Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  chnso Structured version   Visualization version   GIF version

Theorem chnso 32947
Description: A chain induces a total order. (Contributed by Thierry Arnoux, 19-Jun-2025.)
Assertion
Ref Expression
chnso (( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) → < Or ran 𝐶)

Proof of Theorem chnso
Dummy variables 𝑥 𝑦 𝑖 𝑗 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2731 . . . . 5 (( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) → (♯‘𝐶) = (♯‘𝐶))
2 ischn 32939 . . . . . . . 8 (𝐶 ∈ ( < Chain𝐴) ↔ (𝐶 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶𝑛)))
32biimpi 216 . . . . . . 7 (𝐶 ∈ ( < Chain𝐴) → (𝐶 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶𝑛)))
43adantl 481 . . . . . 6 (( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) → (𝐶 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶𝑛)))
54simpld 494 . . . . 5 (( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) → 𝐶 ∈ Word 𝐴)
61, 5wrdfd 14491 . . . 4 (( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) → 𝐶:(0..^(♯‘𝐶))⟶𝐴)
76frnd 6699 . . 3 (( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) → ran 𝐶𝐴)
8 simpl 482 . . 3 (( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) → < Po 𝐴)
9 poss 5551 . . 3 (ran 𝐶𝐴 → ( < Po 𝐴< Po ran 𝐶))
107, 8, 9sylc 65 . 2 (( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) → < Po ran 𝐶)
11 fzossz 13647 . . . . . . . . 9 (0..^(♯‘𝐶)) ⊆ ℤ
12 simp-4r 783 . . . . . . . . 9 (((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) → 𝑖 ∈ (0..^(♯‘𝐶)))
1311, 12sselid 3947 . . . . . . . 8 (((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) → 𝑖 ∈ ℤ)
1413zred 12645 . . . . . . 7 (((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) → 𝑖 ∈ ℝ)
15 simplr 768 . . . . . . . . 9 (((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) → 𝑗 ∈ (0..^(♯‘𝐶)))
1611, 15sselid 3947 . . . . . . . 8 (((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) → 𝑗 ∈ ℤ)
1716zred 12645 . . . . . . 7 (((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) → 𝑗 ∈ ℝ)
1814, 17lttri4d 11322 . . . . . 6 (((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) → (𝑖 < 𝑗𝑖 = 𝑗𝑗 < 𝑖))
19 simp-8l 790 . . . . . . . . . 10 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑖 < 𝑗) → < Po 𝐴)
20 simp-8r 791 . . . . . . . . . 10 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑖 < 𝑗) → 𝐶 ∈ ( < Chain𝐴))
21 simpllr 775 . . . . . . . . . 10 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑖 < 𝑗) → 𝑗 ∈ (0..^(♯‘𝐶)))
22 elfzouz 13631 . . . . . . . . . . . 12 (𝑖 ∈ (0..^(♯‘𝐶)) → 𝑖 ∈ (ℤ‘0))
2322ad5antlr 735 . . . . . . . . . . 11 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑖 < 𝑗) → 𝑖 ∈ (ℤ‘0))
2416adantr 480 . . . . . . . . . . 11 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑖 < 𝑗) → 𝑗 ∈ ℤ)
25 simpr 484 . . . . . . . . . . 11 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑖 < 𝑗) → 𝑖 < 𝑗)
26 elfzo2 13630 . . . . . . . . . . 11 (𝑖 ∈ (0..^𝑗) ↔ (𝑖 ∈ (ℤ‘0) ∧ 𝑗 ∈ ℤ ∧ 𝑖 < 𝑗))
2723, 24, 25, 26syl3anbrc 1344 . . . . . . . . . 10 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑖 < 𝑗) → 𝑖 ∈ (0..^𝑗))
2819, 20, 21, 27chnlt 32946 . . . . . . . . 9 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑖 < 𝑗) → (𝐶𝑖) < (𝐶𝑗))
29 simp-4r 783 . . . . . . . . 9 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑖 < 𝑗) → (𝐶𝑖) = 𝑥)
30 simplr 768 . . . . . . . . 9 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑖 < 𝑗) → (𝐶𝑗) = 𝑦)
3128, 29, 303brtr3d 5141 . . . . . . . 8 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑖 < 𝑗) → 𝑥 < 𝑦)
3231ex 412 . . . . . . 7 (((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) → (𝑖 < 𝑗𝑥 < 𝑦))
33 simpr 484 . . . . . . . . . 10 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑖 = 𝑗) → 𝑖 = 𝑗)
3433fveq2d 6865 . . . . . . . . 9 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑖 = 𝑗) → (𝐶𝑖) = (𝐶𝑗))
35 simp-4r 783 . . . . . . . . 9 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑖 = 𝑗) → (𝐶𝑖) = 𝑥)
36 simplr 768 . . . . . . . . 9 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑖 = 𝑗) → (𝐶𝑗) = 𝑦)
3734, 35, 363eqtr3d 2773 . . . . . . . 8 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑖 = 𝑗) → 𝑥 = 𝑦)
