Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cygznlem1 | Structured version Visualization version GIF version |
Description: Lemma for cygzn 20690. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
cygzn.b | ⊢ 𝐵 = (Base‘𝐺) |
cygzn.n | ⊢ 𝑁 = if(𝐵 ∈ Fin, (♯‘𝐵), 0) |
cygzn.y | ⊢ 𝑌 = (ℤ/nℤ‘𝑁) |
cygzn.m | ⊢ · = (.g‘𝐺) |
cygzn.l | ⊢ 𝐿 = (ℤRHom‘𝑌) |
cygzn.e | ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} |
cygzn.g | ⊢ (𝜑 → 𝐺 ∈ CycGrp) |
cygzn.x | ⊢ (𝜑 → 𝑋 ∈ 𝐸) |
Ref | Expression |
---|---|
cygznlem1 | ⊢ ((𝜑 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((𝐿‘𝐾) = (𝐿‘𝑀) ↔ (𝐾 · 𝑋) = (𝑀 · 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cygzn.n | . . . . 5 ⊢ 𝑁 = if(𝐵 ∈ Fin, (♯‘𝐵), 0) | |
2 | hashcl 13999 | . . . . . . 7 ⊢ (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0) | |
3 | 2 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ∈ Fin) → (♯‘𝐵) ∈ ℕ0) |
4 | 0nn0 12178 | . . . . . . 7 ⊢ 0 ∈ ℕ0 | |
5 | 4 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝐵 ∈ Fin) → 0 ∈ ℕ0) |
6 | 3, 5 | ifclda 4491 | . . . . 5 ⊢ (𝜑 → if(𝐵 ∈ Fin, (♯‘𝐵), 0) ∈ ℕ0) |
7 | 1, 6 | eqeltrid 2843 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
8 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝑁 ∈ ℕ0) |
9 | simprl 767 | . . 3 ⊢ ((𝜑 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝐾 ∈ ℤ) | |
10 | simprr 769 | . . 3 ⊢ ((𝜑 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝑀 ∈ ℤ) | |
11 | cygzn.y | . . . 4 ⊢ 𝑌 = (ℤ/nℤ‘𝑁) | |
12 | cygzn.l | . . . 4 ⊢ 𝐿 = (ℤRHom‘𝑌) | |
13 | 11, 12 | zndvds 20669 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝐿‘𝐾) = (𝐿‘𝑀) ↔ 𝑁 ∥ (𝐾 − 𝑀))) |
14 | 8, 9, 10, 13 | syl3anc 1369 | . 2 ⊢ ((𝜑 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((𝐿‘𝐾) = (𝐿‘𝑀) ↔ 𝑁 ∥ (𝐾 − 𝑀))) |
15 | cygzn.g | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ CycGrp) | |
16 | cyggrp 19405 | . . . . . . 7 ⊢ (𝐺 ∈ CycGrp → 𝐺 ∈ Grp) | |
17 | 15, 16 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ Grp) |
18 | cygzn.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐸) | |
19 | cygzn.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐺) | |
20 | cygzn.m | . . . . . . 7 ⊢ · = (.g‘𝐺) | |
21 | cygzn.e | . . . . . . 7 ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} | |
22 | eqid 2738 | . . . . . . 7 ⊢ (od‘𝐺) = (od‘𝐺) | |
23 | 19, 20, 21, 22 | cyggenod2 19400 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸) → ((od‘𝐺)‘𝑋) = if(𝐵 ∈ Fin, (♯‘𝐵), 0)) |
24 | 17, 18, 23 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → ((od‘𝐺)‘𝑋) = if(𝐵 ∈ Fin, (♯‘𝐵), 0)) |
25 | 24, 1 | eqtr4di 2797 | . . . 4 ⊢ (𝜑 → ((od‘𝐺)‘𝑋) = 𝑁) |
26 | 25 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((od‘𝐺)‘𝑋) = 𝑁) |
27 | 26 | breq1d 5080 | . 2 ⊢ ((𝜑 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (((od‘𝐺)‘𝑋) ∥ (𝐾 − 𝑀) ↔ 𝑁 ∥ (𝐾 − 𝑀))) |
28 | 17 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝐺 ∈ Grp) |
29 | 19, 20, 21 | iscyggen 19395 | . . . . . 6 ⊢ (𝑋 ∈ 𝐸 ↔ (𝑋 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵)) |
30 | 29 | simplbi 497 | . . . . 5 ⊢ (𝑋 ∈ 𝐸 → 𝑋 ∈ 𝐵) |
31 | 18, 30 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
32 | 31 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝑋 ∈ 𝐵) |
33 | eqid 2738 | . . . 4 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
34 | 19, 22, 20, 33 | odcong 19072 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (((od‘𝐺)‘𝑋) ∥ (𝐾 − 𝑀) ↔ (𝐾 · 𝑋) = (𝑀 · 𝑋))) |
35 | 28, 32, 9, 10, 34 | syl112anc 1372 | . 2 ⊢ ((𝜑 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (((od‘𝐺)‘𝑋) ∥ (𝐾 − 𝑀) ↔ (𝐾 · 𝑋) = (𝑀 · 𝑋))) |
36 | 14, 27, 35 | 3bitr2d 306 | 1 ⊢ ((𝜑 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((𝐿‘𝐾) = (𝐿‘𝑀) ↔ (𝐾 · 𝑋) = (𝑀 · 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {crab 3067 ifcif 4456 class class class wbr 5070 ↦ cmpt 5153 ran crn 5581 ‘cfv 6418 (class class class)co 7255 Fincfn 8691 0cc0 10802 − cmin 11135 ℕ0cn0 12163 ℤcz 12249 ♯chash 13972 ∥ cdvds 15891 Basecbs 16840 0gc0g 17067 Grpcgrp 18492 .gcmg 18615 odcod 19047 CycGrpccyg 19392 ℤRHomczrh 20613 ℤ/nℤczn 20616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-omul 8272 df-er 8456 df-ec 8458 df-qs 8462 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-acn 9631 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-rp 12660 df-fz 13169 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-dvds 15892 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-0g 17069 df-imas 17136 df-qus 17137 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-grp 18495 df-minusg 18496 df-sbg 18497 df-mulg 18616 df-subg 18667 df-nsg 18668 df-eqg 18669 df-ghm 18747 df-od 19051 df-cmn 19303 df-abl 19304 df-cyg 19393 df-mgp 19636 df-ur 19653 df-ring 19700 df-cring 19701 df-oppr 19777 df-dvdsr 19798 df-rnghom 19874 df-subrg 19937 df-lmod 20040 df-lss 20109 df-lsp 20149 df-sra 20349 df-rgmod 20350 df-lidl 20351 df-rsp 20352 df-2idl 20416 df-cnfld 20511 df-zring 20583 df-zrh 20617 df-zn 20620 |
This theorem is referenced by: cygznlem2a 20687 cygznlem3 20689 |
Copyright terms: Public domain | W3C validator |