MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cygznlem1 Structured version   Visualization version   GIF version

Theorem cygznlem1 20265
Description: Lemma for cygzn 20269. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
cygzn.b 𝐵 = (Base‘𝐺)
cygzn.n 𝑁 = if(𝐵 ∈ Fin, (♯‘𝐵), 0)
cygzn.y 𝑌 = (ℤ/nℤ‘𝑁)
cygzn.m · = (.g𝐺)
cygzn.l 𝐿 = (ℤRHom‘𝑌)
cygzn.e 𝐸 = {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵}
cygzn.g (𝜑𝐺 ∈ CycGrp)
cygzn.x (𝜑𝑋𝐸)
Assertion
Ref Expression
cygznlem1 ((𝜑 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((𝐿𝐾) = (𝐿𝑀) ↔ (𝐾 · 𝑋) = (𝑀 · 𝑋)))
Distinct variable groups:   𝑥,𝑛,𝐵   𝑛,𝐺,𝑥   · ,𝑛,𝑥   𝑛,𝑌,𝑥   𝑛,𝐿,𝑥   𝑥,𝑁   𝑛,𝑋,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝐸(𝑥,𝑛)   𝐾(𝑥,𝑛)   𝑀(𝑥,𝑛)   𝑁(𝑛)

Proof of Theorem cygznlem1
StepHypRef Expression
1 cygzn.n . . . . 5 𝑁 = if(𝐵 ∈ Fin, (♯‘𝐵), 0)
2 hashcl 13722 . . . . . . 7 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
32adantl 485 . . . . . 6 ((𝜑𝐵 ∈ Fin) → (♯‘𝐵) ∈ ℕ0)
4 0nn0 11909 . . . . . . 7 0 ∈ ℕ0
54a1i 11 . . . . . 6 ((𝜑 ∧ ¬ 𝐵 ∈ Fin) → 0 ∈ ℕ0)
63, 5ifclda 4484 . . . . 5 (𝜑 → if(𝐵 ∈ Fin, (♯‘𝐵), 0) ∈ ℕ0)
71, 6eqeltrid 2920 . . . 4 (𝜑𝑁 ∈ ℕ0)
87adantr 484 . . 3 ((𝜑 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝑁 ∈ ℕ0)
9 simprl 770 . . 3 ((𝜑 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝐾 ∈ ℤ)
10 simprr 772 . . 3 ((𝜑 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝑀 ∈ ℤ)
11 cygzn.y . . . 4 𝑌 = (ℤ/nℤ‘𝑁)
12 cygzn.l . . . 4 𝐿 = (ℤRHom‘𝑌)
1311, 12zndvds 20248 . . 3 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝐿𝐾) = (𝐿𝑀) ↔ 𝑁 ∥ (𝐾𝑀)))
148, 9, 10, 13syl3anc 1368 . 2 ((𝜑 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((𝐿𝐾) = (𝐿𝑀) ↔ 𝑁 ∥ (𝐾𝑀)))
15 cygzn.g . . . . . . 7 (𝜑𝐺 ∈ CycGrp)
16 cyggrp 19009 . . . . . . 7 (𝐺 ∈ CycGrp → 𝐺 ∈ Grp)
1715, 16syl 17 . . . . . 6 (𝜑𝐺 ∈ Grp)
18 cygzn.x . . . . . 6 (𝜑𝑋𝐸)
19 cygzn.b . . . . . . 7 𝐵 = (Base‘𝐺)
20 cygzn.m . . . . . . 7 · = (.g𝐺)
21 cygzn.e . . . . . . 7 𝐸 = {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵}
22 eqid 2824 . . . . . . 7 (od‘𝐺) = (od‘𝐺)
2319, 20, 21, 22cyggenod2 19004 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐸) → ((od‘𝐺)‘𝑋) = if(𝐵 ∈ Fin, (♯‘𝐵), 0))
2417, 18, 23syl2anc 587 . . . . 5 (𝜑 → ((od‘𝐺)‘𝑋) = if(𝐵 ∈ Fin, (♯‘𝐵), 0))
2524, 1eqtr4di 2877 . . . 4 (𝜑 → ((od‘𝐺)‘𝑋) = 𝑁)
2625adantr 484 . . 3 ((𝜑 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((od‘𝐺)‘𝑋) = 𝑁)
2726breq1d 5062 . 2 ((𝜑 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (((od‘𝐺)‘𝑋) ∥ (𝐾𝑀) ↔ 𝑁 ∥ (𝐾𝑀)))
2817adantr 484 . . 3 ((𝜑 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝐺 ∈ Grp)
2919, 20, 21iscyggen 18999 . . . . . 6 (𝑋𝐸 ↔ (𝑋𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵))
