MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cygznlem3 Structured version   Visualization version   GIF version

Theorem cygznlem3 20689
Description: A cyclic group with 𝑛 elements is isomorphic to ℤ / 𝑛. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
cygzn.b 𝐵 = (Base‘𝐺)
cygzn.n 𝑁 = if(𝐵 ∈ Fin, (♯‘𝐵), 0)
cygzn.y 𝑌 = (ℤ/nℤ‘𝑁)
cygzn.m · = (.g𝐺)
cygzn.l 𝐿 = (ℤRHom‘𝑌)
cygzn.e 𝐸 = {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵}
cygzn.g (𝜑𝐺 ∈ CycGrp)
cygzn.x (𝜑𝑋𝐸)
cygzn.f 𝐹 = ran (𝑚 ∈ ℤ ↦ ⟨(𝐿𝑚), (𝑚 · 𝑋)⟩)
Assertion
Ref Expression
cygznlem3 (𝜑𝐺𝑔 𝑌)
Distinct variable groups:   𝑚,𝑛,𝑥,𝐵   𝑚,𝐺,𝑛,𝑥   · ,𝑚,𝑛,𝑥   𝑚,𝑌,𝑛,𝑥   𝑚,𝐿,𝑛,𝑥   𝑥,𝑁   𝜑,𝑚   𝑛,𝐹,𝑥   𝑚,𝑋,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝐸(𝑥,𝑚,𝑛)   𝐹(𝑚)   𝑁(𝑚,𝑛)

Proof of Theorem cygznlem3
Dummy variables 𝑎 𝑏 𝑖 𝑗 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . 4 (Base‘𝑌) = (Base‘𝑌)
2 cygzn.b . . . 4 𝐵 = (Base‘𝐺)
3 eqid 2738 . . . 4 (+g𝑌) = (+g𝑌)
4 eqid 2738 . . . 4 (+g𝐺) = (+g𝐺)
5 cygzn.n . . . . . 6 𝑁 = if(𝐵 ∈ Fin, (♯‘𝐵), 0)
6 hashcl 13999 . . . . . . . 8 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
76adantl 481 . . . . . . 7 ((𝜑𝐵 ∈ Fin) → (♯‘𝐵) ∈ ℕ0)
8 0nn0 12178 . . . . . . . 8 0 ∈ ℕ0
98a1i 11 . . . . . . 7 ((𝜑 ∧ ¬ 𝐵 ∈ Fin) → 0 ∈ ℕ0)
107, 9ifclda 4491 . . . . . 6 (𝜑 → if(𝐵 ∈ Fin, (♯‘𝐵), 0) ∈ ℕ0)
115, 10eqeltrid 2843 . . . . 5 (𝜑𝑁 ∈ ℕ0)
12 cygzn.y . . . . . 6 𝑌 = (ℤ/nℤ‘𝑁)
1312zncrng 20664 . . . . 5 (𝑁 ∈ ℕ0𝑌 ∈ CRing)
14 crngring 19710 . . . . 5 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
15 ringgrp 19703 . . . . 5 (𝑌 ∈ Ring → 𝑌 ∈ Grp)
1611, 13, 14, 154syl 19 . . . 4 (𝜑𝑌 ∈ Grp)
17 cygzn.g . . . . 5 (𝜑𝐺 ∈ CycGrp)
18 cyggrp 19405 . . . . 5 (𝐺 ∈ CycGrp → 𝐺 ∈ Grp)
1917, 18syl 17 . . . 4 (𝜑𝐺 ∈ Grp)
20 cygzn.m . . . . 5 · = (.g𝐺)
21 cygzn.l . . . . 5 𝐿 = (ℤRHom‘𝑌)
22 cygzn.e . . . . 5 𝐸 = {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵}
23 cygzn.x . . . . 5 (𝜑𝑋𝐸)
