![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cyggenod | Structured version Visualization version GIF version |
Description: An element is the generator of a finite group iff the order of the generator equals the order of the group. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
iscyg.1 | ⊢ 𝐵 = (Base‘𝐺) |
iscyg.2 | ⊢ · = (.g‘𝐺) |
iscyg3.e | ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} |
cyggenod.o | ⊢ 𝑂 = (od‘𝐺) |
Ref | Expression |
---|---|
cyggenod | ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) → (𝑋 ∈ 𝐸 ↔ (𝑋 ∈ 𝐵 ∧ (𝑂‘𝑋) = (♯‘𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscyg.1 | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | iscyg.2 | . . 3 ⊢ · = (.g‘𝐺) | |
3 | iscyg3.e | . . 3 ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} | |
4 | 1, 2, 3 | iscyggen 19873 | . 2 ⊢ (𝑋 ∈ 𝐸 ↔ (𝑋 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵)) |
5 | simplr 767 | . . . . . 6 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋 ∈ 𝐵) → 𝐵 ∈ Fin) | |
6 | simplll 773 | . . . . . . . . 9 ⊢ ((((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ ℤ) → 𝐺 ∈ Grp) | |
7 | simpr 483 | . . . . . . . . 9 ⊢ ((((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ) | |
8 | simplr 767 | . . . . . . . . 9 ⊢ ((((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ ℤ) → 𝑋 ∈ 𝐵) | |
9 | 1, 2 | mulgcl 19080 | . . . . . . . . 9 ⊢ ((𝐺 ∈ Grp ∧ 𝑛 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑛 · 𝑋) ∈ 𝐵) |
10 | 6, 7, 8, 9 | syl3anc 1368 | . . . . . . . 8 ⊢ ((((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ ℤ) → (𝑛 · 𝑋) ∈ 𝐵) |
11 | 10 | fmpttd 7128 | . . . . . . 7 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋 ∈ 𝐵) → (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)):ℤ⟶𝐵) |
12 | 11 | frnd 6735 | . . . . . 6 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋 ∈ 𝐵) → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ⊆ 𝐵) |
13 | 5, 12 | ssfid 9304 | . . . . 5 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋 ∈ 𝐵) → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ∈ Fin) |
14 | hashen 14359 | . . . . 5 ⊢ ((ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))) = (♯‘𝐵) ↔ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ≈ 𝐵)) | |
15 | 13, 5, 14 | syl2anc 582 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋 ∈ 𝐵) → ((♯‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))) = (♯‘𝐵) ↔ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ≈ 𝐵)) |
16 | cyggenod.o | . . . . . . . 8 ⊢ 𝑂 = (od‘𝐺) | |
17 | eqid 2725 | . . . . . . . 8 ⊢ (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) | |
18 | 1, 16, 2, 17 | dfod2 19557 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑂‘𝑋) = if(ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ∈ Fin, (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))), 0)) |
19 | 18 | adantlr 713 | . . . . . 6 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋 ∈ 𝐵) → (𝑂‘𝑋) = if(ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ∈ Fin, (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))), 0)) |
20 | 13 | iftrued 4540 | . . . . . 6 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋 ∈ 𝐵) → if(ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ∈ Fin, (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))), 0) = (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)))) |
21 | 19, 20 | eqtr2d 2766 | . . . . 5 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋 ∈ 𝐵) → (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))) = (𝑂‘𝑋)) |
22 | 21 | eqeq1d 2727 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋 ∈ 𝐵) → ((♯‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))) = (♯‘𝐵) ↔ (𝑂‘𝑋) = (♯‘𝐵))) |
23 | fisseneq 9294 | . . . . . . 7 ⊢ ((𝐵 ∈ Fin ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ⊆ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ≈ 𝐵) → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵) | |
24 | 23 | 3expia 1118 | . . . . . 6 ⊢ ((𝐵 ∈ Fin ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ⊆ 𝐵) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ≈ 𝐵 → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵)) |
25 | enrefg 9014 | . . . . . . . 8 ⊢ (𝐵 ∈ Fin → 𝐵 ≈ 𝐵) | |
26 | 25 | adantr 479 | . . . . . . 7 ⊢ ((𝐵 ∈ Fin ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ⊆ 𝐵) → 𝐵 ≈ 𝐵) |
27 | breq1 5155 | . . . . . . 7 ⊢ (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵 → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ≈ 𝐵 ↔ 𝐵 ≈ 𝐵)) | |
28 | 26, 27 | syl5ibrcom 246 | . . . . . 6 ⊢ ((𝐵 ∈ Fin ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ⊆ 𝐵) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵 → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ≈ 𝐵)) |
29 | 24, 28 | impbid 211 | . . . . 5 ⊢ ((𝐵 ∈ Fin ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ⊆ 𝐵) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ≈ 𝐵 ↔ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵)) |
30 | 5, 12, 29 | syl2anc 582 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋 ∈ 𝐵) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ≈ 𝐵 ↔ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵)) |
31 | 15, 22, 30 | 3bitr3rd 309 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋 ∈ 𝐵) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵 ↔ (𝑂‘𝑋) = (♯‘𝐵))) |
32 | 31 | pm5.32da 577 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) → ((𝑋 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵) ↔ (𝑋 ∈ 𝐵 ∧ (𝑂‘𝑋) = (♯‘𝐵)))) |
33 | 4, 32 | bitrid 282 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) → (𝑋 ∈ 𝐸 ↔ (𝑋 ∈ 𝐵 ∧ (𝑂‘𝑋) = (♯‘𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 {crab 3418 ⊆ wss 3946 ifcif 4532 class class class wbr 5152 ↦ cmpt 5235 ran crn 5682 ‘cfv 6553 (class class class)co 7423 ≈ cen 8970 Fincfn 8973 0cc0 11154 ℤcz 12605 ♯chash 14342 Basecbs 17208 Grpcgrp 18923 .gcmg 19056 odcod 19517 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5368 ax-pr 5432 ax-un 7745 ax-inf2 9680 ax-cnex 11210 ax-resscn 11211 ax-1cn 11212 ax-icn 11213 ax-addcl 11214 ax-addrcl 11215 ax-mulcl 11216 ax-mulrcl 11217 ax-mulcom 11218 ax-addass 11219 ax-mulass 11220 ax-distr 11221 ax-i2m1 11222 ax-1ne0 11223 ax-1rid 11224 ax-rnegex 11225 ax-rrecex 11226 ax-cnre 11227 ax-pre-lttri 11228 ax-pre-lttrn 11229 ax-pre-ltadd 11230 ax-pre-mulgt0 11231 ax-pre-sup 11232 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4325 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5579 df-eprel 5585 df-po 5593 df-so 5594 df-fr 5636 df-se 5637 df-we 5638 df-xp 5687 df-rel 5688 df-cnv 5689 df-co 5690 df-dm 5691 df-rn 5692 df-res 5693 df-ima 5694 df-pred 6311 df-ord 6378 df-on 6379 df-lim 6380 df-suc 6381 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-isom 6562 df-riota 7379 df-ov 7426 df-oprab 7427 df-mpo 7428 df-om 7876 df-1st 8002 df-2nd 8003 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-1o 8495 df-oadd 8499 df-omul 8500 df-er 8733 df-map 8856 df-en 8974 df-dom 8975 df-sdom 8976 df-fin 8977 df-sup 9481 df-inf 9482 df-oi 9549 df-card 9978 df-acn 9981 df-pnf 11296 df-mnf 11297 df-xr 11298 df-ltxr 11299 df-le 11300 df-sub 11492 df-neg 11493 df-div 11918 df-nn 12260 df-2 12322 df-3 12323 df-n0 12520 df-z 12606 df-uz 12870 df-rp 13024 df-fz 13534 df-fl 13807 df-mod 13885 df-seq 14017 df-exp 14077 df-hash 14343 df-cj 15099 df-re 15100 df-im 15101 df-sqrt 15235 df-abs 15236 df-dvds 16252 df-0g 17451 df-mgm 18628 df-sgrp 18707 df-mnd 18723 df-grp 18926 df-minusg 18927 df-sbg 18928 df-mulg 19057 df-od 19521 |
This theorem is referenced by: iscygodd 19881 cyggexb 19892 |
Copyright terms: Public domain | W3C validator |