MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnrmi Structured version   Visualization version   GIF version

Theorem cnrmi 23303
Description: A subspace of a completely normal space is normal. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
cnrmi ((𝐽 ∈ CNrm ∧ 𝐴𝑉) → (𝐽t 𝐴) ∈ Nrm)

Proof of Theorem cnrmi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . 3 𝐽 = 𝐽
21restin 23109 . 2 ((𝐽 ∈ CNrm ∧ 𝐴𝑉) → (𝐽t 𝐴) = (𝐽t (𝐴 𝐽)))
3 oveq2 7418 . . . 4 (𝑥 = (𝐴 𝐽) → (𝐽t 𝑥) = (𝐽t (𝐴 𝐽)))
43eleq1d 2820 . . 3 (𝑥 = (𝐴 𝐽) → ((𝐽t 𝑥) ∈ Nrm ↔ (𝐽t (𝐴 𝐽)) ∈ Nrm))
51iscnrm 23266 . . . . 5 (𝐽 ∈ CNrm ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝒫 𝐽(𝐽t 𝑥) ∈ Nrm))
65simprbi 496 . . . 4 (𝐽 ∈ CNrm → ∀𝑥 ∈ 𝒫 𝐽(𝐽t 𝑥) ∈ Nrm)
76adantr 480 . . 3 ((𝐽 ∈ CNrm ∧ 𝐴𝑉) → ∀𝑥 ∈ 𝒫 𝐽(𝐽t 𝑥) ∈ Nrm)
8 inss2 4218 . . . . 5 (𝐴 𝐽) ⊆ 𝐽
9 inex1g 5294 . . . . . 6 (𝐴𝑉 → (𝐴 𝐽) ∈ V)
10 elpwg 4583 . . . . . 6 ((𝐴 𝐽) ∈ V → ((𝐴 𝐽) ∈ 𝒫 𝐽 ↔ (𝐴 𝐽) ⊆ 𝐽))
119, 10syl 17 . . . . 5 (𝐴𝑉 → ((𝐴 𝐽) ∈ 𝒫 𝐽 ↔ (𝐴 𝐽) ⊆ 𝐽))
128, 11mpbiri 258 . . . 4 (𝐴𝑉 → (𝐴 𝐽) ∈ 𝒫 𝐽)
1312adantl 481 . . 3 ((𝐽 ∈ CNrm ∧ 𝐴𝑉) → (𝐴 𝐽) ∈ 𝒫 𝐽)
144, 7, 13rspcdva 3607 . 2 ((𝐽 ∈ CNrm ∧ 𝐴𝑉) → (𝐽t (𝐴 𝐽)) ∈ Nrm)
152, 14eqeltrd 2835 1 ((𝐽 ∈ CNrm ∧ 𝐴𝑉) → (𝐽t 𝐴) ∈ Nrm)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052  Vcvv 3464  cin 3930  wss 3931  𝒫 cpw 4580   cuni 4888  (class class class)co 7410  t crest 17439  Topctop 22836  Nrmcnrm 23253  CNrmccnrm 23254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-rest 17441  df-cnrm 23261
This theorem is referenced by:  cnrmnrm  23304  restcnrm  23305
  Copyright terms: Public domain W3C validator