Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscyggen Structured version   Visualization version   GIF version

Theorem iscyggen 18996
 Description: The property of being a cyclic generator for a group. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
iscyg.1 𝐵 = (Base‘𝐺)
iscyg.2 · = (.g𝐺)
iscyg3.e 𝐸 = {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵}
Assertion
Ref Expression
iscyggen (𝑋𝐸 ↔ (𝑋𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵))
Distinct variable groups:   𝑥,𝑛,𝐵   𝑛,𝑋,𝑥   𝑛,𝐺,𝑥   · ,𝑛,𝑥
Allowed substitution hints:   𝐸(𝑥,𝑛)

Proof of Theorem iscyggen
StepHypRef Expression
1 simpl 486 . . . . . 6 ((𝑥 = 𝑋𝑛 ∈ ℤ) → 𝑥 = 𝑋)
21oveq2d 7155 . . . . 5 ((𝑥 = 𝑋𝑛 ∈ ℤ) → (𝑛 · 𝑥) = (𝑛 · 𝑋))
32mpteq2dva 5128 . . . 4 (𝑥 = 𝑋 → (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)))
43rneqd 5776 . . 3 (𝑥 = 𝑋 → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)))
54eqeq1d 2803 . 2 (𝑥 = 𝑋 → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵 ↔ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵))
6 iscyg3.e . 2 𝐸 = {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵}
75, 6elrab2 3634 1 (𝑋𝐸 ↔ (𝑋𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2112  {crab 3113   ↦ cmpt 5113  ran crn 5524  ‘cfv 6328  (class class class)co 7139  ℤcz 11973  Basecbs 16479  .gcmg 18220 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ral 3114  df-rab 3118  df-v 3446  df-un 3889  df-in 3891  df-ss 3901  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-br 5034  df-opab 5096  df-mpt 5114  df-cnv 5531  df-dm 5533  df-rn 5534  df-iota 6287  df-fv 6336  df-ov 7142 This theorem is referenced by:  iscyggen2  18997  cyggenod  19000  cyggenod2  19001  cygznlem1  20262  cygznlem3  20265
 Copyright terms: Public domain W3C validator