| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iscyggen2 | Structured version Visualization version GIF version | ||
| Description: The property of being a cyclic generator for a group. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| Ref | Expression |
|---|---|
| iscyg.1 | ⊢ 𝐵 = (Base‘𝐺) |
| iscyg.2 | ⊢ · = (.g‘𝐺) |
| iscyg3.e | ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} |
| Ref | Expression |
|---|---|
| iscyggen2 | ⊢ (𝐺 ∈ Grp → (𝑋 ∈ 𝐸 ↔ (𝑋 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscyg.1 | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | iscyg.2 | . . 3 ⊢ · = (.g‘𝐺) | |
| 3 | iscyg3.e | . . 3 ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} | |
| 4 | 1, 2, 3 | iscyggen 19759 | . 2 ⊢ (𝑋 ∈ 𝐸 ↔ (𝑋 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵)) |
| 5 | 1, 2 | mulgcl 18970 | . . . . . . . 8 ⊢ ((𝐺 ∈ Grp ∧ 𝑛 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑛 · 𝑋) ∈ 𝐵) |
| 6 | 5 | 3expa 1118 | . . . . . . 7 ⊢ (((𝐺 ∈ Grp ∧ 𝑛 ∈ ℤ) ∧ 𝑋 ∈ 𝐵) → (𝑛 · 𝑋) ∈ 𝐵) |
| 7 | 6 | an32s 652 | . . . . . 6 ⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ ℤ) → (𝑛 · 𝑋) ∈ 𝐵) |
| 8 | 7 | fmpttd 7049 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)):ℤ⟶𝐵) |
| 9 | frn 6659 | . . . . 5 ⊢ ((𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)):ℤ⟶𝐵 → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ⊆ 𝐵) | |
| 10 | eqss 3951 | . . . . . 6 ⊢ (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵 ↔ (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ⊆ 𝐵 ∧ 𝐵 ⊆ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)))) | |
| 11 | 10 | baib 535 | . . . . 5 ⊢ (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ⊆ 𝐵 → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵 ↔ 𝐵 ⊆ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)))) |
| 12 | 8, 9, 11 | 3syl 18 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵 ↔ 𝐵 ⊆ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)))) |
| 13 | dfss3 3924 | . . . . 5 ⊢ (𝐵 ⊆ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ↔ ∀𝑦 ∈ 𝐵 𝑦 ∈ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))) | |
| 14 | eqid 2729 | . . . . . . 7 ⊢ (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) | |
| 15 | ovex 7382 | . . . . . . 7 ⊢ (𝑛 · 𝑋) ∈ V | |
| 16 | 14, 15 | elrnmpti 5904 | . . . . . 6 ⊢ (𝑦 ∈ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ↔ ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋)) |
| 17 | 16 | ralbii 3075 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐵 𝑦 ∈ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ↔ ∀𝑦 ∈ 𝐵 ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋)) |
| 18 | 13, 17 | bitri 275 | . . . 4 ⊢ (𝐵 ⊆ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ↔ ∀𝑦 ∈ 𝐵 ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋)) |
| 19 | 12, 18 | bitrdi 287 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵 ↔ ∀𝑦 ∈ 𝐵 ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋))) |
| 20 | 19 | pm5.32da 579 | . 2 ⊢ (𝐺 ∈ Grp → ((𝑋 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵) ↔ (𝑋 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋)))) |
| 21 | 4, 20 | bitrid 283 | 1 ⊢ (𝐺 ∈ Grp → (𝑋 ∈ 𝐸 ↔ (𝑋 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 {crab 3394 ⊆ wss 3903 ↦ cmpt 5173 ran crn 5620 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 ℤcz 12471 Basecbs 17120 Grpcgrp 18812 .gcmg 18946 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-n0 12385 df-z 12472 df-uz 12736 df-fz 13411 df-seq 13909 df-0g 17345 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-grp 18815 df-minusg 18816 df-mulg 18947 |
| This theorem is referenced by: cyggeninv 19762 iscygd 19766 cygznlem3 21476 |
| Copyright terms: Public domain | W3C validator |