Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  isch2 Structured version   Visualization version   GIF version

Theorem isch2 29013
 Description: Closed subspace 𝐻 of a Hilbert space. Definition of [Beran] p. 107. (Contributed by NM, 17-Aug-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
isch2 (𝐻C ↔ (𝐻S ∧ ∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻)))
Distinct variable group:   𝑥,𝑓,𝐻

Proof of Theorem isch2
StepHypRef Expression
1 isch 29012 . 2 (𝐻C ↔ (𝐻S ∧ ( ⇝𝑣 “ (𝐻m ℕ)) ⊆ 𝐻))
2 alcom 2160 . . . . 5 (∀𝑓𝑥((𝑓 ∈ (𝐻m ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻) ↔ ∀𝑥𝑓((𝑓 ∈ (𝐻m ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻))
3 19.23v 1943 . . . . . . . 8 (∀𝑓((𝑓 ∈ (𝐻m ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻) ↔ (∃𝑓(𝑓 ∈ (𝐻m ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻))
4 vex 3444 . . . . . . . . . 10 𝑥 ∈ V
54elima2 5902 . . . . . . . . 9 (𝑥 ∈ ( ⇝𝑣 “ (𝐻m ℕ)) ↔ ∃𝑓(𝑓 ∈ (𝐻m ℕ) ∧ 𝑓𝑣 𝑥))
65imbi1i 353 . . . . . . . 8 ((𝑥 ∈ ( ⇝𝑣 “ (𝐻m ℕ)) → 𝑥𝐻) ↔ (∃𝑓(𝑓 ∈ (𝐻m ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻))
73, 6bitr4i 281 . . . . . . 7 (∀𝑓((𝑓 ∈ (𝐻m ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻) ↔ (𝑥 ∈ ( ⇝𝑣 “ (𝐻m ℕ)) → 𝑥𝐻))
87albii 1821 . . . . . 6 (∀𝑥𝑓((𝑓 ∈ (𝐻m ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻) ↔ ∀𝑥(𝑥 ∈ ( ⇝𝑣 “ (𝐻m ℕ)) → 𝑥𝐻))
9 dfss2 3901 . . . . . 6 (( ⇝𝑣 “ (𝐻m ℕ)) ⊆ 𝐻 ↔ ∀𝑥(𝑥 ∈ ( ⇝𝑣 “ (𝐻m ℕ)) → 𝑥𝐻))
108, 9bitr4i 281 . . . . 5 (∀𝑥𝑓((𝑓 ∈ (𝐻m ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻) ↔ ( ⇝𝑣 “ (𝐻m ℕ)) ⊆ 𝐻)
112, 10bitri 278 . . . 4 (∀𝑓𝑥((𝑓 ∈ (𝐻m ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻) ↔ ( ⇝𝑣 “ (𝐻m ℕ)) ⊆ 𝐻)
12 nnex 11633 . . . . . . . 8 ℕ ∈ V
13 elmapg 8404 . . . . . . . 8 ((𝐻S ∧ ℕ ∈ V) → (𝑓 ∈ (𝐻m ℕ) ↔ 𝑓:ℕ⟶𝐻))
1412, 13mpan2 690 . . . . . . 7 (𝐻S → (𝑓 ∈ (𝐻m ℕ) ↔ 𝑓:ℕ⟶𝐻))
1514anbi1d 632 . . . . . 6 (𝐻S → ((𝑓 ∈ (𝐻m ℕ) ∧ 𝑓𝑣 𝑥) ↔ (𝑓:ℕ⟶𝐻𝑓𝑣 𝑥)))
1615imbi1d 345 . . . . 5 (𝐻S → (((𝑓 ∈ (𝐻m ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻) ↔ ((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻)))
17162albidv 1924 . . . 4 (𝐻S → (∀𝑓𝑥((𝑓 ∈ (𝐻m ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻) ↔ ∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻)))
1811, 17bitr3id 288 . . 3 (𝐻S → (( ⇝𝑣 “ (𝐻m ℕ)) ⊆ 𝐻 ↔ ∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻)))
1918pm5.32i 578 . 2 ((𝐻S ∧ ( ⇝𝑣 “ (𝐻m ℕ)) ⊆ 𝐻) ↔ (𝐻S ∧ ∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻)))
201, 19bitri 278 1 (𝐻C ↔ (𝐻S ∧ ∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399  ∀wal 1536  ∃wex 1781   ∈ wcel 2111  Vcvv 3441   ⊆ wss 3881   class class class wbr 5030   “ cima 5522  ⟶wf 6320  (class class class)co 7135   ↑m cmap 8391  ℕcn 11627   ⇝𝑣 chli 28717   Sℋ csh 28718   Cℋ cch 28719 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7443  ax-cnex 10584  ax-1cn 10586  ax-addcl 10588 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7563  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-map 8393  df-nn 11628  df-ch 29011 This theorem is referenced by:  chlimi  29024  isch3  29031  helch  29033  hsn0elch  29038  chintcli  29121  chscl  29431  nlelchi  29851  hmopidmchi  29941
 Copyright terms: Public domain W3C validator