MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cygznlem3 Structured version   Visualization version   GIF version

Theorem cygznlem3 21535
Description: A cyclic group with 𝑛 elements is isomorphic to ℤ / 𝑛. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
cygzn.b 𝐵 = (Base‘𝐺)
cygzn.n 𝑁 = if(𝐵 ∈ Fin, (♯‘𝐵), 0)
cygzn.y 𝑌 = (ℤ/nℤ‘𝑁)
cygzn.m · = (.g𝐺)
cygzn.l 𝐿 = (ℤRHom‘𝑌)
cygzn.e 𝐸 = {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵}
cygzn.g (𝜑𝐺 ∈ CycGrp)
cygzn.x (𝜑𝑋𝐸)
cygzn.f 𝐹 = ran (𝑚 ∈ ℤ ↦ ⟨(𝐿𝑚), (𝑚 · 𝑋)⟩)
Assertion
Ref Expression
cygznlem3 (𝜑𝐺𝑔 𝑌)
Distinct variable groups:   𝑚,𝑛,𝑥,𝐵   𝑚,𝐺,𝑛,𝑥   · ,𝑚,𝑛,𝑥   𝑚,𝑌,𝑛,𝑥   𝑚,𝐿,𝑛,𝑥   𝑥,𝑁   𝜑,𝑚   𝑛,𝐹,𝑥   𝑚,𝑋,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝐸(𝑥,𝑚,𝑛)   𝐹(𝑚)   𝑁(𝑚,𝑛)

Proof of Theorem cygznlem3
Dummy variables 𝑎 𝑏 𝑖 𝑗 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . 4 (Base‘𝑌) = (Base‘𝑌)
2 cygzn.b . . . 4 𝐵 = (Base‘𝐺)
3 eqid 2736 . . . 4 (+g𝑌) = (+g𝑌)
4 eqid 2736 . . . 4 (+g𝐺) = (+g𝐺)
5 cygzn.n . . . . . 6 𝑁 = if(𝐵 ∈ Fin, (♯‘𝐵), 0)
6 hashcl 14379 . . . . . . . 8 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
76adantl 481 . . . . . . 7 ((𝜑𝐵 ∈ Fin) → (♯‘𝐵) ∈ ℕ0)
8 0nn0 12521 . . . . . . . 8 0 ∈ ℕ0
98a1i 11 . . . . . . 7 ((𝜑 ∧ ¬ 𝐵 ∈ Fin) → 0 ∈ ℕ0)
107, 9ifclda 4541 . . . . . 6 (𝜑 → if(𝐵 ∈ Fin, (♯‘𝐵), 0) ∈ ℕ0)
115, 10eqeltrid 2839 . . . . 5 (𝜑𝑁 ∈ ℕ0)
12 cygzn.y . . . . . 6 𝑌 = (ℤ/nℤ‘𝑁)
1312zncrng 21510 . . . . 5 (𝑁 ∈ ℕ0𝑌 ∈ CRing)
14 crngring 20210 . . . . 5 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
15 ringgrp 20203 . . . . 5 (𝑌 ∈ Ring → 𝑌 ∈ Grp)
1611, 13, 14, 154syl 19 . . . 4 (𝜑𝑌 ∈ Grp)
17 cygzn.g . . . . 5 (𝜑𝐺 ∈ CycGrp)
18 cyggrp 19876 . . . . 5 (𝐺 ∈ CycGrp → 𝐺 ∈ Grp)
1917, 18syl 17 . . . 4 (𝜑𝐺 ∈ Grp)
20 cygzn.m . . . . 5 · = (.g𝐺)
21 cygzn.l . . . . 5 𝐿 = (ℤRHom‘𝑌)
22 cygzn.e . . . . 5 𝐸 = {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵}
23 cygzn.x . . . . 5 (𝜑𝑋𝐸)
24 cygzn.f . . . . 5 𝐹 = ran (𝑚 ∈ ℤ ↦ ⟨(𝐿𝑚), (𝑚 · 𝑋)⟩)
252, 5, 12, 20, 21, 22, 17, 23, 24cygznlem2a 21533 . . . 4 (𝜑𝐹:(Base‘𝑌)⟶𝐵)
2612, 1, 21znzrhfo 21513 . . . . . . . 8 (𝑁 ∈ ℕ0𝐿:ℤ–onto→(Base‘𝑌))
