![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnrmi | Structured version Visualization version GIF version |
Description: A subspace of a completely normal space is normal. (Contributed by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
cnrmi | ⊢ ((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ Nrm) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | restin 23195 | . 2 ⊢ ((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) = (𝐽 ↾t (𝐴 ∩ ∪ 𝐽))) |
3 | oveq2 7456 | . . . 4 ⊢ (𝑥 = (𝐴 ∩ ∪ 𝐽) → (𝐽 ↾t 𝑥) = (𝐽 ↾t (𝐴 ∩ ∪ 𝐽))) | |
4 | 3 | eleq1d 2829 | . . 3 ⊢ (𝑥 = (𝐴 ∩ ∪ 𝐽) → ((𝐽 ↾t 𝑥) ∈ Nrm ↔ (𝐽 ↾t (𝐴 ∩ ∪ 𝐽)) ∈ Nrm)) |
5 | 1 | iscnrm 23352 | . . . . 5 ⊢ (𝐽 ∈ CNrm ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝒫 ∪ 𝐽(𝐽 ↾t 𝑥) ∈ Nrm)) |
6 | 5 | simprbi 496 | . . . 4 ⊢ (𝐽 ∈ CNrm → ∀𝑥 ∈ 𝒫 ∪ 𝐽(𝐽 ↾t 𝑥) ∈ Nrm) |
7 | 6 | adantr 480 | . . 3 ⊢ ((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) → ∀𝑥 ∈ 𝒫 ∪ 𝐽(𝐽 ↾t 𝑥) ∈ Nrm) |
8 | inss2 4259 | . . . . 5 ⊢ (𝐴 ∩ ∪ 𝐽) ⊆ ∪ 𝐽 | |
9 | inex1g 5337 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ ∪ 𝐽) ∈ V) | |
10 | elpwg 4625 | . . . . . 6 ⊢ ((𝐴 ∩ ∪ 𝐽) ∈ V → ((𝐴 ∩ ∪ 𝐽) ∈ 𝒫 ∪ 𝐽 ↔ (𝐴 ∩ ∪ 𝐽) ⊆ ∪ 𝐽)) | |
11 | 9, 10 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → ((𝐴 ∩ ∪ 𝐽) ∈ 𝒫 ∪ 𝐽 ↔ (𝐴 ∩ ∪ 𝐽) ⊆ ∪ 𝐽)) |
12 | 8, 11 | mpbiri 258 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ ∪ 𝐽) ∈ 𝒫 ∪ 𝐽) |
13 | 12 | adantl 481 | . . 3 ⊢ ((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ ∪ 𝐽) ∈ 𝒫 ∪ 𝐽) |
14 | 4, 7, 13 | rspcdva 3636 | . 2 ⊢ ((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t (𝐴 ∩ ∪ 𝐽)) ∈ Nrm) |
15 | 2, 14 | eqeltrd 2844 | 1 ⊢ ((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ Nrm) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 ∩ cin 3975 ⊆ wss 3976 𝒫 cpw 4622 ∪ cuni 4931 (class class class)co 7448 ↾t crest 17480 Topctop 22920 Nrmcnrm 23339 CNrmccnrm 23340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-rest 17482 df-cnrm 23347 |
This theorem is referenced by: cnrmnrm 23390 restcnrm 23391 |
Copyright terms: Public domain | W3C validator |