3029simplbi 501 . . . . 5 (𝑋𝐸𝑋𝐵)
3118, 30syl 17 . . . 4 (𝜑𝑋𝐵)
3231adantr 484 . . 3 ((𝜑 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝑋𝐵)
33 eqid 2824 . . . 4 (0g𝐺) = (0g𝐺)
3419, 22, 20, 33odcong 18677 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (((od‘𝐺)‘𝑋) ∥ (𝐾𝑀) ↔ (𝐾 · 𝑋) = (𝑀 · 𝑋)))
3528, 32, 9, 10, 34syl112anc 1371 . 2 ((𝜑 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (((od‘𝐺)‘𝑋) ∥ (𝐾𝑀) ↔ (𝐾 · 𝑋) = (𝑀 · 𝑋)))
3614, 27, 353bitr2d 310 1 ((𝜑 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((𝐿𝐾) = (𝐿𝑀) ↔ (𝐾 · 𝑋) = (𝑀 · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  {crab 3137  ifcif 4450   class class class wbr 5052  cmpt 5132  ran crn 5543  cfv 6343  (class class class)co 7149  Fincfn 8505  0cc0 10535  cmin 10868  0cn0 11894  cz 11978  chash 13695  cdvds 15607  Basecbs 16483  0gc0g 16713  Grpcgrp 18103  .gcmg 18224  odcod 18652  CycGrpccyg 18996  ℤRHomczrh 20200  ℤ/nczn 20203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-inf2 9101  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612  ax-pre-sup 10613  ax-addf 10614  ax-mulf 10615
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-se 5502  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-isom 6352  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-tpos 7888  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-omul 8103  df-er 8285  df-ec 8287  df-qs 8291  df-map 8404  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-sup 8903  df-inf 8904  df-oi 8971  df-card 9365  df-acn 9368  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-div 11296  df-nn 11635  df-2 11697  df-3 11698  df-4 11699  df-5 11700  df-6 11701  df-7 11702  df-8 11703  df-9 11704  df-n0 11895  df-z 11979  df-dec 12096  df-uz 12241  df-rp 12387  df-fz 12895  df-fl 13166  df-mod 13242  df-seq 13374  df-exp 13435  df-hash 13696  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-dvds 15608  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-0g 16715  df-imas 16781  df-qus 16782  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-grp 18106  df-minusg 18107  df-sbg 18108  df-mulg 18225  df-subg 18276  df-nsg 18277  df-eqg 18278  df-ghm 18356  df-od 18656  df-cmn 18908  df-abl 18909  df-cyg 18997  df-mgp 19240  df-ur 19252  df-ring 19299  df-cring 19300  df-oppr 19376  df-dvdsr 19394  df-rnghom 19470  df-subrg 19533  df-lmod 19636  df-lss 19704  df-lsp 19744  df-sra 19944  df-rgmod 19945  df-lidl 19946  df-rsp 19947  df-2idl 20005  df-cnfld 20099  df-zring 20171  df-zrh 20204  df-zn 20207
This theorem is referenced by:  cygznlem2a  20266  cygznlem3  20268
  Copyright terms: Public domain W3C validator