HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  isch2 Structured version   Visualization version   GIF version

Theorem isch2 31224
Description: Closed subspace 𝐻 of a Hilbert space. Definition of [Beran] p. 107. (Contributed by NM, 17-Aug-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
isch2 (𝐻C ↔ (𝐻S ∧ ∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻)))
Distinct variable group:   𝑥,𝑓,𝐻

Proof of Theorem isch2
StepHypRef Expression
1 isch 31223 . 2 (𝐻C ↔ (𝐻S ∧ ( ⇝𝑣 “ (𝐻m ℕ)) ⊆ 𝐻))
2 alcom 2164 . . . . 5 (∀𝑓𝑥((𝑓 ∈ (𝐻m ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻) ↔ ∀𝑥𝑓((𝑓 ∈ (𝐻m ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻))
3 19.23v 1943 . . . . . . . 8 (∀𝑓((𝑓 ∈ (𝐻m ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻) ↔ (∃𝑓(𝑓 ∈ (𝐻m ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻))
4 vex 3441 . . . . . . . . . 10 𝑥 ∈ V
54elima2 6022 . . . . . . . . 9 (𝑥 ∈ ( ⇝𝑣 “ (𝐻m ℕ)) ↔ ∃𝑓(𝑓 ∈ (𝐻m ℕ) ∧ 𝑓𝑣 𝑥))
65imbi1i 349 . . . . . . . 8 ((𝑥 ∈ ( ⇝𝑣 “ (𝐻m ℕ)) → 𝑥𝐻) ↔ (∃𝑓(𝑓 ∈ (𝐻m ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻))
73, 6bitr4i 278 . . . . . . 7 (∀𝑓((𝑓 ∈ (𝐻m ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻) ↔ (𝑥 ∈ ( ⇝𝑣 “ (𝐻m ℕ)) → 𝑥𝐻))
87albii 1820 . . . . . 6 (∀𝑥𝑓((𝑓 ∈ (𝐻m ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻) ↔ ∀𝑥(𝑥 ∈ ( ⇝𝑣 “ (𝐻m ℕ)) → 𝑥𝐻))
9 df-ss 3915 . . . . . 6 (( ⇝𝑣 “ (𝐻m ℕ)) ⊆ 𝐻 ↔ ∀𝑥(𝑥 ∈ ( ⇝𝑣 “ (𝐻m ℕ)) → 𝑥𝐻))
108, 9bitr4i 278 . . . . 5 (∀𝑥𝑓((𝑓 ∈ (𝐻m ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻) ↔ ( ⇝𝑣 “ (𝐻m ℕ)) ⊆ 𝐻)
112, 10bitri 275 . . . 4 (∀𝑓𝑥((𝑓 ∈ (𝐻m ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻) ↔ ( ⇝𝑣 “ (𝐻m ℕ)) ⊆ 𝐻)
12 nnex 12142 . . . . . . . 8 ℕ ∈ V
13 elmapg 8772 . . . . . . . 8 ((𝐻S ∧ ℕ ∈ V) → (𝑓 ∈ (𝐻m ℕ) ↔ 𝑓:ℕ⟶𝐻))
1412, 13mpan2 691 . . . . . . 7 (𝐻S → (𝑓 ∈ (𝐻m ℕ) ↔ 𝑓:ℕ⟶𝐻))
1514anbi1d 631 . . . . . 6 (𝐻S → ((𝑓 ∈ (𝐻m ℕ) ∧ 𝑓𝑣 𝑥) ↔ (𝑓:ℕ⟶𝐻𝑓𝑣 𝑥)))
1615imbi1d 341 . . . . 5 (𝐻S → (((𝑓 ∈ (𝐻m ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻) ↔ ((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻)))
17162albidv 1924 . . . 4 (𝐻S → (∀𝑓𝑥((𝑓 ∈ (𝐻m ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻) ↔ ∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻)))
1811, 17bitr3id 285 . . 3 (𝐻S → (( ⇝𝑣 “ (𝐻m ℕ)) ⊆ 𝐻 ↔ ∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻)))
1918pm5.32i 574 . 2 ((𝐻S ∧ ( ⇝𝑣 “ (𝐻m ℕ)) ⊆ 𝐻) ↔ (𝐻S ∧ ∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻)))
201, 19bitri 275 1 (𝐻C ↔ (𝐻S ∧ ∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539  wex 1780  wcel 2113  Vcvv 3437  wss 3898   class class class wbr 5095  cima 5624  wf 6485  (class class class)co 7355  m cmap 8759  cn 12136  𝑣 chli 30928   S csh 30929   C cch 30930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-1cn 11075  ax-addcl 11077
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-map 8761  df-nn 12137  df-ch 31222
This theorem is referenced by:  chlimi  31235  isch3  31242  helch  31244  hsn0elch  31249  chintcli  31332  chscl  31642  nlelchi  32062  hmopidmchi  32152
  Copyright terms: Public domain W3C validator