MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscyggen Structured version   Visualization version   GIF version

Theorem iscyggen 19480
Description: The property of being a cyclic generator for a group. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
iscyg.1 𝐵 = (Base‘𝐺)
iscyg.2 · = (.g𝐺)
iscyg3.e 𝐸 = {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵}
Assertion
Ref Expression
iscyggen (𝑋𝐸 ↔ (𝑋𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵))
Distinct variable groups:   𝑥,𝑛,𝐵   𝑛,𝑋,𝑥   𝑛,𝐺,𝑥   · ,𝑛,𝑥
Allowed substitution hints:   𝐸(𝑥,𝑛)

Proof of Theorem iscyggen
StepHypRef Expression
1 simpl 483 . . . . . 6 ((𝑥 = 𝑋𝑛 ∈ ℤ) → 𝑥 = 𝑋)
21oveq2d 7291 . . . . 5 ((𝑥 = 𝑋𝑛 ∈ ℤ) → (𝑛 · 𝑥) = (𝑛 · 𝑋))
32mpteq2dva 5174 . . . 4 (𝑥 = 𝑋 → (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)))
43rneqd 5847 . . 3 (𝑥 = 𝑋 → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)))
54eqeq1d 2740 . 2 (𝑥 = 𝑋 → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵 ↔ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵))
6 iscyg3.e . 2 𝐸 = {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵}
75, 6elrab2 3627 1 (𝑋𝐸 ↔ (𝑋𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wcel 2106  {crab 3068  cmpt 5157  ran crn 5590  cfv 6433  (class class class)co 7275  cz 12319  Basecbs 16912  .gcmg 18700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-cnv 5597  df-dm 5599  df-rn 5600  df-iota 6391  df-fv 6441  df-ov 7278
This theorem is referenced by:  iscyggen2  19481  cyggenod  19484  cyggenod2  19485  cygznlem1  20774  cygznlem3  20777
  Copyright terms: Public domain W3C validator