![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cyggenod | Structured version Visualization version GIF version |
Description: An element is the generator of a finite group iff the order of the generator equals the order of the group. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
iscyg.1 | ⊢ 𝐵 = (Base‘𝐺) |
iscyg.2 | ⊢ · = (.g‘𝐺) |
iscyg3.e | ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} |
cyggenod.o | ⊢ 𝑂 = (od‘𝐺) |
Ref | Expression |
---|---|
cyggenod | ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) → (𝑋 ∈ 𝐸 ↔ (𝑋 ∈ 𝐵 ∧ (𝑂‘𝑋) = (♯‘𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscyg.1 | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | iscyg.2 | . . 3 ⊢ · = (.g‘𝐺) | |
3 | iscyg3.e | . . 3 ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} | |
4 | 1, 2, 3 | iscyggen 18679 | . 2 ⊢ (𝑋 ∈ 𝐸 ↔ (𝑋 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵)) |
5 | simplr 759 | . . . . . 6 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋 ∈ 𝐵) → 𝐵 ∈ Fin) | |
6 | simplll 765 | . . . . . . . . 9 ⊢ ((((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ ℤ) → 𝐺 ∈ Grp) | |
7 | simpr 479 | . . . . . . . . 9 ⊢ ((((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ) | |
8 | simplr 759 | . . . . . . . . 9 ⊢ ((((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ ℤ) → 𝑋 ∈ 𝐵) | |
9 | 1, 2 | mulgcl 17956 | . . . . . . . . 9 ⊢ ((𝐺 ∈ Grp ∧ 𝑛 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑛 · 𝑋) ∈ 𝐵) |
10 | 6, 7, 8, 9 | syl3anc 1439 | . . . . . . . 8 ⊢ ((((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ ℤ) → (𝑛 · 𝑋) ∈ 𝐵) |
11 | 10 | fmpttd 6651 | . . . . . . 7 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋 ∈ 𝐵) → (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)):ℤ⟶𝐵) |
12 | 11 | frnd 6300 | . . . . . 6 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋 ∈ 𝐵) → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ⊆ 𝐵) |
13 | 5, 12 | ssfid 8473 | . . . . 5 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋 ∈ 𝐵) → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ∈ Fin) |
14 | hashen 13458 | . . . . 5 ⊢ ((ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))) = (♯‘𝐵) ↔ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ≈ 𝐵)) | |
15 | 13, 5, 14 | syl2anc 579 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋 ∈ 𝐵) → ((♯‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))) = (♯‘𝐵) ↔ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ≈ 𝐵)) |
16 | cyggenod.o | . . . . . . . 8 ⊢ 𝑂 = (od‘𝐺) | |
17 | eqid 2778 | . . . . . . . 8 ⊢ (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) | |
18 | 1, 16, 2, 17 | dfod2 18376 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑂‘𝑋) = if(ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ∈ Fin, (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))), 0)) |
19 | 18 | adantlr 705 | . . . . . 6 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋 ∈ 𝐵) → (𝑂‘𝑋) = if(ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ∈ Fin, (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))), 0)) |
20 | 13 | iftrued 4315 | . . . . . 6 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋 ∈ 𝐵) → if(ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ∈ Fin, (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))), 0) = (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)))) |
21 | 19, 20 | eqtr2d 2815 | . . . . 5 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋 ∈ 𝐵) → (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))) = (𝑂‘𝑋)) |
22 | 21 | eqeq1d 2780 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋 ∈ 𝐵) → ((♯‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))) = (♯‘𝐵) ↔ (𝑂‘𝑋) = (♯‘𝐵))) |
23 | fisseneq 8461 | . . . . . . 7 ⊢ ((𝐵 ∈ Fin ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ⊆ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ≈ 𝐵) → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵) | |
24 | 23 | 3expia 1111 | . . . . . 6 ⊢ ((𝐵 ∈ Fin ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ⊆ 𝐵) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ≈ 𝐵 → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵)) |
25 | enrefg 8275 | . . . . . . . 8 ⊢ (𝐵 ∈ Fin → 𝐵 ≈ 𝐵) | |
26 | 25 | adantr 474 | . . . . . . 7 ⊢ ((𝐵 ∈ Fin ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ⊆ 𝐵) → 𝐵 ≈ 𝐵) |
27 | breq1 4891 | . . . . . . 7 ⊢ (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵 → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ≈ 𝐵 ↔ 𝐵 ≈ 𝐵)) | |
28 | 26, 27 | syl5ibrcom 239 | . . . . . 6 ⊢ ((𝐵 ∈ Fin ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ⊆ 𝐵) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵 → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ≈ 𝐵)) |
29 | 24, 28 | impbid 204 | . . . . 5 ⊢ ((𝐵 ∈ Fin ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ⊆ 𝐵) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ≈ 𝐵 ↔ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵)) |
30 | 5, 12, 29 | syl2anc 579 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋 ∈ 𝐵) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ≈ 𝐵 ↔ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵)) |
31 | 15, 22, 30 | 3bitr3rd 302 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋 ∈ 𝐵) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵 ↔ (𝑂‘𝑋) = (♯‘𝐵))) |
32 | 31 | pm5.32da 574 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) → ((𝑋 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵) ↔ (𝑋 ∈ 𝐵 ∧ (𝑂‘𝑋) = (♯‘𝐵)))) |
33 | 4, 32 | syl5bb 275 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) → (𝑋 ∈ 𝐸 ↔ (𝑋 ∈ 𝐵 ∧ (𝑂‘𝑋) = (♯‘𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2107 {crab 3094 ⊆ wss 3792 ifcif 4307 class class class wbr 4888 ↦ cmpt 4967 ran crn 5358 ‘cfv 6137 (class class class)co 6924 ≈ cen 8240 Fincfn 8243 0cc0 10274 ℤcz 11733 ♯chash 13441 Basecbs 16266 Grpcgrp 17820 .gcmg 17938 odcod 18339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-inf2 8837 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 ax-pre-sup 10352 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-se 5317 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-isom 6146 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-1st 7447 df-2nd 7448 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-1o 7845 df-oadd 7849 df-omul 7850 df-er 8028 df-map 8144 df-en 8244 df-dom 8245 df-sdom 8246 df-fin 8247 df-sup 8638 df-inf 8639 df-oi 8706 df-card 9100 df-acn 9103 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-div 11036 df-nn 11380 df-2 11443 df-3 11444 df-n0 11648 df-z 11734 df-uz 11998 df-rp 12143 df-fz 12649 df-fl 12917 df-mod 12993 df-seq 13125 df-exp 13184 df-hash 13442 df-cj 14252 df-re 14253 df-im 14254 df-sqrt 14388 df-abs 14389 df-dvds 15397 df-0g 16499 df-mgm 17639 df-sgrp 17681 df-mnd 17692 df-grp 17823 df-minusg 17824 df-sbg 17825 df-mulg 17939 df-od 18343 |
This theorem is referenced by: iscygodd 18687 cyggexb 18697 |
Copyright terms: Public domain | W3C validator |