![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnrmi | Structured version Visualization version GIF version |
Description: A subspace of a completely normal space is normal. (Contributed by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
cnrmi | ⊢ ((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ Nrm) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2727 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | restin 23063 | . 2 ⊢ ((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) = (𝐽 ↾t (𝐴 ∩ ∪ 𝐽))) |
3 | oveq2 7422 | . . . 4 ⊢ (𝑥 = (𝐴 ∩ ∪ 𝐽) → (𝐽 ↾t 𝑥) = (𝐽 ↾t (𝐴 ∩ ∪ 𝐽))) | |
4 | 3 | eleq1d 2813 | . . 3 ⊢ (𝑥 = (𝐴 ∩ ∪ 𝐽) → ((𝐽 ↾t 𝑥) ∈ Nrm ↔ (𝐽 ↾t (𝐴 ∩ ∪ 𝐽)) ∈ Nrm)) |
5 | 1 | iscnrm 23220 | . . . . 5 ⊢ (𝐽 ∈ CNrm ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝒫 ∪ 𝐽(𝐽 ↾t 𝑥) ∈ Nrm)) |
6 | 5 | simprbi 496 | . . . 4 ⊢ (𝐽 ∈ CNrm → ∀𝑥 ∈ 𝒫 ∪ 𝐽(𝐽 ↾t 𝑥) ∈ Nrm) |
7 | 6 | adantr 480 | . . 3 ⊢ ((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) → ∀𝑥 ∈ 𝒫 ∪ 𝐽(𝐽 ↾t 𝑥) ∈ Nrm) |
8 | inss2 4225 | . . . . 5 ⊢ (𝐴 ∩ ∪ 𝐽) ⊆ ∪ 𝐽 | |
9 | inex1g 5313 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ ∪ 𝐽) ∈ V) | |
10 | elpwg 4601 | . . . . . 6 ⊢ ((𝐴 ∩ ∪ 𝐽) ∈ V → ((𝐴 ∩ ∪ 𝐽) ∈ 𝒫 ∪ 𝐽 ↔ (𝐴 ∩ ∪ 𝐽) ⊆ ∪ 𝐽)) | |
11 | 9, 10 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → ((𝐴 ∩ ∪ 𝐽) ∈ 𝒫 ∪ 𝐽 ↔ (𝐴 ∩ ∪ 𝐽) ⊆ ∪ 𝐽)) |
12 | 8, 11 | mpbiri 258 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ ∪ 𝐽) ∈ 𝒫 ∪ 𝐽) |
13 | 12 | adantl 481 | . . 3 ⊢ ((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ ∪ 𝐽) ∈ 𝒫 ∪ 𝐽) |
14 | 4, 7, 13 | rspcdva 3608 | . 2 ⊢ ((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t (𝐴 ∩ ∪ 𝐽)) ∈ Nrm) |
15 | 2, 14 | eqeltrd 2828 | 1 ⊢ ((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ Nrm) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∀wral 3056 Vcvv 3469 ∩ cin 3943 ⊆ wss 3944 𝒫 cpw 4598 ∪ cuni 4903 (class class class)co 7414 ↾t crest 17395 Topctop 22788 Nrmcnrm 23207 CNrmccnrm 23208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-rest 17397 df-cnrm 23215 |
This theorem is referenced by: cnrmnrm 23258 restcnrm 23259 |
Copyright terms: Public domain | W3C validator |