![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscyggen2 | Structured version Visualization version GIF version |
Description: The property of being a cyclic generator for a group. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
iscyg.1 | ⊢ 𝐵 = (Base‘𝐺) |
iscyg.2 | ⊢ · = (.g‘𝐺) |
iscyg3.e | ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} |
Ref | Expression |
---|---|
iscyggen2 | ⊢ (𝐺 ∈ Grp → (𝑋 ∈ 𝐸 ↔ (𝑋 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscyg.1 | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | iscyg.2 | . . 3 ⊢ · = (.g‘𝐺) | |
3 | iscyg3.e | . . 3 ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} | |
4 | 1, 2, 3 | iscyggen 19657 | . 2 ⊢ (𝑋 ∈ 𝐸 ↔ (𝑋 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵)) |
5 | 1, 2 | mulgcl 18893 | . . . . . . . 8 ⊢ ((𝐺 ∈ Grp ∧ 𝑛 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑛 · 𝑋) ∈ 𝐵) |
6 | 5 | 3expa 1118 | . . . . . . 7 ⊢ (((𝐺 ∈ Grp ∧ 𝑛 ∈ ℤ) ∧ 𝑋 ∈ 𝐵) → (𝑛 · 𝑋) ∈ 𝐵) |
7 | 6 | an32s 650 | . . . . . 6 ⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ ℤ) → (𝑛 · 𝑋) ∈ 𝐵) |
8 | 7 | fmpttd 7063 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)):ℤ⟶𝐵) |
9 | frn 6675 | . . . . 5 ⊢ ((𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)):ℤ⟶𝐵 → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ⊆ 𝐵) | |
10 | eqss 3959 | . . . . . 6 ⊢ (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵 ↔ (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ⊆ 𝐵 ∧ 𝐵 ⊆ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)))) | |
11 | 10 | baib 536 | . . . . 5 ⊢ (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ⊆ 𝐵 → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵 ↔ 𝐵 ⊆ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)))) |
12 | 8, 9, 11 | 3syl 18 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵 ↔ 𝐵 ⊆ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)))) |
13 | dfss3 3932 | . . . . 5 ⊢ (𝐵 ⊆ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ↔ ∀𝑦 ∈ 𝐵 𝑦 ∈ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))) | |
14 | eqid 2736 | . . . . . . 7 ⊢ (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) | |
15 | ovex 7390 | . . . . . . 7 ⊢ (𝑛 · 𝑋) ∈ V | |
16 | 14, 15 | elrnmpti 5915 | . . . . . 6 ⊢ (𝑦 ∈ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ↔ ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋)) |
17 | 16 | ralbii 3096 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐵 𝑦 ∈ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ↔ ∀𝑦 ∈ 𝐵 ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋)) |
18 | 13, 17 | bitri 274 | . . . 4 ⊢ (𝐵 ⊆ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ↔ ∀𝑦 ∈ 𝐵 ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋)) |
19 | 12, 18 | bitrdi 286 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵 ↔ ∀𝑦 ∈ 𝐵 ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋))) |
20 | 19 | pm5.32da 579 | . 2 ⊢ (𝐺 ∈ Grp → ((𝑋 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵) ↔ (𝑋 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋)))) |
21 | 4, 20 | bitrid 282 | 1 ⊢ (𝐺 ∈ Grp → (𝑋 ∈ 𝐸 ↔ (𝑋 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3064 ∃wrex 3073 {crab 3407 ⊆ wss 3910 ↦ cmpt 5188 ran crn 5634 ⟶wf 6492 ‘cfv 6496 (class class class)co 7357 ℤcz 12499 Basecbs 17083 Grpcgrp 18748 .gcmg 18872 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-er 8648 df-en 8884 df-dom 8885 df-sdom 8886 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-n0 12414 df-z 12500 df-uz 12764 df-fz 13425 df-seq 13907 df-0g 17323 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-grp 18751 df-minusg 18752 df-mulg 18873 |
This theorem is referenced by: cyggeninv 19660 iscygd 19664 cygznlem3 20976 |
Copyright terms: Public domain | W3C validator |