MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chnso Structured version   Visualization version   GIF version

Theorem chnso 18530
Description: A chain induces a total order. (Contributed by Thierry Arnoux, 19-Jun-2025.)
Assertion
Ref Expression
chnso (( < Po 𝐴𝐶 ∈ ( < Chain 𝐴)) → < Or ran 𝐶)

Proof of Theorem chnso
Dummy variables 𝑥 𝑦 𝑖 𝑗 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2732 . . . . 5 (( < Po 𝐴𝐶 ∈ ( < Chain 𝐴)) → (♯‘𝐶) = (♯‘𝐶))
2 ischn 18513 . . . . . . . 8 (𝐶 ∈ ( < Chain 𝐴) ↔ (𝐶 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶𝑛)))
32biimpi 216 . . . . . . 7 (𝐶 ∈ ( < Chain 𝐴) → (𝐶 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶𝑛)))
43adantl 481 . . . . . 6 (( < Po 𝐴𝐶 ∈ ( < Chain 𝐴)) → (𝐶 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶𝑛)))
54simpld 494 . . . . 5 (( < Po 𝐴𝐶 ∈ ( < Chain 𝐴)) → 𝐶 ∈ Word 𝐴)
61, 5wrdfd 14426 . . . 4 (( < Po 𝐴𝐶 ∈ ( < Chain 𝐴)) → 𝐶:(0..^(♯‘𝐶))⟶𝐴)
76frnd 6659 . . 3 (( < Po 𝐴𝐶 ∈ ( < Chain 𝐴)) → ran 𝐶𝐴)
8 simpl 482 . . 3 (( < Po 𝐴𝐶 ∈ ( < Chain 𝐴)) → < Po 𝐴)
9 poss 5526 . . 3 (ran 𝐶𝐴 → ( < Po 𝐴< Po ran 𝐶))
107, 8, 9sylc 65 . 2 (( < Po 𝐴𝐶 ∈ ( < Chain 𝐴)) → < Po ran 𝐶)
11 fzossz 13579 . . . . . . . . 9 (0..^(♯‘𝐶)) ⊆ ℤ
12 simp-4r 783 . . . . . . . . 9 (((((((( < Po 𝐴𝐶 ∈ ( < Chain 𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) → 𝑖 ∈ (0..^(♯‘𝐶)))
1311, 12sselid 3932 . . . . . . . 8 (((((((( < Po 𝐴𝐶 ∈ ( < Chain 𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) → 𝑖 ∈ ℤ)
1413zred 12577 . . . . . . 7 (((((((( < Po 𝐴𝐶 ∈ ( < Chain 𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) → 𝑖 ∈ ℝ)
15 simplr 768 . . . . . . . . 9 (((((((( < Po 𝐴𝐶 ∈ ( < Chain 𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) → 𝑗 ∈ (0..^(♯‘𝐶)))
1611, 15sselid 3932 . . . . . . . 8 (((((((( < Po 𝐴𝐶 ∈ ( < Chain 𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) → 𝑗 ∈ ℤ)
1716zred 12577 . . . . . . 7 (((((((( < Po 𝐴𝐶 ∈ ( < Chain 𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) → 𝑗 ∈ ℝ)
1814, 17lttri4d 11254 . . . . . 6 (((((((( < Po 𝐴𝐶 ∈ ( < Chain 𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) → (𝑖 < 𝑗𝑖 = 𝑗𝑗 < 𝑖))
19 simp-8l 790 . . . . . . . . . 10 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain 𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑖 < 𝑗) → < Po 𝐴)
20 simp-8r 791 . . . . . . . . . 10 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain 𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑖 < 𝑗) → 𝐶 ∈ ( < Chain 𝐴))
21 simpllr 775 . . . . . . . . . 10 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain 𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑖 < 𝑗) → 𝑗 ∈ (0..^(♯‘𝐶)))
22 elfzouz 13563 . . . . . . . . . . . 12 (𝑖 ∈ (0..^(♯‘𝐶)) → 𝑖 ∈ (ℤ‘0))
2322ad5antlr 735 . . . . . . . . . . 11 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain 𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑖 < 𝑗) → 𝑖 ∈ (ℤ‘0))
2416adantr 480 . . . . . . . . . . 11 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain 𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑖 < 𝑗) → 𝑗 ∈ ℤ)
25 simpr 484 . . . . . . . . . . 11 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain 𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑖 < 𝑗) → 𝑖 < 𝑗)
26 elfzo2 13562 . . . . . . . . . . 11 (𝑖 ∈ (0..^𝑗) ↔ (𝑖 ∈ (ℤ‘0) ∧ 𝑗 ∈ ℤ ∧ 𝑖 < 𝑗))
2723, 24, 25, 26syl3anbrc 1344 . . . . . . . . . 10 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain 𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑖 < 𝑗) → 𝑖 ∈ (0..^𝑗))
2819, 20, 21, 27chnlt 18529 . . . . . . . . 9 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain 𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑖 < 𝑗) → (𝐶𝑖) < (𝐶𝑗))
29 simp-4r 783 . . . . . . . . 9 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain 𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑖 < 𝑗) → (𝐶𝑖) = 𝑥)
30 simplr 768 . . . . . . . . 9 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain 𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑖 < 𝑗) → (𝐶𝑗) = 𝑦)
3128, 29, 303brtr3d 5122 . . . . . . . 8 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain 𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑖 < 𝑗) → 𝑥 < 𝑦)
3231ex 412 . . . . . . 7 (((((((( < Po 𝐴𝐶 ∈ ( < Chain 𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) → (𝑖 < 𝑗𝑥 < 𝑦))
33 simpr 484 . . . . . . . . . 10 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain 𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑖 = 𝑗) → 𝑖 = 𝑗)
3433fveq2d 6826 . . . . . . . . 9 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain 𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑖 = 𝑗) → (𝐶𝑖) = (𝐶𝑗))
35 simp-4r 783 . . . . . . . . 9 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain 𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑖 = 𝑗) → (𝐶𝑖) = 𝑥)
36 simplr 768 . . . . . . . . 9 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain 𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑖 = 𝑗) → (𝐶𝑗) = 𝑦)
3734, 35, 363eqtr3d 2774 . . . . . . . 8 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain 𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑖 = 𝑗) → 𝑥 = 𝑦)
3837ex 412 . . . . . . 7 (((((((( < Po 𝐴𝐶 ∈ ( < Chain 𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) → (𝑖 = 𝑗𝑥 = 𝑦))
39 simp-8l 790 . . . . . . . . . 10 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain 𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑗 < 𝑖) → < Po 𝐴)
40 simp-8r 791 . . . . . . . . . 10 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain 𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑗 < 𝑖) → 𝐶 ∈ ( < Chain 𝐴))
4112adantr 480 . . . . . . . . . 10 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain 𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑗 < 𝑖) → 𝑖 ∈ (0..^(♯‘𝐶)))
42 elfzouz 13563 . . . . . . . . . . . 12 (𝑗 ∈ (0..^(♯‘𝐶)) → 𝑗 ∈ (ℤ‘0))
4342ad3antlr 731 . . . . . . . . . . 11 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain 𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑗 < 𝑖) → 𝑗 ∈ (ℤ‘0))
4413adantr 480 . . . . . . . . . . 11 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain 𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑗 < 𝑖) → 𝑖 ∈ ℤ)
45 simpr 484 . . . . . . . . . . 11 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain 𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑗 < 𝑖) → 𝑗 < 𝑖)
46 elfzo2 13562 . . . . . . . . . . 11 (𝑗 ∈ (0..^𝑖) ↔ (𝑗 ∈ (ℤ‘0) ∧ 𝑖 ∈ ℤ ∧ 𝑗 < 𝑖))
4743, 44, 45, 46syl3anbrc 1344 . . . . . . . . . 10 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain 𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑗 < 𝑖) → 𝑗 ∈ (0..^𝑖))
4839, 40, 41, 47chnlt 18529 . . . . . . . . 9 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain 𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑗 < 𝑖) → (𝐶𝑗) < (𝐶𝑖))
