![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscyggen | Structured version Visualization version GIF version |
Description: The property of being a cyclic generator for a group. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
iscyg.1 | ⊢ 𝐵 = (Base‘𝐺) |
iscyg.2 | ⊢ · = (.g‘𝐺) |
iscyg3.e | ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} |
Ref | Expression |
---|---|
iscyggen | ⊢ (𝑋 ∈ 𝐸 ↔ (𝑋 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . . . 6 ⊢ ((𝑥 = 𝑋 ∧ 𝑛 ∈ ℤ) → 𝑥 = 𝑋) | |
2 | 1 | oveq2d 7447 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑛 ∈ ℤ) → (𝑛 · 𝑥) = (𝑛 · 𝑋)) |
3 | 2 | mpteq2dva 5248 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))) |
4 | 3 | rneqd 5952 | . . 3 ⊢ (𝑥 = 𝑋 → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))) |
5 | 4 | eqeq1d 2737 | . 2 ⊢ (𝑥 = 𝑋 → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵 ↔ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵)) |
6 | iscyg3.e | . 2 ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} | |
7 | 5, 6 | elrab2 3698 | 1 ⊢ (𝑋 ∈ 𝐸 ↔ (𝑋 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {crab 3433 ↦ cmpt 5231 ran crn 5690 ‘cfv 6563 (class class class)co 7431 ℤcz 12611 Basecbs 17245 .gcmg 19098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-cnv 5697 df-dm 5699 df-rn 5700 df-iota 6516 df-fv 6571 df-ov 7434 |
This theorem is referenced by: iscyggen2 19914 cyggenod 19917 cyggenod2 19918 cygznlem1 21603 cygznlem3 21606 |
Copyright terms: Public domain | W3C validator |