![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnrmi | Structured version Visualization version GIF version |
Description: A subspace of a completely normal space is normal. (Contributed by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
cnrmi | ⊢ ((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ Nrm) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | restin 22669 | . 2 ⊢ ((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) = (𝐽 ↾t (𝐴 ∩ ∪ 𝐽))) |
3 | oveq2 7416 | . . . 4 ⊢ (𝑥 = (𝐴 ∩ ∪ 𝐽) → (𝐽 ↾t 𝑥) = (𝐽 ↾t (𝐴 ∩ ∪ 𝐽))) | |
4 | 3 | eleq1d 2818 | . . 3 ⊢ (𝑥 = (𝐴 ∩ ∪ 𝐽) → ((𝐽 ↾t 𝑥) ∈ Nrm ↔ (𝐽 ↾t (𝐴 ∩ ∪ 𝐽)) ∈ Nrm)) |
5 | 1 | iscnrm 22826 | . . . . 5 ⊢ (𝐽 ∈ CNrm ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝒫 ∪ 𝐽(𝐽 ↾t 𝑥) ∈ Nrm)) |
6 | 5 | simprbi 497 | . . . 4 ⊢ (𝐽 ∈ CNrm → ∀𝑥 ∈ 𝒫 ∪ 𝐽(𝐽 ↾t 𝑥) ∈ Nrm) |
7 | 6 | adantr 481 | . . 3 ⊢ ((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) → ∀𝑥 ∈ 𝒫 ∪ 𝐽(𝐽 ↾t 𝑥) ∈ Nrm) |
8 | inss2 4229 | . . . . 5 ⊢ (𝐴 ∩ ∪ 𝐽) ⊆ ∪ 𝐽 | |
9 | inex1g 5319 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ ∪ 𝐽) ∈ V) | |
10 | elpwg 4605 | . . . . . 6 ⊢ ((𝐴 ∩ ∪ 𝐽) ∈ V → ((𝐴 ∩ ∪ 𝐽) ∈ 𝒫 ∪ 𝐽 ↔ (𝐴 ∩ ∪ 𝐽) ⊆ ∪ 𝐽)) | |
11 | 9, 10 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → ((𝐴 ∩ ∪ 𝐽) ∈ 𝒫 ∪ 𝐽 ↔ (𝐴 ∩ ∪ 𝐽) ⊆ ∪ 𝐽)) |
12 | 8, 11 | mpbiri 257 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ ∪ 𝐽) ∈ 𝒫 ∪ 𝐽) |
13 | 12 | adantl 482 | . . 3 ⊢ ((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ ∪ 𝐽) ∈ 𝒫 ∪ 𝐽) |
14 | 4, 7, 13 | rspcdva 3613 | . 2 ⊢ ((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t (𝐴 ∩ ∪ 𝐽)) ∈ Nrm) |
15 | 2, 14 | eqeltrd 2833 | 1 ⊢ ((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ Nrm) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3061 Vcvv 3474 ∩ cin 3947 ⊆ wss 3948 𝒫 cpw 4602 ∪ cuni 4908 (class class class)co 7408 ↾t crest 17365 Topctop 22394 Nrmcnrm 22813 CNrmccnrm 22814 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-rest 17367 df-cnrm 22821 |
This theorem is referenced by: cnrmnrm 22864 restcnrm 22865 |
Copyright terms: Public domain | W3C validator |