| Step | Hyp | Ref
| Expression |
| 1 | | eqidd 2737 |
. . . . 5
⊢ (( < Po 𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) → (♯‘𝐶) = (♯‘𝐶)) |
| 2 | | ischn 32991 |
. . . . . . . 8
⊢ (𝐶 ∈ ( < Chain𝐴) ↔ (𝐶 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶‘𝑛))) |
| 3 | 2 | biimpi 216 |
. . . . . . 7
⊢ (𝐶 ∈ ( < Chain𝐴) → (𝐶 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶‘𝑛))) |
| 4 | 3 | adantl 481 |
. . . . . 6
⊢ (( < Po 𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) → (𝐶 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶‘𝑛))) |
| 5 | 4 | simpld 494 |
. . . . 5
⊢ (( < Po 𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) → 𝐶 ∈ Word 𝐴) |
| 6 | 1, 5 | wrdfd 14542 |
. . . 4
⊢ (( < Po 𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) → 𝐶:(0..^(♯‘𝐶))⟶𝐴) |
| 7 | 6 | frnd 6719 |
. . 3
⊢ (( < Po 𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) → ran 𝐶 ⊆ 𝐴) |
| 8 | | simpl 482 |
. . 3
⊢ (( < Po 𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) → < Po 𝐴) |
| 9 | | poss 5568 |
. . 3
⊢ (ran
𝐶 ⊆ 𝐴 → ( < Po 𝐴 → < Po ran 𝐶)) |
| 10 | 7, 8, 9 | sylc 65 |
. 2
⊢ (( < Po 𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) → < Po ran 𝐶) |
| 11 | | fzossz 13701 |
. . . . . . . . 9
⊢
(0..^(♯‘𝐶)) ⊆ ℤ |
| 12 | | simp-4r 783 |
. . . . . . . . 9
⊢ ((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) → 𝑖 ∈ (0..^(♯‘𝐶))) |
| 13 | 11, 12 | sselid 3961 |
. . . . . . . 8
⊢ ((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) → 𝑖 ∈ ℤ) |
| 14 | 13 | zred 12702 |
. . . . . . 7
⊢ ((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) → 𝑖 ∈ ℝ) |
| 15 | | simplr 768 |
. . . . . . . . 9
⊢ ((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) → 𝑗 ∈ (0..^(♯‘𝐶))) |
| 16 | 11, 15 | sselid 3961 |
. . . . . . . 8
⊢ ((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) → 𝑗 ∈ ℤ) |
| 17 | 16 | zred 12702 |
. . . . . . 7
⊢ ((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) → 𝑗 ∈ ℝ) |
| 18 | 14, 17 | lttri4d 11381 |
. . . . . 6
⊢ ((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) → (𝑖 < 𝑗 ∨ 𝑖 = 𝑗 ∨ 𝑗 < 𝑖)) |
| 19 | | simp-8l 790 |
. . . . . . . . . 10
⊢ (((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) ∧ 𝑖 < 𝑗) → < Po 𝐴) |
| 20 | | simp-8r 791 |
. . . . . . . . . 10
⊢ (((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) ∧ 𝑖 < 𝑗) → 𝐶 ∈ ( < Chain𝐴)) |
| 21 | | simpllr 775 |
. . . . . . . . . 10
⊢ (((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) ∧ 𝑖 < 𝑗) → 𝑗 ∈ (0..^(♯‘𝐶))) |
| 22 | | elfzouz 13685 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈
(0..^(♯‘𝐶))
→ 𝑖 ∈
(ℤ≥‘0)) |
| 23 | 22 | ad5antlr 735 |
. . . . . . . . . . 11
⊢ (((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) ∧ 𝑖 < 𝑗) → 𝑖 ∈
(ℤ≥‘0)) |
| 24 | 16 | adantr 480 |
. . . . . . . . . . 11
⊢ (((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) ∧ 𝑖 < 𝑗) → 𝑗 ∈ ℤ) |
