| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iscyggen2 | Structured version Visualization version GIF version | ||
| Description: The property of being a cyclic generator for a group. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| Ref | Expression |
|---|---|
| iscyg.1 | ⊢ 𝐵 = (Base‘𝐺) |
| iscyg.2 | ⊢ · = (.g‘𝐺) |
| iscyg3.e | ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} |
| Ref | Expression |
|---|---|
| iscyggen2 | ⊢ (𝐺 ∈ Grp → (𝑋 ∈ 𝐸 ↔ (𝑋 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscyg.1 | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | iscyg.2 | . . 3 ⊢ · = (.g‘𝐺) | |
| 3 | iscyg3.e | . . 3 ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} | |
| 4 | 1, 2, 3 | iscyggen 19792 | . 2 ⊢ (𝑋 ∈ 𝐸 ↔ (𝑋 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵)) |
| 5 | 1, 2 | mulgcl 19004 | . . . . . . . 8 ⊢ ((𝐺 ∈ Grp ∧ 𝑛 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑛 · 𝑋) ∈ 𝐵) |
| 6 | 5 | 3expa 1118 | . . . . . . 7 ⊢ (((𝐺 ∈ Grp ∧ 𝑛 ∈ ℤ) ∧ 𝑋 ∈ 𝐵) → (𝑛 · 𝑋) ∈ 𝐵) |
| 7 | 6 | an32s 652 | . . . . . 6 ⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ ℤ) → (𝑛 · 𝑋) ∈ 𝐵) |
| 8 | 7 | fmpttd 7048 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)):ℤ⟶𝐵) |
| 9 | frn 6658 | . . . . 5 ⊢ ((𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)):ℤ⟶𝐵 → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ⊆ 𝐵) | |
| 10 | eqss 3945 | . . . . . 6 ⊢ (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵 ↔ (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ⊆ 𝐵 ∧ 𝐵 ⊆ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)))) | |
| 11 | 10 | baib 535 | . . . . 5 ⊢ (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ⊆ 𝐵 → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵 ↔ 𝐵 ⊆ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)))) |
| 12 | 8, 9, 11 | 3syl 18 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵 ↔ 𝐵 ⊆ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)))) |
| 13 | dfss3 3918 | . . . . 5 ⊢ (𝐵 ⊆ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ↔ ∀𝑦 ∈ 𝐵 𝑦 ∈ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))) | |
| 14 | eqid 2731 | . . . . . . 7 ⊢ (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) | |
| 15 | ovex 7379 | . . . . . . 7 ⊢ (𝑛 · 𝑋) ∈ V | |
| 16 | 14, 15 | elrnmpti 5901 | . . . . . 6 ⊢ (𝑦 ∈ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ↔ ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋)) |
| 17 | 16 | ralbii 3078 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐵 𝑦 ∈ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ↔ ∀𝑦 ∈ 𝐵 ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋)) |
| 18 | 13, 17 | bitri 275 | . . . 4 ⊢ (𝐵 ⊆ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ↔ ∀𝑦 ∈ 𝐵 ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋)) |
| 19 | 12, 18 | bitrdi 287 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵 ↔ ∀𝑦 ∈ 𝐵 ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋))) |
| 20 | 19 | pm5.32da 579 | . 2 ⊢ (𝐺 ∈ Grp → ((𝑋 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵) ↔ (𝑋 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋)))) |
| 21 | 4, 20 | bitrid 283 | 1 ⊢ (𝐺 ∈ Grp → (𝑋 ∈ 𝐸 ↔ (𝑋 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 {crab 3395 ⊆ wss 3897 ↦ cmpt 5170 ran crn 5615 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ℤcz 12468 Basecbs 17120 Grpcgrp 18846 .gcmg 18980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-seq 13909 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-mulg 18981 |
| This theorem is referenced by: cyggeninv 19795 iscygd 19799 cygznlem3 21506 |
| Copyright terms: Public domain | W3C validator |