HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  isch2 Structured version   Visualization version   GIF version

Theorem isch2 29585
Description: Closed subspace 𝐻 of a Hilbert space. Definition of [Beran] p. 107. (Contributed by NM, 17-Aug-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
isch2 (𝐻C ↔ (𝐻S ∧ ∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻)))
Distinct variable group:   𝑥,𝑓,𝐻

Proof of Theorem isch2
StepHypRef Expression
1 isch 29584 . 2 (𝐻C ↔ (𝐻S ∧ ( ⇝𝑣 “ (𝐻m ℕ)) ⊆ 𝐻))
2 alcom 2156 . . . . 5 (∀𝑓𝑥((𝑓 ∈ (𝐻m ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻) ↔ ∀𝑥𝑓((𝑓 ∈ (𝐻m ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻))
3 19.23v 1945 . . . . . . . 8 (∀𝑓((𝑓 ∈ (𝐻m ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻) ↔ (∃𝑓(𝑓 ∈ (𝐻m ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻))
4 vex 3436 . . . . . . . . . 10 𝑥 ∈ V
54elima2 5975 . . . . . . . . 9 (𝑥 ∈ ( ⇝𝑣 “ (𝐻m ℕ)) ↔ ∃𝑓(𝑓 ∈ (𝐻m ℕ) ∧ 𝑓𝑣 𝑥))
65imbi1i 350 . . . . . . . 8 ((𝑥 ∈ ( ⇝𝑣 “ (𝐻m ℕ)) → 𝑥𝐻) ↔ (∃𝑓(𝑓 ∈ (𝐻m ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻))
73, 6bitr4i 277 . . . . . . 7 (∀𝑓((𝑓 ∈ (𝐻m ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻) ↔ (𝑥 ∈ ( ⇝𝑣 “ (𝐻m ℕ)) → 𝑥𝐻))
87albii 1822 . . . . . 6 (∀𝑥𝑓((𝑓 ∈ (𝐻m ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻) ↔ ∀𝑥(𝑥 ∈ ( ⇝𝑣 “ (𝐻m ℕ)) → 𝑥𝐻))
9 dfss2 3907 . . . . . 6 (( ⇝𝑣 “ (𝐻m ℕ)) ⊆ 𝐻 ↔ ∀𝑥(𝑥 ∈ ( ⇝𝑣 “ (𝐻m ℕ)) → 𝑥𝐻))
108, 9bitr4i 277 . . . . 5 (∀𝑥𝑓((𝑓 ∈ (𝐻m ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻) ↔ ( ⇝𝑣 “ (𝐻m ℕ)) ⊆ 𝐻)
112, 10bitri 274 . . . 4 (∀𝑓𝑥((𝑓 ∈ (𝐻m ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻) ↔ ( ⇝𝑣 “ (𝐻m ℕ)) ⊆ 𝐻)
12 nnex 11979 . . . . . . . 8 ℕ ∈ V
13 elmapg 8628 . . . . . . . 8 ((𝐻S ∧ ℕ ∈ V) → (𝑓 ∈ (𝐻m ℕ) ↔ 𝑓:ℕ⟶𝐻))
1412, 13mpan2 688 . . . . . . 7 (𝐻S → (𝑓 ∈ (𝐻m ℕ) ↔ 𝑓:ℕ⟶𝐻))
1514anbi1d 630 . . . . . 6 (𝐻S → ((𝑓 ∈ (𝐻m ℕ) ∧ 𝑓𝑣 𝑥) ↔ (𝑓:ℕ⟶𝐻𝑓𝑣 𝑥)))
1615imbi1d 342 . . . . 5 (𝐻S → (((𝑓 ∈ (𝐻m ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻) ↔ ((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻)))
17162albidv 1926 . . . 4 (𝐻S → (∀𝑓𝑥((𝑓 ∈ (𝐻m ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻) ↔ ∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻)))
1811, 17bitr3id 285 . . 3 (𝐻S → (( ⇝𝑣 “ (𝐻m ℕ)) ⊆ 𝐻 ↔ ∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻)))
1918pm5.32i 575 . 2 ((𝐻S ∧ ( ⇝𝑣 “ (𝐻m ℕ)) ⊆ 𝐻) ↔ (𝐻S ∧ ∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻)))
201, 19bitri 274 1 (𝐻C ↔ (𝐻S ∧ ∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1537  wex 1782  wcel 2106  Vcvv 3432  wss 3887   class class class wbr 5074  cima 5592  wf 6429  (class class class)co 7275  m cmap 8615  cn 11973  𝑣 chli 29289   S csh 29290   C cch 29291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-1cn 10929  ax-addcl 10931
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-map 8617  df-nn 11974  df-ch 29583
This theorem is referenced by:  chlimi  29596  isch3  29603  helch  29605  hsn0elch  29610  chintcli  29693  chscl  30003  nlelchi  30423  hmopidmchi  30513
  Copyright terms: Public domain W3C validator