HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  isch2 Structured version   Visualization version   GIF version

Theorem isch2 28605
Description: Closed subspace 𝐻 of a Hilbert space. Definition of [Beran] p. 107. (Contributed by NM, 17-Aug-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
isch2 (𝐻C ↔ (𝐻S ∧ ∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻)))
Distinct variable group:   𝑥,𝑓,𝐻

Proof of Theorem isch2
StepHypRef Expression
1 isch 28604 . 2 (𝐻C ↔ (𝐻S ∧ ( ⇝𝑣 “ (𝐻𝑚 ℕ)) ⊆ 𝐻))
2 alcom 2202 . . . . 5 (∀𝑓𝑥((𝑓 ∈ (𝐻𝑚 ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻) ↔ ∀𝑥𝑓((𝑓 ∈ (𝐻𝑚 ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻))
3 19.23v 2038 . . . . . . . 8 (∀𝑓((𝑓 ∈ (𝐻𝑚 ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻) ↔ (∃𝑓(𝑓 ∈ (𝐻𝑚 ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻))
4 vex 3388 . . . . . . . . . 10 𝑥 ∈ V
54elima2 5689 . . . . . . . . 9 (𝑥 ∈ ( ⇝𝑣 “ (𝐻𝑚 ℕ)) ↔ ∃𝑓(𝑓 ∈ (𝐻𝑚 ℕ) ∧ 𝑓𝑣 𝑥))
65imbi1i 341 . . . . . . . 8 ((𝑥 ∈ ( ⇝𝑣 “ (𝐻𝑚 ℕ)) → 𝑥𝐻) ↔ (∃𝑓(𝑓 ∈ (𝐻𝑚 ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻))
73, 6bitr4i 270 . . . . . . 7 (∀𝑓((𝑓 ∈ (𝐻𝑚 ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻) ↔ (𝑥 ∈ ( ⇝𝑣 “ (𝐻𝑚 ℕ)) → 𝑥𝐻))
87albii 1915 . . . . . 6 (∀𝑥𝑓((𝑓 ∈ (𝐻𝑚 ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻) ↔ ∀𝑥(𝑥 ∈ ( ⇝𝑣 “ (𝐻𝑚 ℕ)) → 𝑥𝐻))
9 dfss2 3786 . . . . . 6 (( ⇝𝑣 “ (𝐻𝑚 ℕ)) ⊆ 𝐻 ↔ ∀𝑥(𝑥 ∈ ( ⇝𝑣 “ (𝐻𝑚 ℕ)) → 𝑥𝐻))
108, 9bitr4i 270 . . . . 5 (∀𝑥𝑓((𝑓 ∈ (𝐻𝑚 ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻) ↔ ( ⇝𝑣 “ (𝐻𝑚 ℕ)) ⊆ 𝐻)
112, 10bitri 267 . . . 4 (∀𝑓𝑥((𝑓 ∈ (𝐻𝑚 ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻) ↔ ( ⇝𝑣 “ (𝐻𝑚 ℕ)) ⊆ 𝐻)
12 nnex 11319 . . . . . . . 8 ℕ ∈ V
13 elmapg 8108 . . . . . . . 8 ((𝐻S ∧ ℕ ∈ V) → (𝑓 ∈ (𝐻𝑚 ℕ) ↔ 𝑓:ℕ⟶𝐻))
1412, 13mpan2 683 . . . . . . 7 (𝐻S → (𝑓 ∈ (𝐻𝑚 ℕ) ↔ 𝑓:ℕ⟶𝐻))
1514anbi1d 624 . . . . . 6 (𝐻S → ((𝑓 ∈ (𝐻𝑚 ℕ) ∧ 𝑓𝑣 𝑥) ↔ (𝑓:ℕ⟶𝐻𝑓𝑣 𝑥)))
1615imbi1d 333 . . . . 5 (𝐻S → (((𝑓 ∈ (𝐻𝑚 ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻) ↔ ((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻)))
17162albidv 2019 . . . 4 (𝐻S → (∀𝑓𝑥((𝑓 ∈ (𝐻𝑚 ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻) ↔ ∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻)))
1811, 17syl5bbr 277 . . 3 (𝐻S → (( ⇝𝑣 “ (𝐻𝑚 ℕ)) ⊆ 𝐻 ↔ ∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻)))
1918pm5.32i 571 . 2 ((𝐻S ∧ ( ⇝𝑣 “ (𝐻𝑚 ℕ)) ⊆ 𝐻) ↔ (𝐻S ∧ ∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻)))
201, 19bitri 267 1 (𝐻C ↔ (𝐻S ∧ ∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385  wal 1651  wex 1875  wcel 2157  Vcvv 3385  wss 3769   class class class wbr 4843  cima 5315  wf 6097  (class class class)co 6878  𝑚 cmap 8095  cn 11312  𝑣 chli 28309   S csh 28310   C cch 28311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-1cn 10282  ax-addcl 10284
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-map 8097  df-nn 11313  df-ch 28603
This theorem is referenced by:  chlimi  28616  isch3  28623  helch  28625  hsn0elch  28630  chintcli  28715  chscl  29025  nlelchi  29445  hmopidmchi  29535
  Copyright terms: Public domain W3C validator