![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cyggenod | Structured version Visualization version GIF version |
Description: An element is the generator of a finite group iff the order of the generator equals the order of the group. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
iscyg.1 | ⊢ 𝐵 = (Base‘𝐺) |
iscyg.2 | ⊢ · = (.g‘𝐺) |
iscyg3.e | ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} |
cyggenod.o | ⊢ 𝑂 = (od‘𝐺) |
Ref | Expression |
---|---|
cyggenod | ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) → (𝑋 ∈ 𝐸 ↔ (𝑋 ∈ 𝐵 ∧ (𝑂‘𝑋) = (♯‘𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscyg.1 | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | iscyg.2 | . . 3 ⊢ · = (.g‘𝐺) | |
3 | iscyg3.e | . . 3 ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} | |
4 | 1, 2, 3 | iscyggen 19913 | . 2 ⊢ (𝑋 ∈ 𝐸 ↔ (𝑋 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵)) |
5 | simplr 769 | . . . . . 6 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋 ∈ 𝐵) → 𝐵 ∈ Fin) | |
6 | simplll 775 | . . . . . . . . 9 ⊢ ((((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ ℤ) → 𝐺 ∈ Grp) | |
7 | simpr 484 | . . . . . . . . 9 ⊢ ((((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ) | |
8 | simplr 769 | . . . . . . . . 9 ⊢ ((((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ ℤ) → 𝑋 ∈ 𝐵) | |
9 | 1, 2 | mulgcl 19122 | . . . . . . . . 9 ⊢ ((𝐺 ∈ Grp ∧ 𝑛 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑛 · 𝑋) ∈ 𝐵) |
10 | 6, 7, 8, 9 | syl3anc 1370 | . . . . . . . 8 ⊢ ((((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ ℤ) → (𝑛 · 𝑋) ∈ 𝐵) |
11 | 10 | fmpttd 7135 | . . . . . . 7 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋 ∈ 𝐵) → (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)):ℤ⟶𝐵) |
12 | 11 | frnd 6745 | . . . . . 6 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋 ∈ 𝐵) → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ⊆ 𝐵) |
13 | 5, 12 | ssfid 9299 | . . . . 5 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋 ∈ 𝐵) → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ∈ Fin) |
14 | hashen 14383 | . . . . 5 ⊢ ((ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))) = (♯‘𝐵) ↔ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ≈ 𝐵)) | |
15 | 13, 5, 14 | syl2anc 584 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋 ∈ 𝐵) → ((♯‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))) = (♯‘𝐵) ↔ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ≈ 𝐵)) |
16 | cyggenod.o | . . . . . . . 8 ⊢ 𝑂 = (od‘𝐺) | |
17 | eqid 2735 | . . . . . . . 8 ⊢ (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) | |
18 | 1, 16, 2, 17 | dfod2 19597 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑂‘𝑋) = if(ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ∈ Fin, (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))), 0)) |
19 | 18 | adantlr 715 | . . . . . 6 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋 ∈ 𝐵) → (𝑂‘𝑋) = if(ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ∈ Fin, (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))), 0)) |
20 | 13 | iftrued 4539 | . . . . . 6 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋 ∈ 𝐵) → if(ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ∈ Fin, (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))), 0) = (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)))) |
21 | 19, 20 | eqtr2d 2776 | . . . . 5 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋 ∈ 𝐵) → (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))) = (𝑂‘𝑋)) |
22 | 21 | eqeq1d 2737 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋 ∈ 𝐵) → ((♯‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))) = (♯‘𝐵) ↔ (𝑂‘𝑋) = (♯‘𝐵))) |
23 | fisseneq 9291 | . . . . . . 7 ⊢ ((𝐵 ∈ Fin ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ⊆ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ≈ 𝐵) → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵) | |
24 | 23 | 3expia 1120 | . . . . . 6 ⊢ ((𝐵 ∈ Fin ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ⊆ 𝐵) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ≈ 𝐵 → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵)) |
25 | enrefg 9023 | . . . . . . . 8 ⊢ (𝐵 ∈ Fin → 𝐵 ≈ 𝐵) | |
26 | 25 | adantr 480 | . . . . . . 7 ⊢ ((𝐵 ∈ Fin ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ⊆ 𝐵) → 𝐵 ≈ 𝐵) |
27 | breq1 5151 | . . . . . . 7 ⊢ (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵 → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ≈ 𝐵 ↔ 𝐵 ≈ 𝐵)) | |
28 | 26, 27 | syl5ibrcom 247 | . . . . . 6 ⊢ ((𝐵 ∈ Fin ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ⊆ 𝐵) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵 → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ≈ 𝐵)) |
29 | 24, 28 | impbid 212 | . . . . 5 ⊢ ((𝐵 ∈ Fin ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ⊆ 𝐵) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ≈ 𝐵 ↔ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵)) |
30 | 5, 12, 29 | syl2anc 584 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋 ∈ 𝐵) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ≈ 𝐵 ↔ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵)) |
31 | 15, 22, 30 | 3bitr3rd 310 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋 ∈ 𝐵) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵 ↔ (𝑂‘𝑋) = (♯‘𝐵))) |
32 | 31 | pm5.32da 579 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) → ((𝑋 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵) ↔ (𝑋 ∈ 𝐵 ∧ (𝑂‘𝑋) = (♯‘𝐵)))) |
33 | 4, 32 | bitrid 283 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) → (𝑋 ∈ 𝐸 ↔ (𝑋 ∈ 𝐵 ∧ (𝑂‘𝑋) = (♯‘𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {crab 3433 ⊆ wss 3963 ifcif 4531 class class class wbr 5148 ↦ cmpt 5231 ran crn 5690 ‘cfv 6563 (class class class)co 7431 ≈ cen 8981 Fincfn 8984 0cc0 11153 ℤcz 12611 ♯chash 14366 Basecbs 17245 Grpcgrp 18964 .gcmg 19098 odcod 19557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-oadd 8509 df-omul 8510 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-inf 9481 df-oi 9548 df-card 9977 df-acn 9980 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12612 df-uz 12877 df-rp 13033 df-fz 13545 df-fl 13829 df-mod 13907 df-seq 14040 df-exp 14100 df-hash 14367 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-dvds 16288 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 df-minusg 18968 df-sbg 18969 df-mulg 19099 df-od 19561 |
This theorem is referenced by: iscygodd 19921 cyggexb 19932 |
Copyright terms: Public domain | W3C validator |