| 25 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) ∧ 𝑖 < 𝑗) → 𝑖 < 𝑗) |
| 26 | | elfzo2 13684 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ (0..^𝑗) ↔ (𝑖 ∈ (ℤ≥‘0)
∧ 𝑗 ∈ ℤ
∧ 𝑖 < 𝑗)) |
| 27 | 23, 24, 25, 26 | syl3anbrc 1344 |
. . . . . . . . . 10
⊢ (((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) ∧ 𝑖 < 𝑗) → 𝑖 ∈ (0..^𝑗)) |
| 28 | 19, 20, 21, 27 | chnlt 32998 |
. . . . . . . . 9
⊢ (((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) ∧ 𝑖 < 𝑗) → (𝐶‘𝑖) < (𝐶‘𝑗)) |
| 29 | | simp-4r 783 |
. . . . . . . . 9
⊢ (((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) ∧ 𝑖 < 𝑗) → (𝐶‘𝑖) = 𝑥) |
| 30 | | simplr 768 |
. . . . . . . . 9
⊢ (((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) ∧ 𝑖 < 𝑗) → (𝐶‘𝑗) = 𝑦) |
| 31 | 28, 29, 30 | 3brtr3d 5155 |
. . . . . . . 8
⊢ (((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) ∧ 𝑖 < 𝑗) → 𝑥 < 𝑦) |
| 32 | 31 | ex 412 |
. . . . . . 7
⊢ ((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) → (𝑖 < 𝑗 → 𝑥 < 𝑦)) |
| 33 | | simpr 484 |
. . . . . . . . . 10
⊢ (((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) ∧ 𝑖 = 𝑗) → 𝑖 = 𝑗) |
| 34 | 33 | fveq2d 6885 |
. . . . . . . . 9
⊢ (((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) ∧ 𝑖 = 𝑗) → (𝐶‘𝑖) = (𝐶‘𝑗)) |
| 35 | | simp-4r 783 |
. . . . . . . . 9
⊢ (((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) ∧ 𝑖 = 𝑗) → (𝐶‘𝑖) = 𝑥) |
| 36 | | simplr 768 |
. . . . . . . . 9
⊢ (((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) ∧ 𝑖 = 𝑗) → (𝐶‘𝑗) = 𝑦) |
| 37 | 34, 35, 36 | 3eqtr3d 2779 |
. . . . . . . 8
⊢ (((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) ∧ 𝑖 = 𝑗) → 𝑥 = 𝑦) |
| 38 | 37 | ex 412 |
. . . . . . 7
⊢ ((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) → (𝑖 = 𝑗 → 𝑥 = 𝑦)) |
| 39 | | simp-8l 790 |
. . . . . . . . . 10
⊢ (((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) ∧ 𝑗 < 𝑖) → < Po 𝐴) |
| 40 | | simp-8r 791 |
. . . . . . . . . 10
⊢ (((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) ∧ 𝑗 < 𝑖) → 𝐶 ∈ ( < Chain𝐴)) |
| 41 | 12 | adantr 480 |
. . . . . . . . . 10
⊢ (((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) ∧ 𝑗 < 𝑖) → 𝑖 ∈ (0..^(♯‘𝐶))) |
| 42 | | elfzouz 13685 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈
(0..^(♯‘𝐶))
→ 𝑗 ∈
(ℤ≥‘0)) |
| 43 | 42 | ad3antlr 731 |
. . . . . . . . . . 11
⊢ (((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) ∧ 𝑗 < 𝑖) → 𝑗 ∈
(ℤ≥‘0)) |
| 44 | 13 | adantr 480 |
. . . . . . . . . . 11
⊢ (((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) ∧ 𝑗 < 𝑖) → 𝑖 ∈ ℤ) |
| 45 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) ∧ 𝑗 < 𝑖) → 𝑗 < 𝑖) |
| 46 | | elfzo2 13684 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (0..^𝑖) ↔ (𝑗 ∈ (ℤ≥‘0)
∧ 𝑖 ∈ ℤ
∧ 𝑗 < 𝑖)) |
| 47 | 43, 44, 45, 46 | syl3anbrc 1344 |
. . . . . . . . . 10
⊢ (((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) ∧ 𝑗 < 𝑖) → 𝑗 ∈ (0..^𝑖)) |