2711, 26syl 17 . . . . . . 7 (𝜑𝐿:ℤ–onto→(Base‘𝑌))
28 foelrn 7102 . . . . . . 7 ((𝐿:ℤ–onto→(Base‘𝑌) ∧ 𝑎 ∈ (Base‘𝑌)) → ∃𝑖 ∈ ℤ 𝑎 = (𝐿𝑖))
2927, 28sylan 580 . . . . . 6 ((𝜑𝑎 ∈ (Base‘𝑌)) → ∃𝑖 ∈ ℤ 𝑎 = (𝐿𝑖))
30 foelrn 7102 . . . . . . 7 ((𝐿:ℤ–onto→(Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → ∃𝑗 ∈ ℤ 𝑏 = (𝐿𝑗))
3127, 30sylan 580 . . . . . 6 ((𝜑𝑏 ∈ (Base‘𝑌)) → ∃𝑗 ∈ ℤ 𝑏 = (𝐿𝑗))
3229, 31anim12dan 619 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌))) → (∃𝑖 ∈ ℤ 𝑎 = (𝐿𝑖) ∧ ∃𝑗 ∈ ℤ 𝑏 = (𝐿𝑗)))
33 reeanv 3217 . . . . . . 7 (∃𝑖 ∈ ℤ ∃𝑗 ∈ ℤ (𝑎 = (𝐿𝑖) ∧ 𝑏 = (𝐿𝑗)) ↔ (∃𝑖 ∈ ℤ 𝑎 = (𝐿𝑖) ∧ ∃𝑗 ∈ ℤ 𝑏 = (𝐿𝑗)))
3419adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → 𝐺 ∈ Grp)
35 simprl 770 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → 𝑖 ∈ ℤ)
36 simprr 772 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → 𝑗 ∈ ℤ)
372, 20, 22iscyggen 19866 . . . . . . . . . . . . . 14 (𝑋𝐸 ↔ (𝑋𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵))
3837simplbi 497 . . . . . . . . . . . . 13 (𝑋𝐸𝑋𝐵)
3923, 38syl 17 . . . . . . . . . . . 12 (𝜑𝑋𝐵)
4039adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → 𝑋𝐵)
412, 20, 4mulgdir 19094 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑖 + 𝑗) · 𝑋) = ((𝑖 · 𝑋)(+g𝐺)(𝑗 · 𝑋)))
4234, 35, 36, 40, 41syl13anc 1374 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → ((𝑖 + 𝑗) · 𝑋) = ((𝑖 · 𝑋)(+g𝐺)(𝑗 · 𝑋)))
4311, 13syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑌 ∈ CRing)
4421zrhrhm 21477 . . . . . . . . . . . . . . 15 (𝑌 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑌))
45 rhmghm 20449 . . . . . . . . . . . . . . 15 (𝐿 ∈ (ℤring RingHom 𝑌) → 𝐿 ∈ (ℤring GrpHom 𝑌))
4643, 14, 44, 454syl 19 . . . . . . . . . . . . . 14 (𝜑𝐿 ∈ (ℤring GrpHom 𝑌))
4746adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → 𝐿 ∈ (ℤring GrpHom 𝑌))
48 zringbas 21419 . . . . . . . . . . . . . 14 ℤ = (Base‘ℤring)
49 zringplusg 21420 . . . . . . . . . . . . . 14 + = (+g‘ℤring)
5048, 49, 3ghmlin 19209 . . . . . . . . . . . . 13 ((𝐿 ∈ (ℤring GrpHom 𝑌) ∧ 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝐿‘(𝑖 + 𝑗)) = ((𝐿𝑖)(+g𝑌)(𝐿𝑗)))
5147, 35, 36, 50syl3anc 1373 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → (𝐿‘(𝑖 + 𝑗)) = ((𝐿𝑖)(+g𝑌)(𝐿𝑗)))
5251fveq2d 6885 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → (𝐹‘(𝐿‘(𝑖 + 𝑗))) = (𝐹‘((𝐿𝑖)(+g𝑌)(𝐿𝑗))))
53 zaddcl 12637 . . . . . . . . . . . 12 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑖 + 𝑗) ∈ ℤ)
542, 5, 12, 20, 21, 22, 17, 23, 24cygznlem2 21534 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 + 𝑗) ∈ ℤ) → (𝐹‘(𝐿‘(𝑖 + 𝑗))) = ((𝑖 + 𝑗) · 𝑋))
5553, 54sylan2 593 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → (𝐹‘(𝐿‘(𝑖 + 𝑗))) = ((𝑖 + 𝑗) · 𝑋))
5652, 55eqtr3d 2773 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → (𝐹‘((𝐿𝑖)(+g𝑌)(𝐿𝑗))) = ((𝑖 + 𝑗) · 𝑋))
572, 5, 12, 20, 21, 22, 17, 23, 24cygznlem2 21534 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ℤ) → (𝐹‘(𝐿𝑖)) = (𝑖 · 𝑋))
5857adantrr 717 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → (𝐹‘(𝐿𝑖)) = (𝑖 · 𝑋))
592, 5, 12, 20, 21, 22, 17, 23, 24cygznlem2 21534 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℤ) → (𝐹‘(𝐿𝑗)) = (𝑗 · 𝑋))
6059adantrl 716 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → (𝐹‘(𝐿𝑗)) = (𝑗 · 𝑋))
6158, 60oveq12d 7428 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → ((𝐹‘(𝐿𝑖))(+g𝐺)(𝐹‘(𝐿𝑗))) = ((𝑖 · 𝑋)(+g𝐺)(𝑗 · 𝑋)))
6242, 56, 613eqtr4d 2781 . . . . . . . . 9 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → (𝐹‘((𝐿𝑖)(+g𝑌)(𝐿𝑗))) = ((𝐹‘(𝐿𝑖))(+g𝐺)(𝐹‘(𝐿𝑗))))
63 oveq12 7419 . . . . . . . . . . 11 ((𝑎 = (𝐿𝑖) ∧ 𝑏 = (𝐿𝑗)) → (𝑎(+g𝑌)𝑏) = ((𝐿𝑖)(+g𝑌)(𝐿𝑗)))
6463fveq2d 6885 . . . . . . . . . 10 ((𝑎 = (𝐿𝑖) ∧ 𝑏 = (𝐿𝑗)) → (𝐹‘(𝑎(+g𝑌)𝑏)) = (𝐹‘((𝐿𝑖)(+g𝑌)(𝐿𝑗))))
65 fveq2 6881 . . . . . . . . . . 11 (𝑎 = (𝐿𝑖) → (𝐹𝑎) = (𝐹‘(𝐿𝑖)))
66 fveq2 6881 . . . . . . . . . . 11 (𝑏 = (𝐿𝑗) → (𝐹𝑏) = (𝐹‘(𝐿𝑗)))
6765, 66oveqan12d 7429 . . . . . . . . . 10 ((𝑎 = (𝐿𝑖) ∧ 𝑏 = (𝐿𝑗)) → ((𝐹𝑎)(+g𝐺)(𝐹𝑏)) = ((𝐹‘(𝐿𝑖))(+g𝐺)(𝐹‘(𝐿𝑗))))
6864, 67eqeq12d 2752 . . . . . . . . 9 ((𝑎 = (𝐿𝑖) ∧ 𝑏 = (𝐿𝑗)) → ((𝐹‘(𝑎(+g𝑌)𝑏)) = ((𝐹𝑎)(+g𝐺)(𝐹𝑏)) ↔ (𝐹‘((𝐿𝑖)(+g𝑌)(𝐿𝑗))) = ((𝐹‘(𝐿𝑖))(+g𝐺)(𝐹‘(𝐿𝑗)))))
6962, 68syl5ibrcom 247 . . . . . . . 8 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → ((𝑎 = (𝐿𝑖) ∧ 𝑏 = (𝐿𝑗)) → (𝐹‘(𝑎(+g𝑌)𝑏)) = ((𝐹𝑎)(+g𝐺)(𝐹𝑏))))
7069rexlimdvva 3202 . . . . . . 7 (𝜑 → (∃𝑖 ∈ ℤ ∃𝑗 ∈ ℤ (𝑎 = (𝐿𝑖) ∧ 𝑏 = (𝐿𝑗)) → (𝐹‘(𝑎(+g𝑌)𝑏)) = ((𝐹𝑎)(+g𝐺)(𝐹𝑏))))
7133, 70biimtrrid 243 . . . . . 6 (𝜑 → ((∃𝑖 ∈ ℤ 𝑎 = (𝐿𝑖) ∧ ∃𝑗 ∈ ℤ 𝑏 = (𝐿𝑗)) → (𝐹‘(𝑎(+g𝑌)𝑏)) = ((𝐹𝑎)(+g𝐺)(𝐹𝑏))))
7271imp 406 . . . . 5 ((𝜑 ∧ (∃𝑖 ∈ ℤ 𝑎 = (𝐿𝑖) ∧ ∃𝑗 ∈ ℤ 𝑏 = (𝐿𝑗))) → (𝐹‘(𝑎(+g𝑌)𝑏)) = ((𝐹𝑎)(+g𝐺)(𝐹𝑏)))
7332, 72syldan 591 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌))) → (𝐹‘(𝑎(+g𝑌)𝑏)) = ((𝐹𝑎)(+g𝐺)(𝐹𝑏)))
741, 2, 3, 4, 16, 19, 25, 73isghmd 19213 . . 3 (𝜑𝐹 ∈ (𝑌 GrpHom 𝐺))
7558, 60eqeq12d 2752 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → ((𝐹‘(𝐿𝑖)) = (𝐹‘(𝐿𝑗)) ↔ (𝑖 · 𝑋) = (𝑗 · 𝑋)))
762, 5, 12, 20, 21, 22, 17, 23cygznlem1 21532 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → ((𝐿𝑖) = (𝐿𝑗) ↔ (𝑖 · 𝑋) = (𝑗 · 𝑋)))
7775, 76bitr4d 282 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → ((𝐹‘(𝐿𝑖)) = (𝐹‘(𝐿𝑗)) ↔ (𝐿𝑖) = (𝐿𝑗)))
7877biimpd 229 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → ((𝐹‘(𝐿𝑖)) = (𝐹‘(𝐿𝑗)) → (𝐿𝑖) = (𝐿𝑗)))
7965, 66eqeqan12d 2750 . . . . . . . . . . . 12 ((𝑎 = (𝐿𝑖) ∧ 𝑏 = (𝐿𝑗)) → ((𝐹𝑎) = (𝐹𝑏) ↔ (𝐹‘(𝐿𝑖)) = (𝐹‘(𝐿𝑗))))
80 eqeq12 2753 . . . . . . . . . . . 12 ((𝑎 = (𝐿𝑖) ∧ 𝑏 = (𝐿𝑗)) → (𝑎 = 𝑏 ↔ (𝐿𝑖) = (𝐿𝑗)))
8179, 80imbi12d 344 . . . . . . . . . . 11 ((𝑎 = (𝐿𝑖) ∧ 𝑏 = (𝐿𝑗)) → (((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏) ↔ ((𝐹‘(𝐿𝑖)) = (𝐹‘(𝐿𝑗)) → (𝐿𝑖) = (𝐿𝑗))))
8278, 81syl5ibrcom 247 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → ((𝑎 = (𝐿𝑖) ∧ 𝑏 = (𝐿𝑗)) → ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏)))
8382rexlimdvva 3202 . . . . . . . . 9 (𝜑 → (∃𝑖 ∈ ℤ ∃𝑗 ∈ ℤ (𝑎 = (𝐿𝑖) ∧ 𝑏 = (𝐿𝑗)) → ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏)))
8433, 83biimtrrid 243 . . . . . . . 8 (𝜑 → ((∃𝑖 ∈ ℤ 𝑎 = (𝐿𝑖) ∧ ∃𝑗 ∈ ℤ 𝑏 = (𝐿𝑗)) → ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏)))
8584imp 406 . . . . . . 7 ((𝜑 ∧ (∃𝑖 ∈ ℤ 𝑎 = (𝐿𝑖) ∧ ∃𝑗 ∈ ℤ 𝑏 = (𝐿𝑗))) → ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏))
8632, 85syldan 591 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌))) → ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏))
8786ralrimivva 3188 . . . . 5 (𝜑 → ∀𝑎 ∈ (Base‘𝑌)∀𝑏 ∈ (Base‘𝑌)((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏))
88 dff13 7252 . . . . 5 (𝐹:(Base‘𝑌)–1-1𝐵 ↔ (𝐹:(Base‘𝑌)⟶𝐵 ∧ ∀𝑎 ∈ (Base‘𝑌)∀𝑏 ∈ (Base‘𝑌)((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏)))
8925, 87, 88sylanbrc 583 . . . 4 (𝜑𝐹:(Base‘𝑌)–1-1𝐵)
902, 20, 22iscyggen2 19867 . . . . . . . . 9 (𝐺 ∈ Grp → (𝑋𝐸 ↔ (𝑋𝐵 ∧ ∀𝑧𝐵𝑛 ∈ ℤ 𝑧 = (𝑛 · 𝑋))))
9119, 90syl 17 . . . . . . . 8 (𝜑 → (𝑋𝐸 ↔ (𝑋𝐵 ∧ ∀𝑧𝐵𝑛 ∈ ℤ 𝑧 = (𝑛 · 𝑋))))
9223, 91mpbid 232 . . . . . . 7 (𝜑 → (𝑋𝐵 ∧ ∀𝑧𝐵𝑛 ∈ ℤ 𝑧 = (𝑛 · 𝑋)))
9392simprd 495 . . . . . 6 (𝜑 → ∀𝑧𝐵𝑛 ∈ ℤ 𝑧 = (𝑛 · 𝑋))
94 oveq1 7417 . . . . . . . . . 10 (𝑛 = 𝑗 → (𝑛 · 𝑋) = (𝑗 · 𝑋))
9594eqeq2d 2747 . . . . . . . . 9 (𝑛 = 𝑗 → (𝑧 = (𝑛 · 𝑋) ↔ 𝑧 = (𝑗 · 𝑋)))
9695cbvrexvw 3225 . . . . . . . 8 (∃𝑛 ∈ ℤ 𝑧 = (𝑛 · 𝑋) ↔ ∃𝑗 ∈ ℤ 𝑧 = (𝑗 · 𝑋))
9727adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑧𝐵) → 𝐿:ℤ–onto→(Base‘𝑌))
98 fof 6795 . . . . . . . . . . . . 13 (𝐿:ℤ–onto→(Base‘𝑌) → 𝐿:ℤ⟶(Base‘𝑌))
9997, 98syl 17 . . . . . . . . . . . 12 ((𝜑𝑧𝐵) → 𝐿:ℤ⟶(Base‘𝑌))
10099ffvelcdmda 7079 . . . . . . . . . . 11 (((𝜑𝑧𝐵) ∧ 𝑗 ∈ ℤ) → (𝐿𝑗) ∈ (Base‘𝑌))
10159adantlr 715 . . . . . . . . . . . 12 (((𝜑𝑧𝐵) ∧ 𝑗 ∈ ℤ) → (𝐹‘(𝐿𝑗)) = (𝑗 · 𝑋))
102101eqcomd 2742 . . . . . . . . . . 11 (((𝜑𝑧𝐵) ∧ 𝑗 ∈ ℤ) → (𝑗 · 𝑋) = (𝐹‘(𝐿𝑗)))
103 fveq2 6881 . . . . . . . . . . . 12 (𝑎 = (𝐿𝑗) → (𝐹𝑎) = (𝐹‘(𝐿𝑗)))
104103rspceeqv 3629 . . . . . . . . . . 11 (((𝐿𝑗) ∈ (Base‘𝑌) ∧ (𝑗 · 𝑋) = (𝐹‘(𝐿𝑗))) → ∃𝑎 ∈ (Base‘𝑌)(𝑗 · 𝑋) = (𝐹𝑎))
105100, 102, 104syl2anc 584 . . . . . . . . . 10 (((𝜑𝑧𝐵) ∧ 𝑗 ∈ ℤ) → ∃𝑎 ∈ (Base‘𝑌)(𝑗 · 𝑋) = (𝐹𝑎))
106 eqeq1 2740 . . . . . . . . . . 11 (𝑧 = (𝑗 · 𝑋) → (𝑧 = (𝐹𝑎) ↔ (𝑗 · 𝑋) = (𝐹𝑎)))
107106rexbidv 3165 . . . . . . . . . 10 (𝑧 = (𝑗 · 𝑋) → (∃𝑎 ∈ (Base‘𝑌)𝑧 = (𝐹𝑎) ↔ ∃𝑎 ∈ (Base‘𝑌)(𝑗 · 𝑋) = (𝐹𝑎)))
108105, 107syl5ibrcom 247 . . . . . . . . 9 (((𝜑𝑧𝐵) ∧ 𝑗 ∈ ℤ) → (𝑧 = (𝑗 · 𝑋) → ∃𝑎 ∈ (Base‘𝑌)𝑧 = (𝐹𝑎)))
109108rexlimdva 3142 . . . . . . . 8 ((𝜑𝑧𝐵) → (∃𝑗 ∈ ℤ 𝑧 = (𝑗 · 𝑋) → ∃𝑎 ∈ (Base‘𝑌)𝑧 = (𝐹𝑎)))
11096, 109biimtrid 242 . . . . . . 7 ((𝜑𝑧𝐵) → (∃𝑛 ∈ ℤ 𝑧 = (𝑛 · 𝑋) → ∃𝑎 ∈ (Base‘𝑌)𝑧 = (𝐹𝑎)))
111110ralimdva 3153 . . . . . 6 (𝜑 → (∀𝑧𝐵𝑛 ∈ ℤ 𝑧 = (𝑛 · 𝑋) → ∀𝑧𝐵𝑎 ∈ (Base‘𝑌)𝑧 = (𝐹𝑎)))
11293, 111mpd 15 . . . . 5 (𝜑 → ∀𝑧𝐵𝑎 ∈ (Base‘𝑌)𝑧 = (𝐹𝑎))
113 dffo3 7097 . . . . 5 (𝐹:(Base‘𝑌)–onto𝐵 ↔ (𝐹:(Base‘𝑌)⟶𝐵 ∧ ∀𝑧𝐵𝑎 ∈ (Base‘𝑌)𝑧 = (𝐹𝑎)))
11425, 112, 113sylanbrc 583 . . . 4 (𝜑𝐹:(Base‘𝑌)–onto𝐵)
115 df-f1o 6543 . . . 4 (𝐹:(Base‘𝑌)–1-1-onto𝐵 ↔ (𝐹:(Base‘𝑌)–1-1𝐵𝐹:(Base‘𝑌)–onto𝐵))
11689, 114, 115sylanbrc 583 . . 3 (𝜑𝐹:(Base‘𝑌)–1-1-onto𝐵)
1171, 2isgim 19250 . . 3 (𝐹 ∈ (𝑌 GrpIso 𝐺) ↔ (𝐹 ∈ (𝑌 GrpHom 𝐺) ∧ 𝐹:(Base‘𝑌)–1-1-onto𝐵))
11874, 116, 117sylanbrc 583 . 2 (𝜑𝐹 ∈ (𝑌 GrpIso 𝐺))
119 brgici 19259 . 2 (𝐹 ∈ (𝑌 GrpIso 𝐺) → 𝑌𝑔 𝐺)
120 gicsym 19263 . 2 (𝑌𝑔 𝐺𝐺𝑔 𝑌)
121118, 119, 1203syl 18 1 (𝜑𝐺𝑔 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052  wrex 3061  {crab 3420  ifcif 4505  cop 4612   class class class wbr 5124  cmpt 5206  ran crn 5660  wf 6532  1-1wf1 6533  ontowfo 6534  1-1-ontowf1o 6535  cfv 6536  (class class class)co 7410  Fincfn 8964  0cc0 11134   + caddc 11137  0cn0 12506  cz 12593  chash 14353  Basecbs 17233  +gcplusg 17276  Grpcgrp 18921  .gcmg 19055   GrpHom cghm 19200   GrpIso cgim 19245  𝑔 cgic 19246  CycGrpccyg 19863  Ringcrg 20198  CRingccrg 20199   RingHom crh 20434  ringczring 21412  ℤRHomczrh 21465  ℤ/nczn 21468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213  ax-mulf 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-oadd 8489  df-omul 8490  df-er 8724  df-ec 8726  df-qs 8730  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-acn 9961  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-rp 13014  df-fz 13530  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-dvds 16278  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-0g 17460  df-imas 17527  df-qus 17528  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-nsg 19112  df-eqg 19113  df-ghm 19201  df-gim 19247  df-gic 19248  df-od 19514  df-cmn 19768  df-abl 19769  df-cyg 19864  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-cring 20201  df-oppr 20302  df-dvdsr 20322  df-rhm 20437  df-subrng 20511  df-subrg 20535  df-lmod 20824  df-lss 20894  df-lsp 20934  df-sra 21136  df-rgmod 21137  df-lidl 21174  df-rsp 21175  df-2idl 21216  df-cnfld 21321  df-zring 21413  df-zrh 21469  df-zn 21472
This theorem is referenced by:  cygzn  21536
  Copyright terms: Public domain W3C validator