24 cygzn.f . . . . 5 𝐹 = ran (𝑚 ∈ ℤ ↦ ⟨(𝐿𝑚), (𝑚 · 𝑋)⟩)
252, 5, 12, 20, 21, 22, 17, 23, 24cygznlem2a 20687 . . . 4 (𝜑𝐹:(Base‘𝑌)⟶𝐵)
2612, 1, 21znzrhfo 20667 . . . . . . . 8 (𝑁 ∈ ℕ0𝐿:ℤ–onto→(Base‘𝑌))
2711, 26syl 17 . . . . . . 7 (𝜑𝐿:ℤ–onto→(Base‘𝑌))
28 foelrn 6964 . . . . . . 7 ((𝐿:ℤ–onto→(Base‘𝑌) ∧ 𝑎 ∈ (Base‘𝑌)) → ∃𝑖 ∈ ℤ 𝑎 = (𝐿𝑖))
2927, 28sylan 579 . . . . . 6 ((𝜑𝑎 ∈ (Base‘𝑌)) → ∃𝑖 ∈ ℤ 𝑎 = (𝐿𝑖))
30 foelrn 6964 . . . . . . 7 ((𝐿:ℤ–onto→(Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → ∃𝑗 ∈ ℤ 𝑏 = (𝐿𝑗))
3127, 30sylan 579 . . . . . 6 ((𝜑𝑏 ∈ (Base‘𝑌)) → ∃𝑗 ∈ ℤ 𝑏 = (𝐿𝑗))
3229, 31anim12dan 618 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌))) → (∃𝑖 ∈ ℤ 𝑎 = (𝐿𝑖) ∧ ∃𝑗 ∈ ℤ 𝑏 = (𝐿𝑗)))
33 reeanv 3292 . . . . . . 7 (∃𝑖 ∈ ℤ ∃𝑗 ∈ ℤ (𝑎 = (𝐿𝑖) ∧ 𝑏 = (𝐿𝑗)) ↔ (∃𝑖 ∈ ℤ 𝑎 = (𝐿𝑖) ∧ ∃𝑗 ∈ ℤ 𝑏 = (𝐿𝑗)))
3419adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → 𝐺 ∈ Grp)
35 simprl 767 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → 𝑖 ∈ ℤ)
36 simprr 769 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → 𝑗 ∈ ℤ)
372, 20, 22iscyggen 19395 . . . . . . . . . . . . . 14 (𝑋𝐸 ↔ (𝑋𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵))
3837simplbi 497 . . . . . . . . . . . . 13 (𝑋𝐸𝑋𝐵)
3923, 38syl 17 . . . . . . . . . . . 12 (𝜑𝑋𝐵)
4039adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → 𝑋𝐵)
412, 20, 4mulgdir 18650 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑖 + 𝑗) · 𝑋) = ((𝑖 · 𝑋)(+g𝐺)(𝑗 · 𝑋)))
4234, 35, 36, 40, 41syl13anc 1370 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → ((𝑖 + 𝑗) · 𝑋) = ((𝑖 · 𝑋)(+g𝐺)(𝑗 · 𝑋)))
4311, 13syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑌 ∈ CRing)
4421zrhrhm 20625 . . . . . . . . . . . . . . 15 (𝑌 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑌))
45 rhmghm 19884 . . . . . . . . . . . . . . 15 (𝐿 ∈ (ℤring RingHom 𝑌) → 𝐿 ∈ (ℤring GrpHom 𝑌))
4643, 14, 44, 454syl 19 . . . . . . . . . . . . . 14 (𝜑𝐿 ∈ (ℤring GrpHom 𝑌))
