MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cyggenod Structured version   Visualization version   GIF version

Theorem cyggenod 19877
Description: An element is the generator of a finite group iff the order of the generator equals the order of the group. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
iscyg.1 𝐵 = (Base‘𝐺)
iscyg.2 · = (.g𝐺)
iscyg3.e 𝐸 = {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵}
cyggenod.o 𝑂 = (od‘𝐺)
Assertion
Ref Expression
cyggenod ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) → (𝑋𝐸 ↔ (𝑋𝐵 ∧ (𝑂𝑋) = (♯‘𝐵))))
Distinct variable groups:   𝑥,𝑛,𝐵   𝑛,𝑂   𝑛,𝑋,𝑥   𝑛,𝐺,𝑥   · ,𝑛,𝑥
Allowed substitution hints:   𝐸(𝑥,𝑛)   𝑂(𝑥)

Proof of Theorem cyggenod
StepHypRef Expression
1 iscyg.1 . . 3 𝐵 = (Base‘𝐺)
2 iscyg.2 . . 3 · = (.g𝐺)
3 iscyg3.e . . 3 𝐸 = {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵}
41, 2, 3iscyggen 19873 . 2 (𝑋𝐸 ↔ (𝑋𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵))
5 simplr 767 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋𝐵) → 𝐵 ∈ Fin)
6 simplll 773 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℤ) → 𝐺 ∈ Grp)
7 simpr 483 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
8 simplr 767 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℤ) → 𝑋𝐵)
91, 2mulgcl 19080 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑛 ∈ ℤ ∧ 𝑋𝐵) → (𝑛 · 𝑋) ∈ 𝐵)
106, 7, 8, 9syl3anc 1368 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℤ) → (𝑛 · 𝑋) ∈ 𝐵)
1110fmpttd 7128 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋𝐵) → (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)):ℤ⟶𝐵)
1211frnd 6735 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋𝐵) → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ⊆ 𝐵)
135, 12ssfid 9304 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋𝐵) → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ∈ Fin)
14 hashen 14359 . . . . 5 ((ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))) = (♯‘𝐵) ↔ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ≈ 𝐵))
1513, 5, 14syl2anc 582 . . . 4 (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋𝐵) → ((♯‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))) = (♯‘𝐵) ↔ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ≈ 𝐵))
16 cyggenod.o . . . . . . . 8 𝑂 = (od‘𝐺)
17 eqid 2725 . . . . . . . 8 (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))
181, 16, 2, 17dfod2 19557 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑂𝑋) = if(ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ∈ Fin, (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))), 0))
1918adantlr 713 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋𝐵) → (𝑂𝑋) = if(ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ∈ Fin, (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))), 0))
2013iftrued 4540 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋𝐵) → if(ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ∈ Fin, (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))), 0) = (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))))
2119, 20eqtr2d 2766 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋𝐵) → (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))) = (𝑂𝑋))
2221eqeq1d 2727 . . . 4 (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋𝐵) → ((♯‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))) = (♯‘𝐵) ↔ (𝑂𝑋) = (♯‘𝐵)))
23 fisseneq 9294 . . . . . . 7 ((𝐵 ∈ Fin ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ⊆ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ≈ 𝐵) → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵)
24233expia 1118 . . . . . 6 ((𝐵 ∈ Fin ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ⊆ 𝐵) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ≈ 𝐵 → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵))
25 enrefg 9014 . . . . . . . 8 (𝐵 ∈ Fin → 𝐵𝐵)
2625adantr 479 . . . . . . 7 ((𝐵 ∈ Fin ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ⊆ 𝐵) → 𝐵𝐵)
27 breq1 5155 . . . . . . 7 (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵 → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ≈ 𝐵𝐵𝐵))
2826, 27syl5ibrcom 246 . . . . . 6 ((𝐵 ∈ Fin ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ⊆ 𝐵) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵 → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ≈ 𝐵))
2924, 28impbid 211 . . . . 5 ((𝐵 ∈ Fin ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ⊆ 𝐵) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ≈ 𝐵 ↔ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵))
305, 12, 29syl2anc 582 . . . 4 (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋𝐵) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ≈ 𝐵 ↔ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵))
3115, 22, 303bitr3rd 309 . . 3 (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋𝐵) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵 ↔ (𝑂𝑋) = (♯‘𝐵)))
3231pm5.32da 577 . 2 ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) → ((𝑋𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵) ↔ (𝑋𝐵 ∧ (𝑂𝑋) = (♯‘𝐵))))
334, 32bitrid 282 1 ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) → (𝑋𝐸 ↔ (𝑋𝐵 ∧ (𝑂𝑋) = (♯‘𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  {crab 3418  wss 3946  ifcif 4532   class class class wbr 5152  cmpt 5235  ran crn 5682  cfv 6553  (class class class)co 7423  cen 8970  Fincfn 8973  0cc0 11154  cz 12605  chash 14342  Basecbs 17208  Grpcgrp 18923  .gcmg 19056  odcod 19517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5368  ax-pr 5432  ax-un 7745  ax-inf2 9680  ax-cnex 11210  ax-resscn 11211  ax-1cn 11212  ax-icn 11213  ax-addcl 11214  ax-addrcl 11215  ax-mulcl 11216  ax-mulrcl 11217  ax-mulcom 11218  ax-addass 11219  ax-mulass 11220  ax-distr 11221  ax-i2m1 11222  ax-1ne0 11223  ax-1rid 11224  ax-rnegex 11225  ax-rrecex 11226  ax-cnre 11227  ax-pre-lttri 11228  ax-pre-lttrn 11229  ax-pre-ltadd 11230  ax-pre-mulgt0 11231  ax-pre-sup 11232
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4325  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5579  df-eprel 5585  df-po 5593  df-so 5594  df-fr 5636  df-se 5637  df-we 5638  df-xp 5687  df-rel 5688  df-cnv 5689  df-co 5690  df-dm 5691  df-rn 5692  df-res 5693  df-ima 5694  df-pred 6311  df-ord 6378  df-on 6379  df-lim 6380  df-suc 6381  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-isom 6562  df-riota 7379  df-ov 7426  df-oprab 7427  df-mpo 7428  df-om 7876  df-1st 8002  df-2nd 8003  df-frecs 8295  df-wrecs 8326  df-recs 8400  df-rdg 8439  df-1o 8495  df-oadd 8499  df-omul 8500  df-er 8733  df-map 8856  df-en 8974  df-dom 8975  df-sdom 8976  df-fin 8977  df-sup 9481  df-inf 9482  df-oi 9549  df-card 9978  df-acn 9981  df-pnf 11296  df-mnf 11297  df-xr 11298  df-ltxr 11299  df-le 11300  df-sub 11492  df-neg 11493  df-div 11918  df-nn 12260  df-2 12322  df-3 12323  df-n0 12520  df-z 12606  df-uz 12870  df-rp 13024  df-fz 13534  df-fl 13807  df-mod 13885  df-seq 14017  df-exp 14077  df-hash 14343  df-cj 15099  df-re 15100  df-im 15101  df-sqrt 15235  df-abs 15236  df-dvds 16252  df-0g 17451  df-mgm 18628  df-sgrp 18707  df-mnd 18723  df-grp 18926  df-minusg 18927  df-sbg 18928  df-mulg 19057  df-od 19521
This theorem is referenced by:  iscygodd  19881  cyggexb  19892
  Copyright terms: Public domain W3C validator