MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnrmi Structured version   Visualization version   GIF version

Theorem cnrmi 23389
Description: A subspace of a completely normal space is normal. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
cnrmi ((𝐽 ∈ CNrm ∧ 𝐴𝑉) → (𝐽t 𝐴) ∈ Nrm)

Proof of Theorem cnrmi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . 3 𝐽 = 𝐽
21restin 23195 . 2 ((𝐽 ∈ CNrm ∧ 𝐴𝑉) → (𝐽t 𝐴) = (𝐽t (𝐴 𝐽)))
3 oveq2 7456 . . . 4 (𝑥 = (𝐴 𝐽) → (𝐽t 𝑥) = (𝐽t (𝐴 𝐽)))
43eleq1d 2829 . . 3 (𝑥 = (𝐴 𝐽) → ((𝐽t 𝑥) ∈ Nrm ↔ (𝐽t (𝐴 𝐽)) ∈ Nrm))
51iscnrm 23352 . . . . 5 (𝐽 ∈ CNrm ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝒫 𝐽(𝐽t 𝑥) ∈ Nrm))
65simprbi 496 . . . 4 (𝐽 ∈ CNrm → ∀𝑥 ∈ 𝒫 𝐽(𝐽t 𝑥) ∈ Nrm)
76adantr 480 . . 3 ((𝐽 ∈ CNrm ∧ 𝐴𝑉) → ∀𝑥 ∈ 𝒫 𝐽(𝐽t 𝑥) ∈ Nrm)
8 inss2 4259 . . . . 5 (𝐴 𝐽) ⊆ 𝐽
9 inex1g 5337 . . . . . 6 (𝐴𝑉 → (𝐴 𝐽) ∈ V)
10 elpwg 4625 . . . . . 6 ((𝐴 𝐽) ∈ V → ((𝐴 𝐽) ∈ 𝒫 𝐽 ↔ (𝐴 𝐽) ⊆ 𝐽))
119, 10syl 17 . . . . 5 (𝐴𝑉 → ((𝐴 𝐽) ∈ 𝒫 𝐽 ↔ (𝐴 𝐽) ⊆ 𝐽))
128, 11mpbiri 258 . . . 4 (𝐴𝑉 → (𝐴 𝐽) ∈ 𝒫 𝐽)
1312adantl 481 . . 3 ((𝐽 ∈ CNrm ∧ 𝐴𝑉) → (𝐴 𝐽) ∈ 𝒫 𝐽)
144, 7, 13rspcdva 3636 . 2 ((𝐽 ∈ CNrm ∧ 𝐴𝑉) → (𝐽t (𝐴 𝐽)) ∈ Nrm)
152, 14eqeltrd 2844 1 ((𝐽 ∈ CNrm ∧ 𝐴𝑉) → (𝐽t 𝐴) ∈ Nrm)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  cin 3975  wss 3976  𝒫 cpw 4622   cuni 4931  (class class class)co 7448  t crest 17480  Topctop 22920  Nrmcnrm 23339  CNrmccnrm 23340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-rest 17482  df-cnrm 23347
This theorem is referenced by:  cnrmnrm  23390  restcnrm  23391
  Copyright terms: Public domain W3C validator