4746adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → 𝐿 ∈ (ℤring GrpHom 𝑌))
48 zringbas 20588 . . . . . . . . . . . . . 14 ℤ = (Base‘ℤring)
49 zringplusg 20589 . . . . . . . . . . . . . 14 + = (+g‘ℤring)
5048, 49, 3ghmlin 18754 . . . . . . . . . . . . 13 ((𝐿 ∈ (ℤring GrpHom 𝑌) ∧ 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝐿‘(𝑖 + 𝑗)) = ((𝐿𝑖)(+g𝑌)(𝐿𝑗)))
5147, 35, 36, 50syl3anc 1369 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → (𝐿‘(𝑖 + 𝑗)) = ((𝐿𝑖)(+g𝑌)(𝐿𝑗)))
5251fveq2d 6760 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → (𝐹‘(𝐿‘(𝑖 + 𝑗))) = (𝐹‘((𝐿𝑖)(+g𝑌)(𝐿𝑗))))
53 zaddcl 12290 . . . . . . . . . . . 12 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑖 + 𝑗) ∈ ℤ)
542, 5, 12, 20, 21, 22, 17, 23, 24cygznlem2 20688 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 + 𝑗) ∈ ℤ) → (𝐹‘(𝐿‘(𝑖 + 𝑗))) = ((𝑖 + 𝑗) · 𝑋))
5553, 54sylan2 592 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → (𝐹‘(𝐿‘(𝑖 + 𝑗))) = ((𝑖 + 𝑗) · 𝑋))
5652, 55eqtr3d 2780 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → (𝐹‘((𝐿𝑖)(+g𝑌)(𝐿𝑗))) = ((𝑖 + 𝑗) · 𝑋))
572, 5, 12, 20, 21, 22, 17, 23, 24cygznlem2 20688 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ℤ) → (𝐹‘(𝐿𝑖)) = (𝑖 · 𝑋))
5857adantrr 713 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → (𝐹‘(𝐿𝑖)) = (𝑖 · 𝑋))
592, 5, 12, 20, 21, 22, 17, 23, 24cygznlem2 20688 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℤ) → (𝐹‘(𝐿𝑗)) = (𝑗 · 𝑋))
6059adantrl 712 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → (𝐹‘(𝐿𝑗)) = (𝑗 · 𝑋))
6158, 60oveq12d 7273 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → ((𝐹‘(𝐿𝑖))(+g𝐺)(𝐹‘(𝐿𝑗))) = ((𝑖 · 𝑋)(+g𝐺)(𝑗 · 𝑋)))
6242, 56, 613eqtr4d 2788 . . . . . . . . 9 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → (𝐹‘((𝐿𝑖)(+g𝑌)(𝐿𝑗))) = ((𝐹‘(𝐿𝑖))(+g𝐺)(𝐹‘(𝐿𝑗))))
63 oveq12 7264 . . . . . . . . . . 11 ((𝑎 = (𝐿𝑖) ∧ 𝑏 = (𝐿𝑗)) → (𝑎(+g𝑌)𝑏) = ((𝐿𝑖)(+g𝑌)(𝐿𝑗)))
6463fveq2d 6760 . . . . . . . . . 10 ((𝑎 = (𝐿𝑖) ∧ 𝑏 = (𝐿𝑗)) → (𝐹‘(𝑎(+g𝑌)𝑏)) = (𝐹‘((𝐿𝑖)(+g𝑌)(𝐿𝑗))))
