Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > isch2 | Structured version Visualization version GIF version |
Description: Closed subspace 𝐻 of a Hilbert space. Definition of [Beran] p. 107. (Contributed by NM, 17-Aug-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
isch2 | ⊢ (𝐻 ∈ Cℋ ↔ (𝐻 ∈ Sℋ ∧ ∀𝑓∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isch 29584 | . 2 ⊢ (𝐻 ∈ Cℋ ↔ (𝐻 ∈ Sℋ ∧ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) ⊆ 𝐻)) | |
2 | alcom 2156 | . . . . 5 ⊢ (∀𝑓∀𝑥((𝑓 ∈ (𝐻 ↑m ℕ) ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) ↔ ∀𝑥∀𝑓((𝑓 ∈ (𝐻 ↑m ℕ) ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻)) | |
3 | 19.23v 1945 | . . . . . . . 8 ⊢ (∀𝑓((𝑓 ∈ (𝐻 ↑m ℕ) ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) ↔ (∃𝑓(𝑓 ∈ (𝐻 ↑m ℕ) ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻)) | |
4 | vex 3436 | . . . . . . . . . 10 ⊢ 𝑥 ∈ V | |
5 | 4 | elima2 5975 | . . . . . . . . 9 ⊢ (𝑥 ∈ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) ↔ ∃𝑓(𝑓 ∈ (𝐻 ↑m ℕ) ∧ 𝑓 ⇝𝑣 𝑥)) |
6 | 5 | imbi1i 350 | . . . . . . . 8 ⊢ ((𝑥 ∈ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) → 𝑥 ∈ 𝐻) ↔ (∃𝑓(𝑓 ∈ (𝐻 ↑m ℕ) ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻)) |
7 | 3, 6 | bitr4i 277 | . . . . . . 7 ⊢ (∀𝑓((𝑓 ∈ (𝐻 ↑m ℕ) ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) ↔ (𝑥 ∈ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) → 𝑥 ∈ 𝐻)) |
8 | 7 | albii 1822 | . . . . . 6 ⊢ (∀𝑥∀𝑓((𝑓 ∈ (𝐻 ↑m ℕ) ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) ↔ ∀𝑥(𝑥 ∈ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) → 𝑥 ∈ 𝐻)) |
9 | dfss2 3907 | . . . . . 6 ⊢ (( ⇝𝑣 “ (𝐻 ↑m ℕ)) ⊆ 𝐻 ↔ ∀𝑥(𝑥 ∈ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) → 𝑥 ∈ 𝐻)) | |
10 | 8, 9 | bitr4i 277 | . . . . 5 ⊢ (∀𝑥∀𝑓((𝑓 ∈ (𝐻 ↑m ℕ) ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) ↔ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) ⊆ 𝐻) |
11 | 2, 10 | bitri 274 | . . . 4 ⊢ (∀𝑓∀𝑥((𝑓 ∈ (𝐻 ↑m ℕ) ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) ↔ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) ⊆ 𝐻) |
12 | nnex 11979 | . . . . . . . 8 ⊢ ℕ ∈ V | |
13 | elmapg 8628 | . . . . . . . 8 ⊢ ((𝐻 ∈ Sℋ ∧ ℕ ∈ V) → (𝑓 ∈ (𝐻 ↑m ℕ) ↔ 𝑓:ℕ⟶𝐻)) | |
14 | 12, 13 | mpan2 688 | . . . . . . 7 ⊢ (𝐻 ∈ Sℋ → (𝑓 ∈ (𝐻 ↑m ℕ) ↔ 𝑓:ℕ⟶𝐻)) |
15 | 14 | anbi1d 630 | . . . . . 6 ⊢ (𝐻 ∈ Sℋ → ((𝑓 ∈ (𝐻 ↑m ℕ) ∧ 𝑓 ⇝𝑣 𝑥) ↔ (𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥))) |
16 | 15 | imbi1d 342 | . . . . 5 ⊢ (𝐻 ∈ Sℋ → (((𝑓 ∈ (𝐻 ↑m ℕ) ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) ↔ ((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻))) |
17 | 16 | 2albidv 1926 | . . . 4 ⊢ (𝐻 ∈ Sℋ → (∀𝑓∀𝑥((𝑓 ∈ (𝐻 ↑m ℕ) ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) ↔ ∀𝑓∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻))) |
18 | 11, 17 | bitr3id 285 | . . 3 ⊢ (𝐻 ∈ Sℋ → (( ⇝𝑣 “ (𝐻 ↑m ℕ)) ⊆ 𝐻 ↔ ∀𝑓∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻))) |
19 | 18 | pm5.32i 575 | . 2 ⊢ ((𝐻 ∈ Sℋ ∧ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) ⊆ 𝐻) ↔ (𝐻 ∈ Sℋ ∧ ∀𝑓∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻))) |
20 | 1, 19 | bitri 274 | 1 ⊢ (𝐻 ∈ Cℋ ↔ (𝐻 ∈ Sℋ ∧ ∀𝑓∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 ∃wex 1782 ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 class class class wbr 5074 “ cima 5592 ⟶wf 6429 (class class class)co 7275 ↑m cmap 8615 ℕcn 11973 ⇝𝑣 chli 29289 Sℋ csh 29290 Cℋ cch 29291 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-1cn 10929 ax-addcl 10931 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-map 8617 df-nn 11974 df-ch 29583 |
This theorem is referenced by: chlimi 29596 isch3 29603 helch 29605 hsn0elch 29610 chintcli 29693 chscl 30003 nlelchi 30423 hmopidmchi 30513 |
Copyright terms: Public domain | W3C validator |