Step | Hyp | Ref
| Expression |
1 | | eqidd 2727 |
. . . . 5
⊢ (( < Po 𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) → (♯‘𝐶) = (♯‘𝐶)) |
2 | | ischn 32876 |
. . . . . . . 8
⊢ (𝐶 ∈ ( < Chain𝐴) ↔ (𝐶 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶‘𝑛))) |
3 | 2 | biimpi 215 |
. . . . . . 7
⊢ (𝐶 ∈ ( < Chain𝐴) → (𝐶 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶‘𝑛))) |
4 | 3 | adantl 480 |
. . . . . 6
⊢ (( < Po 𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) → (𝐶 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶‘𝑛))) |
5 | 4 | simpld 493 |
. . . . 5
⊢ (( < Po 𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) → 𝐶 ∈ Word 𝐴) |
6 | 1, 5 | wrdfd 32797 |
. . . 4
⊢ (( < Po 𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) → 𝐶:(0..^(♯‘𝐶))⟶𝐴) |
7 | 6 | frnd 6725 |
. . 3
⊢ (( < Po 𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) → ran 𝐶 ⊆ 𝐴) |
8 | | simpl 481 |
. . 3
⊢ (( < Po 𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) → < Po 𝐴) |
9 | | poss 5586 |
. . 3
⊢ (ran
𝐶 ⊆ 𝐴 → ( < Po 𝐴 → < Po ran 𝐶)) |
10 | 7, 8, 9 | sylc 65 |
. 2
⊢ (( < Po 𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) → < Po ran 𝐶) |
11 | | fzossz 13697 |
. . . . . . . . 9
⊢
(0..^(♯‘𝐶)) ⊆ ℤ |
12 | | simp-4r 782 |
. . . . . . . . 9
⊢ ((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) → 𝑖 ∈ (0..^(♯‘𝐶))) |
13 | 11, 12 | sselid 3976 |
. . . . . . . 8
⊢ ((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) → 𝑖 ∈ ℤ) |
14 | 13 | zred 12709 |
. . . . . . 7
⊢ ((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) → 𝑖 ∈ ℝ) |
15 | | simplr 767 |
. . . . . . . . 9
⊢ ((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) → 𝑗 ∈ (0..^(♯‘𝐶))) |
16 | 11, 15 | sselid 3976 |
. . . . . . . 8
⊢ ((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) → 𝑗 ∈ ℤ) |
17 | 16 | zred 12709 |
. . . . . . 7
⊢ ((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) → 𝑗 ∈ ℝ) |
18 | 14, 17 | lttri4d 11393 |
. . . . . 6
⊢ ((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) → (𝑖 < 𝑗 ∨ 𝑖 = 𝑗 ∨ 𝑗 < 𝑖)) |
19 | | simp-8l 789 |
. . . . . . . . . 10
⊢ (((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) ∧ 𝑖 < 𝑗) → < Po 𝐴) |
20 | | simp-8r 790 |
. . . . . . . . . 10
⊢ (((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) ∧ 𝑖 < 𝑗) → 𝐶 ∈ ( < Chain𝐴)) |
21 | | simpllr 774 |
. . . . . . . . . 10
⊢ (((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) ∧ 𝑖 < 𝑗) → 𝑗 ∈ (0..^(♯‘𝐶))) |
22 | | elfzouz 13681 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈
(0..^(♯‘𝐶))
→ 𝑖 ∈
(ℤ≥‘0)) |
23 | 22 | ad5antlr 733 |
. . . . . . . . . . 11
⊢ (((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) ∧ 𝑖 < 𝑗) → 𝑖 ∈
(ℤ≥‘0)) |
24 | 16 | adantr 479 |
. . . . . . . . . . 11
⊢ (((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) ∧ 𝑖 < 𝑗) → 𝑗 ∈ ℤ) |
25 | | simpr 483 |
. . . . . . . . . . 11