65 fveq2 6756 . . . . . . . . . . 11 (𝑎 = (𝐿𝑖) → (𝐹𝑎) = (𝐹‘(𝐿𝑖)))
66 fveq2 6756 . . . . . . . . . . 11 (𝑏 = (𝐿𝑗) → (𝐹𝑏) = (𝐹‘(𝐿𝑗)))
6765, 66oveqan12d 7274 . . . . . . . . . 10 ((𝑎 = (𝐿𝑖) ∧ 𝑏 = (𝐿𝑗)) → ((𝐹𝑎)(+g𝐺)(𝐹𝑏)) = ((𝐹‘(𝐿𝑖))(+g𝐺)(𝐹‘(𝐿𝑗))))
6864, 67eqeq12d 2754 . . . . . . . . 9 ((𝑎 = (𝐿𝑖) ∧ 𝑏 = (𝐿𝑗)) → ((𝐹‘(𝑎(+g𝑌)𝑏)) = ((𝐹𝑎)(+g𝐺)(𝐹𝑏)) ↔ (𝐹‘((𝐿𝑖)(+g𝑌)(𝐿𝑗))) = ((𝐹‘(𝐿𝑖))(+g𝐺)(𝐹‘(𝐿𝑗)))))
6962, 68syl5ibrcom 246 . . . . . . . 8 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → ((𝑎 = (𝐿𝑖) ∧ 𝑏 = (𝐿𝑗)) → (𝐹‘(𝑎(+g𝑌)𝑏)) = ((𝐹𝑎)(+g𝐺)(𝐹𝑏))))
7069rexlimdvva 3222 . . . . . . 7 (𝜑 → (∃𝑖 ∈ ℤ ∃𝑗 ∈ ℤ (𝑎 = (𝐿𝑖) ∧ 𝑏 = (𝐿𝑗)) → (𝐹‘(𝑎(+g𝑌)𝑏)) = ((𝐹𝑎)(+g𝐺)(𝐹𝑏))))
7133, 70syl5bir 242 . . . . . 6 (𝜑 → ((∃𝑖 ∈ ℤ 𝑎 = (𝐿𝑖) ∧ ∃𝑗 ∈ ℤ 𝑏 = (𝐿𝑗)) → (𝐹‘(𝑎(+g𝑌)𝑏)) = ((𝐹𝑎)(+g𝐺)(𝐹𝑏))))
7271imp 406 . . . . 5 ((𝜑 ∧ (∃𝑖 ∈ ℤ 𝑎 = (𝐿𝑖) ∧ ∃𝑗 ∈ ℤ 𝑏 = (𝐿𝑗))) → (𝐹‘(𝑎(+g𝑌)𝑏)) = ((𝐹𝑎)(+g𝐺)(𝐹𝑏)))
7332, 72syldan 590 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌))) → (𝐹‘(𝑎(+g𝑌)𝑏)) = ((𝐹𝑎)(+g𝐺)(𝐹𝑏)))
741, 2, 3, 4, 16, 19, 25, 73isghmd 18758 . . 3 (𝜑𝐹 ∈ (𝑌 GrpHom 𝐺))
7558, 60eqeq12d 2754 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → ((𝐹‘(𝐿𝑖)) = (𝐹‘(𝐿𝑗)) ↔ (𝑖 · 𝑋) = (𝑗 · 𝑋)))
762, 5, 12, 20, 21, 22, 17, 23cygznlem1 20686 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → ((𝐿𝑖) = (𝐿𝑗) ↔ (𝑖 · 𝑋) = (𝑗 · 𝑋)))
7775, 76bitr4d 281 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → ((𝐹‘(𝐿𝑖)) = (𝐹‘(𝐿𝑗)) ↔ (𝐿𝑖) = (𝐿𝑗)))
7877biimpd 228 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → ((𝐹‘(𝐿𝑖)) = (𝐹‘(𝐿𝑗)) → (𝐿𝑖) = (𝐿𝑗)))
7965, 66eqeqan12d 2752 . . . . . . . . . . . 12 ((𝑎 = (𝐿𝑖) ∧ 𝑏 = (𝐿𝑗)) → ((𝐹𝑎) = (𝐹𝑏) ↔ (𝐹‘(𝐿𝑖)) = (𝐹‘(𝐿𝑗))))
80 eqeq12 2755 . . . . . . . . . . . 12 ((𝑎 = (𝐿𝑖) ∧ 𝑏 = (𝐿𝑗)) → (𝑎 = 𝑏 ↔ (𝐿𝑖) = (𝐿𝑗)))
8179, 80imbi12d 344 . . . . . . . . . . 11 ((𝑎 = (𝐿𝑖) ∧ 𝑏 = (𝐿𝑗)) → (((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏) ↔ ((𝐹‘(𝐿𝑖)) = (𝐹‘(𝐿𝑗)) → (𝐿𝑖) = (𝐿𝑗))))
