Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnrmi | Structured version Visualization version GIF version |
Description: A subspace of a completely normal space is normal. (Contributed by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
cnrmi | ⊢ ((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ Nrm) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | restin 22317 | . 2 ⊢ ((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) = (𝐽 ↾t (𝐴 ∩ ∪ 𝐽))) |
3 | oveq2 7283 | . . . 4 ⊢ (𝑥 = (𝐴 ∩ ∪ 𝐽) → (𝐽 ↾t 𝑥) = (𝐽 ↾t (𝐴 ∩ ∪ 𝐽))) | |
4 | 3 | eleq1d 2823 | . . 3 ⊢ (𝑥 = (𝐴 ∩ ∪ 𝐽) → ((𝐽 ↾t 𝑥) ∈ Nrm ↔ (𝐽 ↾t (𝐴 ∩ ∪ 𝐽)) ∈ Nrm)) |
5 | 1 | iscnrm 22474 | . . . . 5 ⊢ (𝐽 ∈ CNrm ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝒫 ∪ 𝐽(𝐽 ↾t 𝑥) ∈ Nrm)) |
6 | 5 | simprbi 497 | . . . 4 ⊢ (𝐽 ∈ CNrm → ∀𝑥 ∈ 𝒫 ∪ 𝐽(𝐽 ↾t 𝑥) ∈ Nrm) |
7 | 6 | adantr 481 | . . 3 ⊢ ((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) → ∀𝑥 ∈ 𝒫 ∪ 𝐽(𝐽 ↾t 𝑥) ∈ Nrm) |
8 | inss2 4163 | . . . . 5 ⊢ (𝐴 ∩ ∪ 𝐽) ⊆ ∪ 𝐽 | |
9 | inex1g 5243 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ ∪ 𝐽) ∈ V) | |
10 | elpwg 4536 | . . . . . 6 ⊢ ((𝐴 ∩ ∪ 𝐽) ∈ V → ((𝐴 ∩ ∪ 𝐽) ∈ 𝒫 ∪ 𝐽 ↔ (𝐴 ∩ ∪ 𝐽) ⊆ ∪ 𝐽)) | |
11 | 9, 10 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → ((𝐴 ∩ ∪ 𝐽) ∈ 𝒫 ∪ 𝐽 ↔ (𝐴 ∩ ∪ 𝐽) ⊆ ∪ 𝐽)) |
12 | 8, 11 | mpbiri 257 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ ∪ 𝐽) ∈ 𝒫 ∪ 𝐽) |
13 | 12 | adantl 482 | . . 3 ⊢ ((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ ∪ 𝐽) ∈ 𝒫 ∪ 𝐽) |
14 | 4, 7, 13 | rspcdva 3562 | . 2 ⊢ ((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t (𝐴 ∩ ∪ 𝐽)) ∈ Nrm) |
15 | 2, 14 | eqeltrd 2839 | 1 ⊢ ((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ Nrm) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 Vcvv 3432 ∩ cin 3886 ⊆ wss 3887 𝒫 cpw 4533 ∪ cuni 4839 (class class class)co 7275 ↾t crest 17131 Topctop 22042 Nrmcnrm 22461 CNrmccnrm 22462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-rest 17133 df-cnrm 22469 |
This theorem is referenced by: cnrmnrm 22512 restcnrm 22513 |
Copyright terms: Public domain | W3C validator |