Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > isch2 | Structured version Visualization version GIF version |
Description: Closed subspace 𝐻 of a Hilbert space. Definition of [Beran] p. 107. (Contributed by NM, 17-Aug-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
isch2 | ⊢ (𝐻 ∈ Cℋ ↔ (𝐻 ∈ Sℋ ∧ ∀𝑓∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isch 29485 | . 2 ⊢ (𝐻 ∈ Cℋ ↔ (𝐻 ∈ Sℋ ∧ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) ⊆ 𝐻)) | |
2 | alcom 2158 | . . . . 5 ⊢ (∀𝑓∀𝑥((𝑓 ∈ (𝐻 ↑m ℕ) ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) ↔ ∀𝑥∀𝑓((𝑓 ∈ (𝐻 ↑m ℕ) ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻)) | |
3 | 19.23v 1946 | . . . . . . . 8 ⊢ (∀𝑓((𝑓 ∈ (𝐻 ↑m ℕ) ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) ↔ (∃𝑓(𝑓 ∈ (𝐻 ↑m ℕ) ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻)) | |
4 | vex 3426 | . . . . . . . . . 10 ⊢ 𝑥 ∈ V | |
5 | 4 | elima2 5964 | . . . . . . . . 9 ⊢ (𝑥 ∈ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) ↔ ∃𝑓(𝑓 ∈ (𝐻 ↑m ℕ) ∧ 𝑓 ⇝𝑣 𝑥)) |
6 | 5 | imbi1i 349 | . . . . . . . 8 ⊢ ((𝑥 ∈ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) → 𝑥 ∈ 𝐻) ↔ (∃𝑓(𝑓 ∈ (𝐻 ↑m ℕ) ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻)) |
7 | 3, 6 | bitr4i 277 | . . . . . . 7 ⊢ (∀𝑓((𝑓 ∈ (𝐻 ↑m ℕ) ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) ↔ (𝑥 ∈ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) → 𝑥 ∈ 𝐻)) |
8 | 7 | albii 1823 | . . . . . 6 ⊢ (∀𝑥∀𝑓((𝑓 ∈ (𝐻 ↑m ℕ) ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) ↔ ∀𝑥(𝑥 ∈ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) → 𝑥 ∈ 𝐻)) |
9 | dfss2 3903 | . . . . . 6 ⊢ (( ⇝𝑣 “ (𝐻 ↑m ℕ)) ⊆ 𝐻 ↔ ∀𝑥(𝑥 ∈ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) → 𝑥 ∈ 𝐻)) | |
10 | 8, 9 | bitr4i 277 | . . . . 5 ⊢ (∀𝑥∀𝑓((𝑓 ∈ (𝐻 ↑m ℕ) ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) ↔ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) ⊆ 𝐻) |
11 | 2, 10 | bitri 274 | . . . 4 ⊢ (∀𝑓∀𝑥((𝑓 ∈ (𝐻 ↑m ℕ) ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) ↔ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) ⊆ 𝐻) |
12 | nnex 11909 | . . . . . . . 8 ⊢ ℕ ∈ V | |
13 | elmapg 8586 | . . . . . . . 8 ⊢ ((𝐻 ∈ Sℋ ∧ ℕ ∈ V) → (𝑓 ∈ (𝐻 ↑m ℕ) ↔ 𝑓:ℕ⟶𝐻)) | |
14 | 12, 13 | mpan2 687 | . . . . . . 7 ⊢ (𝐻 ∈ Sℋ → (𝑓 ∈ (𝐻 ↑m ℕ) ↔ 𝑓:ℕ⟶𝐻)) |
15 | 14 | anbi1d 629 | . . . . . 6 ⊢ (𝐻 ∈ Sℋ → ((𝑓 ∈ (𝐻 ↑m ℕ) ∧ 𝑓 ⇝𝑣 𝑥) ↔ (𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥))) |
16 | 15 | imbi1d 341 | . . . . 5 ⊢ (𝐻 ∈ Sℋ → (((𝑓 ∈ (𝐻 ↑m ℕ) ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) ↔ ((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻))) |
17 | 16 | 2albidv 1927 | . . . 4 ⊢ (𝐻 ∈ Sℋ → (∀𝑓∀𝑥((𝑓 ∈ (𝐻 ↑m ℕ) ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) ↔ ∀𝑓∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻))) |
18 | 11, 17 | bitr3id 284 | . . 3 ⊢ (𝐻 ∈ Sℋ → (( ⇝𝑣 “ (𝐻 ↑m ℕ)) ⊆ 𝐻 ↔ ∀𝑓∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻))) |
19 | 18 | pm5.32i 574 | . 2 ⊢ ((𝐻 ∈ Sℋ ∧ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) ⊆ 𝐻) ↔ (𝐻 ∈ Sℋ ∧ ∀𝑓∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻))) |
20 | 1, 19 | bitri 274 | 1 ⊢ (𝐻 ∈ Cℋ ↔ (𝐻 ∈ Sℋ ∧ ∀𝑓∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1537 ∃wex 1783 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 class class class wbr 5070 “ cima 5583 ⟶wf 6414 (class class class)co 7255 ↑m cmap 8573 ℕcn 11903 ⇝𝑣 chli 29190 Sℋ csh 29191 Cℋ cch 29192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-1cn 10860 ax-addcl 10862 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-map 8575 df-nn 11904 df-ch 29484 |
This theorem is referenced by: chlimi 29497 isch3 29504 helch 29506 hsn0elch 29511 chintcli 29594 chscl 29904 nlelchi 30324 hmopidmchi 30414 |
Copyright terms: Public domain | W3C validator |