| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cygznlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for cygzn 21536. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| Ref | Expression |
|---|---|
| cygzn.b | ⊢ 𝐵 = (Base‘𝐺) |
| cygzn.n | ⊢ 𝑁 = if(𝐵 ∈ Fin, (♯‘𝐵), 0) |
| cygzn.y | ⊢ 𝑌 = (ℤ/nℤ‘𝑁) |
| cygzn.m | ⊢ · = (.g‘𝐺) |
| cygzn.l | ⊢ 𝐿 = (ℤRHom‘𝑌) |
| cygzn.e | ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} |
| cygzn.g | ⊢ (𝜑 → 𝐺 ∈ CycGrp) |
| cygzn.x | ⊢ (𝜑 → 𝑋 ∈ 𝐸) |
| Ref | Expression |
|---|---|
| cygznlem1 | ⊢ ((𝜑 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((𝐿‘𝐾) = (𝐿‘𝑀) ↔ (𝐾 · 𝑋) = (𝑀 · 𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cygzn.n | . . . . 5 ⊢ 𝑁 = if(𝐵 ∈ Fin, (♯‘𝐵), 0) | |
| 2 | hashcl 14379 | . . . . . . 7 ⊢ (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0) | |
| 3 | 2 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ∈ Fin) → (♯‘𝐵) ∈ ℕ0) |
| 4 | 0nn0 12521 | . . . . . . 7 ⊢ 0 ∈ ℕ0 | |
| 5 | 4 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝐵 ∈ Fin) → 0 ∈ ℕ0) |
| 6 | 3, 5 | ifclda 4541 | . . . . 5 ⊢ (𝜑 → if(𝐵 ∈ Fin, (♯‘𝐵), 0) ∈ ℕ0) |
| 7 | 1, 6 | eqeltrid 2839 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| 8 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝑁 ∈ ℕ0) |
| 9 | simprl 770 | . . 3 ⊢ ((𝜑 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝐾 ∈ ℤ) | |
| 10 | simprr 772 | . . 3 ⊢ ((𝜑 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝑀 ∈ ℤ) | |
| 11 | cygzn.y | . . . 4 ⊢ 𝑌 = (ℤ/nℤ‘𝑁) | |
| 12 | cygzn.l | . . . 4 ⊢ 𝐿 = (ℤRHom‘𝑌) | |
| 13 | 11, 12 | zndvds 21515 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝐿‘𝐾) = (𝐿‘𝑀) ↔ 𝑁 ∥ (𝐾 − 𝑀))) |
| 14 | 8, 9, 10, 13 | syl3anc 1373 | . 2 ⊢ ((𝜑 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((𝐿‘𝐾) = (𝐿‘𝑀) ↔ 𝑁 ∥ (𝐾 − 𝑀))) |
| 15 | cygzn.g | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ CycGrp) | |
| 16 | cyggrp 19876 | . . . . . . 7 ⊢ (𝐺 ∈ CycGrp → 𝐺 ∈ Grp) | |
| 17 | 15, 16 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ Grp) |
| 18 | cygzn.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐸) | |
| 19 | cygzn.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐺) | |
| 20 | cygzn.m | . . . . . . 7 ⊢ · = (.g‘𝐺) | |
| 21 | cygzn.e | . . . . . . 7 ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} | |
| 22 | eqid 2736 | . . . . . . 7 ⊢ (od‘𝐺) = (od‘𝐺) | |
| 23 | 19, 20, 21, 22 | cyggenod2 19871 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸) → ((od‘𝐺)‘𝑋) = if(𝐵 ∈ Fin, (♯‘𝐵), 0)) |
| 24 | 17, 18, 23 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ((od‘𝐺)‘𝑋) = if(𝐵 ∈ Fin, (♯‘𝐵), 0)) |
| 25 | 24, 1 | eqtr4di 2789 | . . . 4 ⊢ (𝜑 → ((od‘𝐺)‘𝑋) = 𝑁) |
| 26 | 25 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((od‘𝐺)‘𝑋) = 𝑁) |
| 27 | 26 | breq1d 5134 | . 2 ⊢ ((𝜑 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (((od‘𝐺)‘𝑋) ∥ (𝐾 − 𝑀) ↔ 𝑁 ∥ (𝐾 − 𝑀))) |
| 28 | 17 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝐺 ∈ Grp) |
| 29 | 19, 20, 21 | iscyggen 19866 | . . . . . 6 ⊢ (𝑋 ∈ 𝐸 ↔ (𝑋 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵)) |
| 30 | 29 | simplbi 497 | . . . . 5 ⊢ (𝑋 ∈ 𝐸 → 𝑋 ∈ 𝐵) |
| 31 | 18, 30 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 32 | 31 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝑋 ∈ 𝐵) |
| 33 | eqid 2736 | . . . 4 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 34 | 19, 22, 20, 33 | odcong 19535 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (((od‘𝐺)‘𝑋) ∥ (𝐾 − 𝑀) ↔ (𝐾 · 𝑋) = (𝑀 · 𝑋))) |
| 35 | 28, 32, 9, 10, 34 | syl112anc 1376 | . 2 ⊢ ((𝜑 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (((od‘𝐺)‘𝑋) ∥ (𝐾 − 𝑀) ↔ (𝐾 · 𝑋) = (𝑀 · 𝑋))) |
| 36 | 14, 27, 35 | 3bitr2d 307 | 1 ⊢ ((𝜑 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((𝐿‘𝐾) = (𝐿‘𝑀) ↔ (𝐾 · 𝑋) = (𝑀 · 𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3420 ifcif 4505 class class class wbr 5124 ↦ cmpt 5206 ran crn 5660 ‘cfv 6536 (class class class)co 7410 Fincfn 8964 0cc0 11134 − cmin 11471 ℕ0cn0 12506 ℤcz 12593 ♯chash 14353 ∥ cdvds 16277 Basecbs 17233 0gc0g 17458 Grpcgrp 18921 .gcmg 19055 odcod 19510 CycGrpccyg 19863 ℤRHomczrh 21465 ℤ/nℤczn 21468 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 ax-addf 11213 ax-mulf 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-tpos 8230 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-oadd 8489 df-omul 8490 df-er 8724 df-ec 8726 df-qs 8730 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9459 df-inf 9460 df-oi 9529 df-card 9958 df-acn 9961 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-rp 13014 df-fz 13530 df-fl 13814 df-mod 13892 df-seq 14025 df-exp 14085 df-hash 14354 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-dvds 16278 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-starv 17291 df-sca 17292 df-vsca 17293 df-ip 17294 df-tset 17295 df-ple 17296 df-ds 17298 df-unif 17299 df-0g 17460 df-imas 17527 df-qus 17528 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-mhm 18766 df-grp 18924 df-minusg 18925 df-sbg 18926 df-mulg 19056 df-subg 19111 df-nsg 19112 df-eqg 19113 df-ghm 19201 df-od 19514 df-cmn 19768 df-abl 19769 df-cyg 19864 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-cring 20201 df-oppr 20302 df-dvdsr 20322 df-rhm 20437 df-subrng 20511 df-subrg 20535 df-lmod 20824 df-lss 20894 df-lsp 20934 df-sra 21136 df-rgmod 21137 df-lidl 21174 df-rsp 21175 df-2idl 21216 df-cnfld 21321 df-zring 21413 df-zrh 21469 df-zn 21472 |
| This theorem is referenced by: cygznlem2a 21533 cygznlem3 21535 |
| Copyright terms: Public domain | W3C validator |