3837ex 412 . . . . . . 7 (((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) → (𝑖 = 𝑗𝑥 = 𝑦))
39 simp-8l 790 . . . . . . . . . 10 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑗 < 𝑖) → < Po 𝐴)
40 simp-8r 791 . . . . . . . . . 10 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑗 < 𝑖) → 𝐶 ∈ ( < Chain𝐴))
4112adantr 480 . . . . . . . . . 10 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑗 < 𝑖) → 𝑖 ∈ (0..^(♯‘𝐶)))
42 elfzouz 13631 . . . . . . . . . . . 12 (𝑗 ∈ (0..^(♯‘𝐶)) → 𝑗 ∈ (ℤ‘0))
4342ad3antlr 731 . . . . . . . . . . 11 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑗 < 𝑖) → 𝑗 ∈ (ℤ‘0))
4413adantr 480 . . . . . . . . . . 11 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑗 < 𝑖) → 𝑖 ∈ ℤ)
45 simpr 484 . . . . . . . . . . 11 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑗 < 𝑖) → 𝑗 < 𝑖)
46 elfzo2 13630 . . . . . . . . . . 11 (𝑗 ∈ (0..^𝑖) ↔ (𝑗 ∈ (ℤ‘0) ∧ 𝑖 ∈ ℤ ∧ 𝑗 < 𝑖))
4743, 44, 45, 46syl3anbrc 1344 . . . . . . . . . 10 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑗 < 𝑖) → 𝑗 ∈ (0..^𝑖))
4839, 40, 41, 47chnlt 32946 . . . . . . . . 9 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑗 < 𝑖) → (𝐶𝑗) < (𝐶𝑖))
49 simplr 768 . . . . . . . . 9 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑗 < 𝑖) → (𝐶𝑗) = 𝑦)
50 simp-4r 783 . . . . . . . . 9 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑗 < 𝑖) → (𝐶𝑖) = 𝑥)
5148, 49, 503brtr3d 5141 . . . . . . . 8 ((((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) ∧ 𝑗 < 𝑖) → 𝑦 < 𝑥)
5251ex 412 . . . . . . 7 (((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) → (𝑗 < 𝑖𝑦 < 𝑥))
5332, 38, 523orim123d 1446 . . . . . 6 (((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) → ((𝑖 < 𝑗𝑖 = 𝑗𝑗 < 𝑖) → (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)))
5418, 53mpd 15 . . . . 5 (((((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) ∧ 𝑗 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑗) = 𝑦) → (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
556ffnd 6692 . . . . . . 7 (( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) → 𝐶 Fn (0..^(♯‘𝐶)))
5655ad4antr 732 . . . . . 6 (((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) → 𝐶 Fn (0..^(♯‘𝐶)))
57 simpllr 775 . . . . . 6 (((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) → 𝑦 ∈ ran 𝐶)
58 fvelrnb 6924 . . . . . . 7 (𝐶 Fn (0..^(♯‘𝐶)) → (𝑦 ∈ ran 𝐶 ↔ ∃𝑗 ∈ (0..^(♯‘𝐶))(𝐶𝑗) = 𝑦))
5958biimpa 476 . . . . . 6 ((𝐶 Fn (0..^(♯‘𝐶)) ∧ 𝑦 ∈ ran 𝐶) → ∃𝑗 ∈ (0..^(♯‘𝐶))(𝐶𝑗) = 𝑦)
6056, 57, 59syl2anc 584 . . . . 5 (((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) → ∃𝑗 ∈ (0..^(♯‘𝐶))(𝐶𝑗) = 𝑦)
6154, 60r19.29a 3142 . . . 4 (((((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) ∧ 𝑖 ∈ (0..^(♯‘𝐶))) ∧ (𝐶𝑖) = 𝑥) → (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
6255ad2antrr 726 . . . . 5 (((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) → 𝐶 Fn (0..^(♯‘𝐶)))
63 simplr 768 . . . . 5 (((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) → 𝑥 ∈ ran 𝐶)
64 fvelrnb 6924 . . . . . 6 (𝐶 Fn (0..^(♯‘𝐶)) → (𝑥 ∈ ran 𝐶 ↔ ∃𝑖 ∈ (0..^(♯‘𝐶))(𝐶𝑖) = 𝑥))
6564biimpa 476 . . . . 5 ((𝐶 Fn (0..^(♯‘𝐶)) ∧ 𝑥 ∈ ran 𝐶) → ∃𝑖 ∈ (0..^(♯‘𝐶))(𝐶𝑖) = 𝑥)
6662, 63, 65syl2anc 584 . . . 4 (((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) → ∃𝑖 ∈ (0..^(♯‘𝐶))(𝐶𝑖) = 𝑥)
6761, 66r19.29a 3142 . . 3 (((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ ran 𝐶) ∧ 𝑦 ∈ ran 𝐶) → (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
6867anasss 466 . 2 ((( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) ∧ (𝑥 ∈ ran 𝐶𝑦 ∈ ran 𝐶)) → (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
6910, 68issod 5584 1 (( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) → < Or ran 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085   = wceq 1540  wcel 2109  wral 3045  wrex 3054  cdif 3914  wss 3917  {csn 4592   class class class wbr 5110   Po wpo 5547   Or wor 5548  dom cdm 5641  ran crn 5642   Fn wfn 6509  cfv 6514  (class class class)co 7390  0cc0 11075  1c1 11076   < clt 11215  cmin 11412  cz 12536  cuz 12800  ..^cfzo 13622  chash 14302  Word cword 14485  Chaincchn 32937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-lsw 14535  df-concat 14543  df-s1 14568  df-substr 14613  df-pfx 14643  df-chn 32938
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator