Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cyggenod2 | Structured version Visualization version GIF version |
Description: In an infinite cyclic group, the generator must have infinite order, but this property no longer characterizes the generators. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
iscyg.1 | ⊢ 𝐵 = (Base‘𝐺) |
iscyg.2 | ⊢ · = (.g‘𝐺) |
iscyg3.e | ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} |
cyggenod.o | ⊢ 𝑂 = (od‘𝐺) |
Ref | Expression |
---|---|
cyggenod2 | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸) → (𝑂‘𝑋) = if(𝐵 ∈ Fin, (♯‘𝐵), 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscyg.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
2 | iscyg.2 | . . . . 5 ⊢ · = (.g‘𝐺) | |
3 | iscyg3.e | . . . . 5 ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} | |
4 | 1, 2, 3 | iscyggen 19575 | . . . 4 ⊢ (𝑋 ∈ 𝐸 ↔ (𝑋 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵)) |
5 | 4 | simplbi 499 | . . 3 ⊢ (𝑋 ∈ 𝐸 → 𝑋 ∈ 𝐵) |
6 | cyggenod.o | . . . 4 ⊢ 𝑂 = (od‘𝐺) | |
7 | eqid 2737 | . . . 4 ⊢ (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) | |
8 | 1, 6, 2, 7 | dfod2 19267 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑂‘𝑋) = if(ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ∈ Fin, (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))), 0)) |
9 | 5, 8 | sylan2 594 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸) → (𝑂‘𝑋) = if(ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ∈ Fin, (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))), 0)) |
10 | 4 | simprbi 498 | . . . . 5 ⊢ (𝑋 ∈ 𝐸 → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵) |
11 | 10 | adantl 483 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸) → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵) |
12 | 11 | eleq1d 2822 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ∈ Fin ↔ 𝐵 ∈ Fin)) |
13 | 11 | fveq2d 6833 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸) → (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))) = (♯‘𝐵)) |
14 | 12, 13 | ifbieq1d 4501 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸) → if(ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ∈ Fin, (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))), 0) = if(𝐵 ∈ Fin, (♯‘𝐵), 0)) |
15 | 9, 14 | eqtrd 2777 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸) → (𝑂‘𝑋) = if(𝐵 ∈ Fin, (♯‘𝐵), 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1541 ∈ wcel 2106 {crab 3404 ifcif 4477 ↦ cmpt 5179 ran crn 5625 ‘cfv 6483 (class class class)co 7341 Fincfn 8808 0cc0 10976 ℤcz 12424 ♯chash 14149 Basecbs 17009 Grpcgrp 18673 .gcmg 18796 odcod 19228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5233 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 ax-inf2 9502 ax-cnex 11032 ax-resscn 11033 ax-1cn 11034 ax-icn 11035 ax-addcl 11036 ax-addrcl 11037 ax-mulcl 11038 ax-mulrcl 11039 ax-mulcom 11040 ax-addass 11041 ax-mulass 11042 ax-distr 11043 ax-i2m1 11044 ax-1ne0 11045 ax-1rid 11046 ax-rnegex 11047 ax-rrecex 11048 ax-cnre 11049 ax-pre-lttri 11050 ax-pre-lttrn 11051 ax-pre-ltadd 11052 ax-pre-mulgt0 11053 ax-pre-sup 11054 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-pss 3920 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-int 4899 df-iun 4947 df-br 5097 df-opab 5159 df-mpt 5180 df-tr 5214 df-id 5522 df-eprel 5528 df-po 5536 df-so 5537 df-fr 5579 df-se 5580 df-we 5581 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-pred 6242 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-isom 6492 df-riota 7297 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7785 df-1st 7903 df-2nd 7904 df-frecs 8171 df-wrecs 8202 df-recs 8276 df-rdg 8315 df-1o 8371 df-oadd 8375 df-omul 8376 df-er 8573 df-map 8692 df-en 8809 df-dom 8810 df-sdom 8811 df-fin 8812 df-sup 9303 df-inf 9304 df-oi 9371 df-card 9800 df-acn 9803 df-pnf 11116 df-mnf 11117 df-xr 11118 df-ltxr 11119 df-le 11120 df-sub 11312 df-neg 11313 df-div 11738 df-nn 12079 df-2 12141 df-3 12142 df-n0 12339 df-z 12425 df-uz 12688 df-rp 12836 df-fz 13345 df-fl 13617 df-mod 13695 df-seq 13827 df-exp 13888 df-hash 14150 df-cj 14909 df-re 14910 df-im 14911 df-sqrt 15045 df-abs 15046 df-dvds 16063 df-0g 17249 df-mgm 18423 df-sgrp 18472 df-mnd 18483 df-grp 18676 df-minusg 18677 df-sbg 18678 df-mulg 18797 df-od 19232 |
This theorem is referenced by: cyggex2 19592 cygznlem1 20879 |
Copyright terms: Public domain | W3C validator |