Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  chnso Structured version   Visualization version   GIF version

Theorem chnso 32940
Description: A chain induces a total order. (Contributed by Thierry Arnoux, 19-Jun-2025.)
Assertion
Ref Expression
chnso (( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) → < Or ran 𝐶)

Proof of Theorem chnso
Dummy variables 𝑥 𝑦 𝑖 𝑗 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2730 . . . . 5 (( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) → (♯‘𝐶) = (♯‘𝐶))
2 ischn 32932 . . . . . . . 8 (𝐶 ∈ ( < Chain𝐴) ↔ (𝐶 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶𝑛)))
32biimpi 216 . . . . . . 7 (𝐶 ∈ ( < Chain𝐴) → (𝐶 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶𝑛)))
43adantl 481 . . . . . 6 (( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) → (𝐶 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶𝑛)))
54simpld 494 . . . . 5 (( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) → 𝐶 ∈ Word 𝐴)
61, 5wrdfd 14484 . . . 4 (( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) → 𝐶:(0..^(♯‘𝐶))⟶𝐴)
76frnd 6696 . . 3 (( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) → ran 𝐶𝐴)
8 simpl 482 . . 3 (( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) → < Po 𝐴)
9 poss 5548 . . 3 (ran 𝐶𝐴 → ( < Po 𝐴< Po ran 𝐶))
107, 8, 9sylc 65 . 2 (( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) → < Po ran 𝐶)
11 fzossz 13640 . . . . . . . . 9 (0..^(♯‘𝐶)) ⊆ ℤ
12 simp-4r 783 . . . . . . . . 9 (((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) → 𝑖 ∈ (0..^(♯‘𝐶)))
1311, 12sselid 3944 . . . . . . . 8 (((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) → 𝑖 ∈ ℤ)
1413zred 12638 . . . . . . 7 (((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) → 𝑖 ∈ ℝ)
15 simplr 768 . . . . . . . . 9 (((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) → 𝑗 ∈ (0..^(♯‘𝐶)))
1611, 15sselid 3944 . . . . . . . 8 (((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) → 𝑗 ∈ ℤ)
1716zred 12638 . . . . . . 7 (((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) → 𝑗 ∈ ℝ)
1814, 17lttri4d 11315 . . . . . 6 (((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) → (𝑖 < 𝑗𝑖 = 𝑗𝑗 < 𝑖))
19 simp-8l 790 . . . . . . . . . 10 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑖 < 𝑗) → < Po 𝐴)
20 simp-8r 791 . . . . . . . . . 10 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑖 < 𝑗) → 𝐶 ∈ ( < Chain𝐴))
21 simpllr 775 . . . . . . . . . 10 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑖 < 𝑗) → 𝑗 ∈ (0..^(♯‘𝐶)))
22 elfzouz 13624 . . . . . . . . . . . 12 (𝑖 ∈ (0..^(♯‘𝐶)) → 𝑖 ∈ (ℤ‘0))
2322ad5antlr 735 . . . . . . . . . . 11 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑖 < 𝑗) → 𝑖 ∈ (ℤ‘0))
2416adantr 480 . . . . . . . . . . 11 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑖 < 𝑗) → 𝑗 ∈ ℤ)
25 simpr 484 . . . . . . . . . . 11 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑖 < 𝑗) → 𝑖 < 𝑗)
26 elfzo2 13623 . . . . . . . . . . 11 (𝑖 ∈ (0..^𝑗) ↔ (𝑖 ∈ (ℤ‘0) ∧ 𝑗 ∈ ℤ ∧ 𝑖 < 𝑗))
2723, 24, 25, 26syl3anbrc 1344 . . . . . . . . . 10 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑖 < 𝑗) → 𝑖 ∈ (0..^𝑗))
2819, 20, 21, 27chnlt 32939 . . . . . . . . 9 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑖 < 𝑗) → (𝐶𝑖) < (𝐶𝑗))
29 simp-4r 783 . . . . . . . . 9 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑖 < 𝑗) → (𝐶𝑖) = 𝑥)
30 simplr 768 . . . . . . . . 9 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑖 < 𝑗) → (𝐶𝑗) = 𝑦)
3128, 29, 303brtr3d 5138 . . . . . . . 8 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑖 < 𝑗) → 𝑥 < 𝑦)
3231ex 412 . . . . . . 7 (((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) → (𝑖 < 𝑗𝑥 < 𝑦))
33 simpr 484 . . . . . . . . . 10 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑖 = 𝑗) → 𝑖 = 𝑗)
3433fveq2d 6862 . . . . . . . . 9 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑖 = 𝑗) → (𝐶𝑖) = (𝐶𝑗))
35 simp-4r 783 . . . . . . . . 9 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑖 = 𝑗) → (𝐶𝑖) = 𝑥)
36 simplr 768 . . . . . . . . 9 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑖 = 𝑗) → (𝐶𝑗) = 𝑦)
3734, 35, 363eqtr3d 2772 . . . . . . . 8 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑖 = 𝑗) → 𝑥 = 𝑦)
3837ex 412 . . . . . . 7 (((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) → (𝑖 = 𝑗𝑥 = 𝑦))
39 simp-8l 790 . . . . . . . . . 10 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑗 < 𝑖) → < Po 𝐴)
40 simp-8r 791 . . . . . . . . . 10 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑗 < 𝑖) → 𝐶 ∈ ( < Chain𝐴))
4112adantr 480 . . . . . . . . . 10 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑗 < 𝑖) → 𝑖 ∈ (0..^(♯‘𝐶)))
42 elfzouz 13624 . . . . . . . . . . . 12 (𝑗 ∈ (0..^(♯‘𝐶)) → 𝑗 ∈ (ℤ‘0))
4342ad3antlr 731 . . . . . . . . . . 11 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑗 < 𝑖) → 𝑗 ∈ (ℤ‘0))
4413adantr 480 . . . . . . . . . . 11 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑗 < 𝑖) → 𝑖 ∈ ℤ)
45 simpr 484 . . . . . . . . . . 11 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑗 < 𝑖) → 𝑗 < 𝑖)
46 elfzo2 13623 . . . . . . . . . . 11 (𝑗 ∈ (0..^𝑖) ↔ (𝑗 ∈ (ℤ‘0) ∧ 𝑖 ∈ ℤ ∧ 𝑗 < 𝑖))
4743, 44, 45, 46syl3anbrc 1344 . . . . . . . . . 10 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑗 < 𝑖) → 𝑗 ∈ (0..^𝑖))
4839, 40, 41, 47chnlt 32939 . . . . . . . . 9 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑗 < 𝑖) → (𝐶𝑗) < (𝐶𝑖))
49 simplr 768 . . . . . . . . 9 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑗 < 𝑖) → (𝐶𝑗) = 𝑦)
50 simp-4r 783 . . . . . . . . 9 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑗 < 𝑖) → (𝐶𝑖) = 𝑥)
5148, 49, 503brtr3d 5138 . . . . . . . 8 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑗 < 𝑖) → 𝑦 < 𝑥)
5251ex 412 . . . . . . 7 (((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) → (𝑗 < 𝑖𝑦 < 𝑥))
5332, 38, 523orim123d 1446 . . . . . 6 (((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) → ((𝑖 < 𝑗𝑖 = 𝑗𝑗 < 𝑖) → (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)))
5418, 53mpd 15 . . . . 5 (((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) → (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
556ffnd 6689 . . . . . . 7 (( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) → 𝐶 Fn (0..^(♯‘𝐶)))
5655ad4antr 732 . . . . . 6 (((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) → 𝐶 Fn (0..^(♯‘𝐶)))
57 simpllr 775 . . . . . 6 (((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) → 𝑦 ∈ ran 𝐶)
58 fvelrnb 6921 . . . . . . 7 (𝐶 Fn (0..^(♯‘𝐶)) → (𝑦 ∈ ran 𝐶 ↔ ∃𝑗 ∈ (0..^(♯‘𝐶))(𝐶𝑗) = 𝑦))
5958biimpa 476 . . . . . 6 ((𝐶 Fn (0..^(♯‘𝐶)) ∧ 𝑦 ∈ ran 𝐶) → ∃𝑗 ∈ (0..^(♯‘𝐶))(𝐶𝑗) = 𝑦)
6056, 57, 59syl2anc 584 . . . . 5 (((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) → ∃𝑗 ∈ (0..^(♯‘𝐶))(𝐶𝑗) = 𝑦)
6154, 60r19.29a 3141 . . . 4 (((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) → (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
6255ad2antrr 726 . . . . 5 (((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) → 𝐶 Fn (0..^(♯‘𝐶)))
63 simplr 768 . . . . 5 (((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) → 𝑥 ∈ ran 𝐶)
64 fvelrnb 6921 . . . . . 6 (𝐶 Fn (0..^(♯‘𝐶)) → (𝑥 ∈ ran 𝐶 ↔ ∃𝑖 ∈ (0..^(♯‘𝐶))(𝐶𝑖) = 𝑥))
6564biimpa 476 . . . . 5 ((𝐶 Fn (0..^(♯‘𝐶)) ∧ 𝑥 ∈ ran 𝐶) → ∃𝑖 ∈ (0..^(♯‘𝐶))(𝐶𝑖) = 𝑥)
6662, 63, 65syl2anc 584 . . . 4 (((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) → ∃𝑖 ∈ (0..^(♯‘𝐶))(𝐶𝑖) = 𝑥)
6761, 66r19.29a 3141 . . 3 (((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) → (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
6867anasss 466 . 2 ((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ (𝑥 ∈ ran 𝐶𝑦 ∈ ran 𝐶)) → (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
6910, 68issod 5581 1 (( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) → < Or ran 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085   = wceq 1540  wcel 2109  wral 3044  wrex 3053  cdif 3911  wss 3914  {csn 4589   class class class wbr 5107   Po wpo 5544   Or wor 5545  dom cdm 5638  ran crn 5639   Fn wfn 6506  cfv 6511  (class class class)co 7387  0cc0 11068  1c1 11069   < clt 11208  cmin 11405  cz 12529  cuz 12793  ..^cfzo 13615  chash 14295  Word cword 14478  Chaincchn 32930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-hash 14296  df-word 14479  df-lsw 14528  df-concat 14536  df-s1 14561  df-substr 14606  df-pfx 14636  df-chn 32931
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator