is referenced by: chlimi 31197 isch3 31204 helch 31206 hsn0elch 31211 chintcli 31294 chscl 31604 nlelchi 32024 hmopidmchi 32114 |
| Copyright terms: Public domain | W3C validator |