![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscyggen2 | Structured version Visualization version GIF version |
Description: The property of being a cyclic generator for a group. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
iscyg.1 | ⊢ 𝐵 = (Base‘𝐺) |
iscyg.2 | ⊢ · = (.g‘𝐺) |
iscyg3.e | ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} |
Ref | Expression |
---|---|
iscyggen2 | ⊢ (𝐺 ∈ Grp → (𝑋 ∈ 𝐸 ↔ (𝑋 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscyg.1 | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | iscyg.2 | . . 3 ⊢ · = (.g‘𝐺) | |
3 | iscyg3.e | . . 3 ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} | |
4 | 1, 2, 3 | iscyggen 18710 | . 2 ⊢ (𝑋 ∈ 𝐸 ↔ (𝑋 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵)) |
5 | 1, 2 | mulgcl 17988 | . . . . . . . 8 ⊢ ((𝐺 ∈ Grp ∧ 𝑛 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑛 · 𝑋) ∈ 𝐵) |
6 | 5 | 3expa 1109 | . . . . . . 7 ⊢ (((𝐺 ∈ Grp ∧ 𝑛 ∈ ℤ) ∧ 𝑋 ∈ 𝐵) → (𝑛 · 𝑋) ∈ 𝐵) |
7 | 6 | an32s 648 | . . . . . 6 ⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ ℤ) → (𝑛 · 𝑋) ∈ 𝐵) |
8 | 7 | fmpttd 6733 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)):ℤ⟶𝐵) |
9 | frn 6380 | . . . . 5 ⊢ ((𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)):ℤ⟶𝐵 → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ⊆ 𝐵) | |
10 | eqss 3899 | . . . . . 6 ⊢ (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵 ↔ (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ⊆ 𝐵 ∧ 𝐵 ⊆ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)))) | |
11 | 10 | baib 536 | . . . . 5 ⊢ (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ⊆ 𝐵 → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵 ↔ 𝐵 ⊆ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)))) |
12 | 8, 9, 11 | 3syl 18 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵 ↔ 𝐵 ⊆ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)))) |
13 | dfss3 3873 | . . . . 5 ⊢ (𝐵 ⊆ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ↔ ∀𝑦 ∈ 𝐵 𝑦 ∈ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))) | |
14 | eqid 2793 | . . . . . . 7 ⊢ (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) | |
15 | ovex 7039 | . . . . . . 7 ⊢ (𝑛 · 𝑋) ∈ V | |
16 | 14, 15 | elrnmpti 5706 | . . . . . 6 ⊢ (𝑦 ∈ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ↔ ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋)) |
17 | 16 | ralbii 3130 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐵 𝑦 ∈ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ↔ ∀𝑦 ∈ 𝐵 ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋)) |
18 | 13, 17 | bitri 276 | . . . 4 ⊢ (𝐵 ⊆ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ↔ ∀𝑦 ∈ 𝐵 ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋)) |
19 | 12, 18 | syl6bb 288 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵 ↔ ∀𝑦 ∈ 𝐵 ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋))) |
20 | 19 | pm5.32da 579 | . 2 ⊢ (𝐺 ∈ Grp → ((𝑋 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵) ↔ (𝑋 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋)))) |
21 | 4, 20 | syl5bb 284 | 1 ⊢ (𝐺 ∈ Grp → (𝑋 ∈ 𝐸 ↔ (𝑋 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 = wceq 1520 ∈ wcel 2079 ∀wral 3103 ∃wrex 3104 {crab 3107 ⊆ wss 3854 ↦ cmpt 5035 ran crn 5436 ⟶wf 6213 ‘cfv 6217 (class class class)co 7007 ℤcz 11818 Basecbs 16300 Grpcgrp 17849 .gcmg 17969 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-13 2342 ax-ext 2767 ax-sep 5088 ax-nul 5095 ax-pow 5150 ax-pr 5214 ax-un 7310 ax-cnex 10428 ax-resscn 10429 ax-1cn 10430 ax-icn 10431 ax-addcl 10432 ax-addrcl 10433 ax-mulcl 10434 ax-mulrcl 10435 ax-mulcom 10436 ax-addass 10437 ax-mulass 10438 ax-distr 10439 ax-i2m1 10440 ax-1ne0 10441 ax-1rid 10442 ax-rnegex 10443 ax-rrecex 10444 ax-cnre 10445 ax-pre-lttri 10446 ax-pre-lttrn 10447 ax-pre-ltadd 10448 ax-pre-mulgt0 10449 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1079 df-3an 1080 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-mo 2574 df-eu 2610 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ne 2983 df-nel 3089 df-ral 3108 df-rex 3109 df-reu 3110 df-rmo 3111 df-rab 3112 df-v 3434 df-sbc 3702 df-csb 3807 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-pss 3871 df-nul 4207 df-if 4376 df-pw 4449 df-sn 4467 df-pr 4469 df-tp 4471 df-op 4473 df-uni 4740 df-iun 4821 df-br 4957 df-opab 5019 df-mpt 5036 df-tr 5058 df-id 5340 df-eprel 5345 df-po 5354 df-so 5355 df-fr 5394 df-we 5396 df-xp 5441 df-rel 5442 df-cnv 5443 df-co 5444 df-dm 5445 df-rn 5446 df-res 5447 df-ima 5448 df-pred 6015 df-ord 6061 df-on 6062 df-lim 6063 df-suc 6064 df-iota 6181 df-fun 6219 df-fn 6220 df-f 6221 df-f1 6222 df-fo 6223 df-f1o 6224 df-fv 6225 df-riota 6968 df-ov 7010 df-oprab 7011 df-mpo 7012 df-om 7428 df-1st 7536 df-2nd 7537 df-wrecs 7789 df-recs 7851 df-rdg 7889 df-er 8130 df-en 8348 df-dom 8349 df-sdom 8350 df-pnf 10512 df-mnf 10513 df-xr 10514 df-ltxr 10515 df-le 10516 df-sub 10708 df-neg 10709 df-nn 11476 df-n0 11735 df-z 11819 df-uz 12083 df-fz 12732 df-seq 13208 df-0g 16532 df-mgm 17669 df-sgrp 17711 df-mnd 17722 df-grp 17852 df-minusg 17853 df-mulg 17970 |
This theorem is referenced by: cyggeninv 18713 iscygd 18717 cygznlem3 20386 |
Copyright terms: Public domain | W3C validator |