MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnrmi Structured version   Visualization version   GIF version

Theorem cnrmi 23280
Description: A subspace of a completely normal space is normal. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
cnrmi ((𝐽 ∈ CNrm ∧ 𝐴𝑉) → (𝐽t 𝐴) ∈ Nrm)

Proof of Theorem cnrmi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 𝐽 = 𝐽
21restin 23086 . 2 ((𝐽 ∈ CNrm ∧ 𝐴𝑉) → (𝐽t 𝐴) = (𝐽t (𝐴 𝐽)))
3 oveq2 7377 . . . 4 (𝑥 = (𝐴 𝐽) → (𝐽t 𝑥) = (𝐽t (𝐴 𝐽)))
43eleq1d 2813 . . 3 (𝑥 = (𝐴 𝐽) → ((𝐽t 𝑥) ∈ Nrm ↔ (𝐽t (𝐴 𝐽)) ∈ Nrm))
51iscnrm 23243 . . . . 5 (𝐽 ∈ CNrm ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝒫 𝐽(𝐽t 𝑥) ∈ Nrm))
65simprbi 496 . . . 4 (𝐽 ∈ CNrm → ∀𝑥 ∈ 𝒫 𝐽(𝐽t 𝑥) ∈ Nrm)
76adantr 480 . . 3 ((𝐽 ∈ CNrm ∧ 𝐴𝑉) → ∀𝑥 ∈ 𝒫 𝐽(𝐽t 𝑥) ∈ Nrm)
8 inss2 4197 . . . . 5 (𝐴 𝐽) ⊆ 𝐽
9 inex1g 5269 . . . . . 6 (𝐴𝑉 → (𝐴 𝐽) ∈ V)
10 elpwg 4562 . . . . . 6 ((𝐴 𝐽) ∈ V → ((𝐴 𝐽) ∈ 𝒫 𝐽 ↔ (𝐴 𝐽) ⊆ 𝐽))
119, 10syl 17 . . . . 5 (𝐴𝑉 → ((𝐴 𝐽) ∈ 𝒫 𝐽 ↔ (𝐴 𝐽) ⊆ 𝐽))
128, 11mpbiri 258 . . . 4 (𝐴𝑉 → (𝐴 𝐽) ∈ 𝒫 𝐽)
1312adantl 481 . . 3 ((𝐽 ∈ CNrm ∧ 𝐴𝑉) → (𝐴 𝐽) ∈ 𝒫 𝐽)
144, 7, 13rspcdva 3586 . 2 ((𝐽 ∈ CNrm ∧ 𝐴𝑉) → (𝐽t (𝐴 𝐽)) ∈ Nrm)
152, 14eqeltrd 2828 1 ((𝐽 ∈ CNrm ∧ 𝐴𝑉) → (𝐽t 𝐴) ∈ Nrm)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3444  cin 3910  wss 3911  𝒫 cpw 4559   cuni 4867  (class class class)co 7369  t crest 17359  Topctop 22813  Nrmcnrm 23230  CNrmccnrm 23231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-rest 17361  df-cnrm 23238
This theorem is referenced by:  cnrmnrm  23281  restcnrm  23282
  Copyright terms: Public domain W3C validator