MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnrmi Structured version   Visualization version   GIF version

Theorem cnrmi 23384
Description: A subspace of a completely normal space is normal. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
cnrmi ((𝐽 ∈ CNrm ∧ 𝐴𝑉) → (𝐽t 𝐴) ∈ Nrm)

Proof of Theorem cnrmi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . 3 𝐽 = 𝐽
21restin 23190 . 2 ((𝐽 ∈ CNrm ∧ 𝐴𝑉) → (𝐽t 𝐴) = (𝐽t (𝐴 𝐽)))
3 oveq2 7439 . . . 4 (𝑥 = (𝐴 𝐽) → (𝐽t 𝑥) = (𝐽t (𝐴 𝐽)))
43eleq1d 2824 . . 3 (𝑥 = (𝐴 𝐽) → ((𝐽t 𝑥) ∈ Nrm ↔ (𝐽t (𝐴 𝐽)) ∈ Nrm))
51iscnrm 23347 . . . . 5 (𝐽 ∈ CNrm ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝒫 𝐽(𝐽t 𝑥) ∈ Nrm))
65simprbi 496 . . . 4 (𝐽 ∈ CNrm → ∀𝑥 ∈ 𝒫 𝐽(𝐽t 𝑥) ∈ Nrm)
76adantr 480 . . 3 ((𝐽 ∈ CNrm ∧ 𝐴𝑉) → ∀𝑥 ∈ 𝒫 𝐽(𝐽t 𝑥) ∈ Nrm)
8 inss2 4246 . . . . 5 (𝐴 𝐽) ⊆ 𝐽
9 inex1g 5325 . . . . . 6 (𝐴𝑉 → (𝐴 𝐽) ∈ V)
10 elpwg 4608 . . . . . 6 ((𝐴 𝐽) ∈ V → ((𝐴 𝐽) ∈ 𝒫 𝐽 ↔ (𝐴 𝐽) ⊆ 𝐽))
119, 10syl 17 . . . . 5 (𝐴𝑉 → ((𝐴 𝐽) ∈ 𝒫 𝐽 ↔ (𝐴 𝐽) ⊆ 𝐽))
128, 11mpbiri 258 . . . 4 (𝐴𝑉 → (𝐴 𝐽) ∈ 𝒫 𝐽)
1312adantl 481 . . 3 ((𝐽 ∈ CNrm ∧ 𝐴𝑉) → (𝐴 𝐽) ∈ 𝒫 𝐽)
144, 7, 13rspcdva 3623 . 2 ((𝐽 ∈ CNrm ∧ 𝐴𝑉) → (𝐽t (𝐴 𝐽)) ∈ Nrm)
152, 14eqeltrd 2839 1 ((𝐽 ∈ CNrm ∧ 𝐴𝑉) → (𝐽t 𝐴) ∈ Nrm)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  Vcvv 3478  cin 3962  wss 3963  𝒫 cpw 4605   cuni 4912  (class class class)co 7431  t crest 17467  Topctop 22915  Nrmcnrm 23334  CNrmccnrm 23335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-rest 17469  df-cnrm 23342
This theorem is referenced by:  cnrmnrm  23385  restcnrm  23386
  Copyright terms: Public domain W3C validator