⊢ (((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) ∧ 𝑖 < 𝑗) → 𝑖 < 𝑗) |
26 | | elfzo2 13680 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ (0..^𝑗) ↔ (𝑖 ∈ (ℤ≥‘0)
∧ 𝑗 ∈ ℤ
∧ 𝑖 < 𝑗)) |
27 | 23, 24, 25, 26 | syl3anbrc 1340 |
. . . . . . . . . 10
⊢ (((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) ∧ 𝑖 < 𝑗) → 𝑖 ∈ (0..^𝑗)) |
28 | 19, 20, 21, 27 | chnlt 32882 |
. . . . . . . . 9
⊢ (((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) ∧ 𝑖 < 𝑗) → (𝐶‘𝑖) < (𝐶‘𝑗)) |
29 | | simp-4r 782 |
. . . . . . . . 9
⊢ (((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) ∧ 𝑖 < 𝑗) → (𝐶‘𝑖) = 𝑥) |
30 | | simplr 767 |
. . . . . . . . 9
⊢ (((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) ∧ 𝑖 < 𝑗) → (𝐶‘𝑗) = 𝑦) |
31 | 28, 29, 30 | 3brtr3d 5174 |
. . . . . . . 8
⊢ (((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) ∧ 𝑖 < 𝑗) → 𝑥 < 𝑦) |
32 | 31 | ex 411 |
. . . . . . 7
⊢ ((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) → (𝑖 < 𝑗 → 𝑥 < 𝑦)) |
33 | | simpr 483 |
. . . . . . . . . 10
⊢ (((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) ∧ 𝑖 = 𝑗) → 𝑖 = 𝑗) |
34 | 33 | fveq2d 6894 |
. . . . . . . . 9
⊢ (((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) ∧ 𝑖 = 𝑗) → (𝐶‘𝑖) = (𝐶‘𝑗)) |
35 | | simp-4r 782 |
. . . . . . . . 9
⊢ (((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) ∧ 𝑖 = 𝑗) → (𝐶‘𝑖) = 𝑥) |
36 | | simplr 767 |
. . . . . . . . 9
⊢ (((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) ∧ 𝑖 = 𝑗) → (𝐶‘𝑗) = 𝑦) |
37 | 34, 35, 36 | 3eqtr3d 2774 |
. . . . . . . 8
⊢ (((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) ∧ 𝑖 = 𝑗) → 𝑥 = 𝑦) |
38 | 37 | ex 411 |
. . . . . . 7
⊢ ((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) → (𝑖 = 𝑗 → 𝑥 = 𝑦)) |
39 | | simp-8l 789 |
. . . . . . . . . 10
⊢ (((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) ∧ 𝑗 < 𝑖) → < Po 𝐴) |
40 | | simp-8r 790 |
. . . . . . . . . 10
⊢ (((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) ∧ 𝑗 < 𝑖) → 𝐶 ∈ ( < Chain𝐴)) |
41 | 12 | adantr 479 |
. . . . . . . . . 10
⊢ (((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) ∧ 𝑗 < 𝑖) → 𝑖 ∈ (0..^(♯‘𝐶))) |
42 | | elfzouz 13681 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈
(0..^(♯‘𝐶))
→ 𝑗 ∈
(ℤ≥‘0)) |
43 | 42 | ad3antlr 729 |
. . . . . . . . . . 11
⊢ (((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) ∧ 𝑗 < 𝑖) → 𝑗 ∈
(ℤ≥‘0)) |
44 | 13 | adantr 479 |
. . . . . . . . . . 11
⊢ (((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) ∧ 𝑗 < 𝑖) → 𝑖 ∈ ℤ) |
45 | | simpr 483 |
. . . . . . . . . . 11
⊢ (((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) ∧ 𝑗 < 𝑖) → 𝑗 < 𝑖) |
46 | | elfzo2 13680 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (0..^𝑖) ↔ (𝑗 ∈ (ℤ≥‘0)
∧ 𝑖 ∈ ℤ
∧ 𝑗 < 𝑖)) |
47 | 43, 44, 45, 46 | syl3anbrc 1340 |
. . . . . . . . . 10
⊢ (((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) ∧ 𝑗 < 𝑖) → 𝑗 ∈ (0..^𝑖)) |
48 | 39, 40, 41, 47 | chnlt 32882 |
. . . . . . . . 9
⊢ (((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) ∧ 𝑗 < 𝑖) → (𝐶‘𝑗) < (𝐶‘𝑖)) |
49 | | simplr 767 |
. . . . . . . . 9
⊢ (((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) ∧ 𝑗 < 𝑖) → (𝐶‘𝑗) = 𝑦) |
50 | | simp-4r 782 |
. . . . . . . . 9
⊢ (((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) ∧ 𝑗 < 𝑖) → (𝐶‘𝑖) = 𝑥) |
51 | 48, 49, 50 | 3brtr3d 5174 |
. . . . . . . 8
⊢ (((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) ∧ 𝑗 < 𝑖) → 𝑦 < 𝑥) |
52 | 51 | ex 411 |
. . . . . . 7
⊢ ((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) → (𝑗 < 𝑖 → 𝑦 < 𝑥)) |
53 | 32, 38, 52 | 3orim123d 1441 |
. . . . . 6
⊢ ((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) → ((𝑖 < 𝑗 ∨ 𝑖 = 𝑗 ∨ 𝑗 < 𝑖) → (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥))) |
54 | 18, 53 | mpd 15 |
. . . . 5
⊢ ((((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑗) = 𝑦) → (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥)) |
55 | 6 | ffnd 6718 |
. . . . . . 7
⊢ (( < Po 𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) → 𝐶 Fn (0..^(♯‘𝐶))) |
56 | 55 | ad4antr 730 |
. . . . . 6
⊢ ((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) → 𝐶 Fn (0..^(♯‘𝐶))) |
57 | | simpllr 774 |
. . . . . 6
⊢ ((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) → 𝑦 ∈ ran 𝐶) |
58 | | fvelrnb 6952 |
. . . . . . 7
⊢ (𝐶 Fn (0..^(♯‘𝐶)) → (𝑦 ∈ ran 𝐶 ↔ ∃𝑗 ∈ (0..^(♯‘𝐶))(𝐶‘𝑗) = 𝑦)) |
59 | 58 | biimpa 475 |
. . . . . 6
⊢ ((𝐶 Fn (0..^(♯‘𝐶)) ∧ 𝑦 ∈ ran 𝐶) → ∃𝑗 ∈ (0..^(♯‘𝐶))(𝐶‘𝑗) = 𝑦) |
60 | 56, 57, 59 | syl2anc 582 |
. . . . 5
⊢ ((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) → ∃𝑗 ∈ (0..^(♯‘𝐶))(𝐶‘𝑗) = 𝑦) |
61 | 54, 60 | r19.29a 3152 |
. . . 4
⊢ ((((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶‘𝑖) = 𝑥) → (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥)) |
62 | 55 | ad2antrr 724 |
. . . . 5
⊢ ((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) → 𝐶 Fn (0..^(♯‘𝐶))) |
63 | | simplr 767 |
. . . . 5
⊢ ((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) → 𝑥 ∈ ran 𝐶) |
64 | | fvelrnb 6952 |
. . . . . 6
⊢ (𝐶 Fn (0..^(♯‘𝐶)) → (𝑥 ∈ ran 𝐶 ↔ ∃𝑖 ∈ (0..^(♯‘𝐶))(𝐶‘𝑖) = 𝑥)) |
65 | 64 | biimpa 475 |
. . . . 5
⊢ ((𝐶 Fn (0..^(♯‘𝐶)) ∧ 𝑥 ∈ ran 𝐶) → ∃𝑖 ∈ (0..^(♯‘𝐶))(𝐶‘𝑖) = 𝑥) |
66 | 62, 63, 65 | syl2anc 582 |
. . . 4
⊢ ((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) → ∃𝑖 ∈ (0..^(♯‘𝐶))(𝐶‘𝑖) = 𝑥) |
67 | 61, 66 | r19.29a 3152 |
. . 3
⊢ ((((
< Po
𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) → (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥)) |
68 | 67 | anasss 465 |
. 2
⊢ ((( < Po 𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) ∧ (𝑥 ∈ ran 𝐶 ∧ 𝑦 ∈ ran 𝐶)) → (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥)) |
69 | 10, 68 | issod 5617 |
1
⊢ (( < Po 𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) → < Or ran 𝐶) |