49 simplr 768 . . . . . . . . 9 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain 𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑗 < 𝑖) → (𝐶𝑗) = 𝑦)
50 simp-4r 783 . . . . . . . . 9 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain 𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑗 < 𝑖) → (𝐶𝑖) = 𝑥)
5148, 49, 503brtr3d 5122 . . . . . . . 8 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain 𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑗 < 𝑖) → 𝑦 < 𝑥)
5251ex 412 . . . . . . 7 (((((((( < Po 𝐴𝐶 ∈ ( < Chain 𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) → (𝑗 < 𝑖𝑦 < 𝑥))
5332, 38, 523orim123d 1446 . . . . . 6 (((((((( < Po 𝐴𝐶 ∈ ( < Chain 𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) → ((𝑖 < 𝑗𝑖 = 𝑗𝑗 < 𝑖) → (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)))
5418, 53mpd 15 . . . . 5 (((((((( < Po 𝐴𝐶 ∈ ( < Chain 𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) → (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
556ffnd 6652 . . . . . . 7 (( < Po 𝐴𝐶 ∈ ( < Chain 𝐴)) → 𝐶 Fn (0..^(♯‘𝐶)))
5655ad4antr 732 . . . . . 6 (((((( < Po 𝐴𝐶 ∈ ( < Chain 𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) → 𝐶 Fn (0..^(♯‘𝐶)))
57 simpllr 775 . . . . . 6 (((((( < Po 𝐴𝐶 ∈ ( < Chain 𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) → 𝑦 ∈ ran 𝐶)
58 fvelrnb 6882 . . . . . . 7 (𝐶 Fn (0..^(♯‘𝐶)) → (𝑦 ∈ ran 𝐶 ↔ ∃𝑗 ∈ (0..^(♯‘𝐶))(𝐶𝑗) = 𝑦))
5958biimpa 476 . . . . . 6 ((𝐶 Fn (0..^(♯‘𝐶)) ∧ 𝑦 ∈ ran 𝐶) → ∃𝑗 ∈ (0..^(♯‘𝐶))(𝐶𝑗) = 𝑦)
6056, 57, 59syl2anc 584 . . . . 5 (((((( < Po 𝐴𝐶 ∈ ( < Chain 𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) → ∃𝑗 ∈ (0..^(♯‘𝐶))(𝐶𝑗) = 𝑦)
6154, 60r19.29a 3140 . . . 4 (((((( < Po 𝐴𝐶 ∈ ( < Chain 𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) → (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
6255ad2antrr 726 . . . . 5 (((( < Po 𝐴𝐶 ∈ ( < Chain 𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) → 𝐶 Fn (0..^(♯‘𝐶)))
63 simplr 768 . . . . 5 (((( < Po 𝐴𝐶 ∈ ( < Chain 𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) → 𝑥 ∈ ran 𝐶)
64 fvelrnb 6882 . . . . . 6 (𝐶 Fn (0..^(♯‘𝐶)) → (𝑥 ∈ ran 𝐶 ↔ ∃𝑖 ∈ (0..^(♯‘𝐶))(𝐶𝑖) = 𝑥))
6564biimpa 476 . . . . 5 ((𝐶 Fn (0..^(♯‘𝐶)) ∧ 𝑥 ∈ ran 𝐶) → ∃𝑖 ∈ (0..^(♯‘𝐶))(𝐶𝑖) = 𝑥)
6662, 63, 65syl2anc 584 . . . 4 (((( < Po 𝐴𝐶 ∈ ( < Chain 𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) → ∃𝑖 ∈ (0..^(♯‘𝐶))(𝐶𝑖) = 𝑥)
6761, 66r19.29a 3140 . . 3 (((( < Po 𝐴𝐶 ∈ ( < Chain 𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) → (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
6867anasss 466 . 2 ((( < Po 𝐴𝐶 ∈ ( < Chain 𝐴)) ∧ (𝑥 ∈ ran 𝐶𝑦 ∈ ran 𝐶)) → (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
6910, 68issod 5559 1 (( < Po 𝐴𝐶 ∈ ( < Chain 𝐴)) → < Or ran 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085   = wceq 1541  wcel 2111  wral 3047  wrex 3056  cdif 3899  wss 3902  {csn 4576   class class class wbr 5091   Po wpo 5522   Or wor 5523  dom cdm 5616  ran crn 5617   Fn wfn 6476  cfv 6481  (class class class)co 7346  0cc0 11006  1c1 11007   < clt 11146  cmin 11344  cz 12468  cuz 12732  ..^cfzo 13554  chash 14237  Word cword 14420   Chain cchn 18511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-xnn0 12455  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-hash 14238  df-word 14421  df-lsw 14470  df-concat 14478  df-s1 14504  df-substr 14549  df-pfx 14579  df-chn 18512
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator