![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cyggenod2 | Structured version Visualization version GIF version |
Description: In an infinite cyclic group, the generator must have infinite order, but this property no longer characterizes the generators. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
iscyg.1 | ⊢ 𝐵 = (Base‘𝐺) |
iscyg.2 | ⊢ · = (.g‘𝐺) |
iscyg3.e | ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} |
cyggenod.o | ⊢ 𝑂 = (od‘𝐺) |
Ref | Expression |
---|---|
cyggenod2 | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸) → (𝑂‘𝑋) = if(𝐵 ∈ Fin, (♯‘𝐵), 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscyg.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
2 | iscyg.2 | . . . . 5 ⊢ · = (.g‘𝐺) | |
3 | iscyg3.e | . . . . 5 ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} | |
4 | 1, 2, 3 | iscyggen 18749 | . . . 4 ⊢ (𝑋 ∈ 𝐸 ↔ (𝑋 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵)) |
5 | 4 | simplbi 490 | . . 3 ⊢ (𝑋 ∈ 𝐸 → 𝑋 ∈ 𝐵) |
6 | cyggenod.o | . . . 4 ⊢ 𝑂 = (od‘𝐺) | |
7 | eqid 2772 | . . . 4 ⊢ (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) | |
8 | 1, 6, 2, 7 | dfod2 18446 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑂‘𝑋) = if(ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ∈ Fin, (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))), 0)) |
9 | 5, 8 | sylan2 583 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸) → (𝑂‘𝑋) = if(ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ∈ Fin, (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))), 0)) |
10 | 4 | simprbi 489 | . . . . 5 ⊢ (𝑋 ∈ 𝐸 → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵) |
11 | 10 | adantl 474 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸) → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵) |
12 | 11 | eleq1d 2844 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ∈ Fin ↔ 𝐵 ∈ Fin)) |
13 | 11 | fveq2d 6497 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸) → (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))) = (♯‘𝐵)) |
14 | 12, 13 | ifbieq1d 4367 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸) → if(ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ∈ Fin, (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))), 0) = if(𝐵 ∈ Fin, (♯‘𝐵), 0)) |
15 | 9, 14 | eqtrd 2808 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸) → (𝑂‘𝑋) = if(𝐵 ∈ Fin, (♯‘𝐵), 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2050 {crab 3086 ifcif 4344 ↦ cmpt 5002 ran crn 5402 ‘cfv 6182 (class class class)co 6970 Fincfn 8300 0cc0 10329 ℤcz 11787 ♯chash 13499 Basecbs 16333 Grpcgrp 17885 .gcmg 18005 odcod 18408 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-inf2 8892 ax-cnex 10385 ax-resscn 10386 ax-1cn 10387 ax-icn 10388 ax-addcl 10389 ax-addrcl 10390 ax-mulcl 10391 ax-mulrcl 10392 ax-mulcom 10393 ax-addass 10394 ax-mulass 10395 ax-distr 10396 ax-i2m1 10397 ax-1ne0 10398 ax-1rid 10399 ax-rnegex 10400 ax-rrecex 10401 ax-cnre 10402 ax-pre-lttri 10403 ax-pre-lttrn 10404 ax-pre-ltadd 10405 ax-pre-mulgt0 10406 ax-pre-sup 10407 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-pss 3839 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-int 4744 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5306 df-eprel 5311 df-po 5320 df-so 5321 df-fr 5360 df-se 5361 df-we 5362 df-xp 5407 df-rel 5408 df-cnv 5409 df-co 5410 df-dm 5411 df-rn 5412 df-res 5413 df-ima 5414 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-isom 6191 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-om 7391 df-1st 7495 df-2nd 7496 df-wrecs 7744 df-recs 7806 df-rdg 7844 df-1o 7899 df-oadd 7903 df-omul 7904 df-er 8083 df-map 8202 df-en 8301 df-dom 8302 df-sdom 8303 df-fin 8304 df-sup 8695 df-inf 8696 df-oi 8763 df-card 9156 df-acn 9159 df-pnf 10470 df-mnf 10471 df-xr 10472 df-ltxr 10473 df-le 10474 df-sub 10666 df-neg 10667 df-div 11093 df-nn 11434 df-2 11497 df-3 11498 df-n0 11702 df-z 11788 df-uz 12053 df-rp 12199 df-fz 12703 df-fl 12971 df-mod 13047 df-seq 13179 df-exp 13239 df-hash 13500 df-cj 14313 df-re 14314 df-im 14315 df-sqrt 14449 df-abs 14450 df-dvds 15462 df-0g 16565 df-mgm 17704 df-sgrp 17746 df-mnd 17757 df-grp 17888 df-minusg 17889 df-sbg 17890 df-mulg 18006 df-od 18412 |
This theorem is referenced by: cyggex2 18765 cygznlem1 20409 |
Copyright terms: Public domain | W3C validator |