|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > cyggenod | Structured version Visualization version GIF version | ||
| Description: An element is the generator of a finite group iff the order of the generator equals the order of the group. (Contributed by Mario Carneiro, 21-Apr-2016.) | 
| Ref | Expression | 
|---|---|
| iscyg.1 | ⊢ 𝐵 = (Base‘𝐺) | 
| iscyg.2 | ⊢ · = (.g‘𝐺) | 
| iscyg3.e | ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} | 
| cyggenod.o | ⊢ 𝑂 = (od‘𝐺) | 
| Ref | Expression | 
|---|---|
| cyggenod | ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) → (𝑋 ∈ 𝐸 ↔ (𝑋 ∈ 𝐵 ∧ (𝑂‘𝑋) = (♯‘𝐵)))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | iscyg.1 | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | iscyg.2 | . . 3 ⊢ · = (.g‘𝐺) | |
| 3 | iscyg3.e | . . 3 ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} | |
| 4 | 1, 2, 3 | iscyggen 19898 | . 2 ⊢ (𝑋 ∈ 𝐸 ↔ (𝑋 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵)) | 
| 5 | simplr 769 | . . . . . 6 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋 ∈ 𝐵) → 𝐵 ∈ Fin) | |
| 6 | simplll 775 | . . . . . . . . 9 ⊢ ((((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ ℤ) → 𝐺 ∈ Grp) | |
| 7 | simpr 484 | . . . . . . . . 9 ⊢ ((((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ) | |
| 8 | simplr 769 | . . . . . . . . 9 ⊢ ((((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ ℤ) → 𝑋 ∈ 𝐵) | |
| 9 | 1, 2 | mulgcl 19109 | . . . . . . . . 9 ⊢ ((𝐺 ∈ Grp ∧ 𝑛 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑛 · 𝑋) ∈ 𝐵) | 
| 10 | 6, 7, 8, 9 | syl3anc 1373 | . . . . . . . 8 ⊢ ((((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ ℤ) → (𝑛 · 𝑋) ∈ 𝐵) | 
| 11 | 10 | fmpttd 7135 | . . . . . . 7 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋 ∈ 𝐵) → (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)):ℤ⟶𝐵) | 
| 12 | 11 | frnd 6744 | . . . . . 6 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋 ∈ 𝐵) → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ⊆ 𝐵) | 
| 13 | 5, 12 | ssfid 9301 | . . . . 5 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋 ∈ 𝐵) → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ∈ Fin) | 
| 14 | hashen 14386 | . . . . 5 ⊢ ((ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))) = (♯‘𝐵) ↔ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ≈ 𝐵)) | |
| 15 | 13, 5, 14 | syl2anc 584 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋 ∈ 𝐵) → ((♯‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))) = (♯‘𝐵) ↔ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ≈ 𝐵)) | 
| 16 | cyggenod.o | . . . . . . . 8 ⊢ 𝑂 = (od‘𝐺) | |
| 17 | eqid 2737 | . . . . . . . 8 ⊢ (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) | |
| 18 | 1, 16, 2, 17 | dfod2 19582 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑂‘𝑋) = if(ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ∈ Fin, (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))), 0)) | 
| 19 | 18 | adantlr 715 | . . . . . 6 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋 ∈ 𝐵) → (𝑂‘𝑋) = if(ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ∈ Fin, (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))), 0)) | 
| 20 | 13 | iftrued 4533 | . . . . . 6 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋 ∈ 𝐵) → if(ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ∈ Fin, (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))), 0) = (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)))) | 
| 21 | 19, 20 | eqtr2d 2778 | . . . . 5 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋 ∈ 𝐵) → (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))) = (𝑂‘𝑋)) | 
| 22 | 21 | eqeq1d 2739 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋 ∈ 𝐵) → ((♯‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))) = (♯‘𝐵) ↔ (𝑂‘𝑋) = (♯‘𝐵))) | 
| 23 | fisseneq 9293 | . . . . . . 7 ⊢ ((𝐵 ∈ Fin ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ⊆ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ≈ 𝐵) → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵) | |
| 24 | 23 | 3expia 1122 | . . . . . 6 ⊢ ((𝐵 ∈ Fin ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ⊆ 𝐵) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ≈ 𝐵 → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵)) | 
| 25 | enrefg 9024 | . . . . . . . 8 ⊢ (𝐵 ∈ Fin → 𝐵 ≈ 𝐵) | |
| 26 | 25 | adantr 480 | . . . . . . 7 ⊢ ((𝐵 ∈ Fin ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ⊆ 𝐵) → 𝐵 ≈ 𝐵) | 
| 27 | breq1 5146 | . . . . . . 7 ⊢ (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵 → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ≈ 𝐵 ↔ 𝐵 ≈ 𝐵)) | |
| 28 | 26, 27 | syl5ibrcom 247 | . . . . . 6 ⊢ ((𝐵 ∈ Fin ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ⊆ 𝐵) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵 → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ≈ 𝐵)) | 
| 29 | 24, 28 | impbid 212 | . . . . 5 ⊢ ((𝐵 ∈ Fin ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ⊆ 𝐵) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ≈ 𝐵 ↔ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵)) | 
| 30 | 5, 12, 29 | syl2anc 584 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋 ∈ 𝐵) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ≈ 𝐵 ↔ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵)) | 
| 31 | 15, 22, 30 | 3bitr3rd 310 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋 ∈ 𝐵) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵 ↔ (𝑂‘𝑋) = (♯‘𝐵))) | 
| 32 | 31 | pm5.32da 579 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) → ((𝑋 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵) ↔ (𝑋 ∈ 𝐵 ∧ (𝑂‘𝑋) = (♯‘𝐵)))) | 
| 33 | 4, 32 | bitrid 283 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) → (𝑋 ∈ 𝐸 ↔ (𝑋 ∈ 𝐵 ∧ (𝑂‘𝑋) = (♯‘𝐵)))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {crab 3436 ⊆ wss 3951 ifcif 4525 class class class wbr 5143 ↦ cmpt 5225 ran crn 5686 ‘cfv 6561 (class class class)co 7431 ≈ cen 8982 Fincfn 8985 0cc0 11155 ℤcz 12613 ♯chash 14369 Basecbs 17247 Grpcgrp 18951 .gcmg 19085 odcod 19542 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-oadd 8510 df-omul 8511 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-sup 9482 df-inf 9483 df-oi 9550 df-card 9979 df-acn 9982 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-z 12614 df-uz 12879 df-rp 13035 df-fz 13548 df-fl 13832 df-mod 13910 df-seq 14043 df-exp 14103 df-hash 14370 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-dvds 16291 df-0g 17486 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-grp 18954 df-minusg 18955 df-sbg 18956 df-mulg 19086 df-od 19546 | 
| This theorem is referenced by: iscygodd 19906 cyggexb 19917 | 
| Copyright terms: Public domain | W3C validator |