| 48 | 39, 40, 41, 47 | chnlt 32998 |
. . . . . . . . 9
⊢ (((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) ∧ 𝑗 < 𝑖) → (𝐶‘𝑗) < (𝐶‘𝑖)) |
| 49 | | simplr 768 |
. . . . . . . . 9
⊢ (((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) ∧ 𝑗 < 𝑖) → (𝐶‘𝑗) = 𝑦) |
| 50 | | simp-4r 783 |
. . . . . . . . 9
⊢ (((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) ∧ 𝑗 < 𝑖) → (𝐶‘𝑖) = 𝑥) |
| 51 | 48, 49, 50 | 3brtr3d 5155 |
. . . . . . . 8
⊢ (((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) ∧ 𝑗 < 𝑖) → 𝑦 < 𝑥) |
| 52 | 51 | ex 412 |
. . . . . . 7
⊢ ((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) → (𝑗 < 𝑖 → 𝑦 < 𝑥)) |
| 53 | 32, 38, 52 | 3orim123d 1446 |
. . . . . 6
⊢ ((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) → ((𝑖 < 𝑗 ∨ 𝑖 = 𝑗 ∨ 𝑗 < 𝑖) → (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥))) |
| 54 | 18, 53 | mpd 15 |
. . . . 5
⊢ ((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) → (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥)) |
| 55 | 6 | ffnd 6712 |
. . . . . . 7
⊢ (( < Po 𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) → 𝐶 Fn (0..^(♯‘𝐶))) |
| 56 | 55 | ad4antr 732 |
. . . . . 6
⊢ ((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) → 𝐶 Fn (0..^(♯‘𝐶))) |
| 57 | | simpllr 775 |
. . . . . 6
⊢ ((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) → 𝑦 ∈ ran 𝐶) |
| 58 | | fvelrnb 6944 |
. . . . . . 7
⊢ (𝐶 Fn (0..^(♯‘𝐶)) → (𝑦 ∈ ran 𝐶 ↔ ∃𝑗 ∈ (0..^(♯‘𝐶))(𝐶‘𝑗) = 𝑦)) |
| 59 | 58 | biimpa 476 |
. . . . . 6
⊢ ((𝐶 Fn (0..^(♯‘𝐶)) ∧ 𝑦 ∈ ran 𝐶) → ∃𝑗 ∈ (0..^(♯‘𝐶))(𝐶‘𝑗) = 𝑦) |
| 60 | 56, 57, 59 | syl2anc 584 |
. . . . 5
⊢ ((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) → ∃𝑗 ∈ (0..^(♯‘𝐶))(𝐶‘𝑗) = 𝑦) |
| 61 | 54, 60 | r19.29a 3149 |
. . . 4
⊢ ((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) → (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥)) |
| 62 | 55 | ad2antrr 726 |
. . . . 5
⊢ ((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) → 𝐶 Fn (0..^(♯‘𝐶))) |
| 63 | | simplr 768 |
. . . . 5
⊢ ((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) → 𝑥 ∈ ran 𝐶) |
| 64 | | fvelrnb 6944 |
. . . . . 6
⊢ (𝐶 Fn (0..^(♯‘𝐶)) → (𝑥 ∈ ran 𝐶 ↔ ∃𝑖 ∈ (0..^(♯‘𝐶))(𝐶‘𝑖) = 𝑥)) |
| 65 | 64 | biimpa 476 |
. . . . 5
⊢ ((𝐶 Fn (0..^(♯‘𝐶)) ∧ 𝑥 ∈ ran 𝐶) → ∃𝑖 ∈ (0..^(♯‘𝐶))(𝐶‘𝑖) = 𝑥) |
| 66 | 62, 63, 65 | syl2anc 584 |
. . . 4
⊢ ((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) → ∃𝑖 ∈ (0..^(♯‘𝐶))(𝐶‘𝑖) = 𝑥) |
| 67 | 61, 66 | r19.29a 3149 |
. . 3
⊢ ((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) → (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥)) |
| 68 | 67 | anasss 466 |
. 2
⊢ ((( < Po 𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ (𝑥 ∈ ran 𝐶 ∧ 𝑦 ∈ ran 𝐶)) → (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥)) |
| 69 | 10, 68 | issod 5601 |
1
⊢ (( < Po 𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) → < Or ran 𝐶) |