| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iscyggen | Structured version Visualization version GIF version | ||
| Description: The property of being a cyclic generator for a group. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| Ref | Expression |
|---|---|
| iscyg.1 | ⊢ 𝐵 = (Base‘𝐺) |
| iscyg.2 | ⊢ · = (.g‘𝐺) |
| iscyg3.e | ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} |
| Ref | Expression |
|---|---|
| iscyggen | ⊢ (𝑋 ∈ 𝐸 ↔ (𝑋 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . . . 6 ⊢ ((𝑥 = 𝑋 ∧ 𝑛 ∈ ℤ) → 𝑥 = 𝑋) | |
| 2 | 1 | oveq2d 7403 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑛 ∈ ℤ) → (𝑛 · 𝑥) = (𝑛 · 𝑋)) |
| 3 | 2 | mpteq2dva 5200 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))) |
| 4 | 3 | rneqd 5902 | . . 3 ⊢ (𝑥 = 𝑋 → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))) |
| 5 | 4 | eqeq1d 2731 | . 2 ⊢ (𝑥 = 𝑋 → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵 ↔ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵)) |
| 6 | iscyg3.e | . 2 ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} | |
| 7 | 5, 6 | elrab2 3662 | 1 ⊢ (𝑋 ∈ 𝐸 ↔ (𝑋 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3405 ↦ cmpt 5188 ran crn 5639 ‘cfv 6511 (class class class)co 7387 ℤcz 12529 Basecbs 17179 .gcmg 18999 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-cnv 5646 df-dm 5648 df-rn 5649 df-iota 6464 df-fv 6519 df-ov 7390 |
| This theorem is referenced by: iscyggen2 19811 cyggenod 19814 cyggenod2 19815 cygznlem1 21476 cygznlem3 21479 |
| Copyright terms: Public domain | W3C validator |