8278, 81syl5ibrcom 246 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → ((𝑎 = (𝐿𝑖) ∧ 𝑏 = (𝐿𝑗)) → ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏)))
8382rexlimdvva 3222 . . . . . . . . 9 (𝜑 → (∃𝑖 ∈ ℤ ∃𝑗 ∈ ℤ (𝑎 = (𝐿𝑖) ∧ 𝑏 = (𝐿𝑗)) → ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏)))
8433, 83syl5bir 242 . . . . . . . 8 (𝜑 → ((∃𝑖 ∈ ℤ 𝑎 = (𝐿𝑖) ∧ ∃𝑗 ∈ ℤ 𝑏 = (𝐿𝑗)) → ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏)))
8584imp 406 . . . . . . 7 ((𝜑 ∧ (∃𝑖 ∈ ℤ 𝑎 = (𝐿𝑖) ∧ ∃𝑗 ∈ ℤ 𝑏 = (𝐿𝑗))) → ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏))
8632, 85syldan 590 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌))) → ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏))
8786ralrimivva 3114 . . . . 5 (𝜑 → ∀𝑎 ∈ (Base‘𝑌)∀𝑏 ∈ (Base‘𝑌)((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏))
88 dff13 7109 . . . . 5 (𝐹:(Base‘𝑌)–1-1𝐵 ↔ (𝐹:(Base‘𝑌)⟶𝐵 ∧ ∀𝑎 ∈ (Base‘𝑌)∀𝑏 ∈ (Base‘𝑌)((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏)))
8925, 87, 88sylanbrc 582 . . . 4 (𝜑𝐹:(Base‘𝑌)–1-1𝐵)
902, 20, 22iscyggen2 19396 . . . . . . . . 9 (𝐺 ∈ Grp → (𝑋𝐸 ↔ (𝑋𝐵 ∧ ∀𝑧𝐵𝑛 ∈ ℤ 𝑧 = (𝑛 · 𝑋))))
9119, 90syl 17 . . . . . . . 8 (𝜑 → (𝑋𝐸 ↔ (𝑋𝐵 ∧ ∀𝑧𝐵𝑛 ∈ ℤ 𝑧 = (𝑛 · 𝑋))))
9223, 91mpbid 231 . . . . . . 7 (𝜑 → (𝑋𝐵 ∧ ∀𝑧𝐵𝑛 ∈ ℤ 𝑧 = (𝑛 · 𝑋)))
9392simprd 495 . . . . . 6 (𝜑 → ∀𝑧𝐵𝑛 ∈ ℤ 𝑧 = (𝑛 · 𝑋))
94 oveq1 7262 . . . . . . . . . 10 (𝑛 = 𝑗 → (𝑛 · 𝑋) = (𝑗 · 𝑋))
9594eqeq2d 2749 . . . . . . . . 9 (𝑛 = 𝑗 → (𝑧 = (𝑛 · 𝑋) ↔ 𝑧 = (𝑗 · 𝑋)))
9695cbvrexvw 3373 . . . . . . . 8 (∃𝑛 ∈ ℤ 𝑧 = (𝑛 · 𝑋) ↔ ∃𝑗 ∈ ℤ 𝑧 = (𝑗 · 𝑋))
9727adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑧𝐵) → 𝐿:ℤ–onto→(Base‘𝑌))
98 fof 6672 . . . . . . . . . . . . 13 (𝐿:ℤ–onto→(Base‘𝑌) → 𝐿:ℤ⟶(Base‘𝑌))
9997, 98syl 17 . . . . . . . . . . . 12 ((𝜑𝑧𝐵) → 𝐿:ℤ⟶(Base‘𝑌))
10099ffvelrnda 6943 . . . . . . . . . . 11 (((𝜑𝑧𝐵) ∧ 𝑗 ∈ ℤ) → (𝐿𝑗) ∈ (Base‘𝑌))
10159adantlr 711 . . . . . . . . . . . 12 (((𝜑𝑧𝐵) ∧ 𝑗 ∈ ℤ) → (𝐹‘(𝐿𝑗)) = (𝑗 · 𝑋))
102101eqcomd 2744 . . . . . . . . . . 11 (((𝜑𝑧𝐵) ∧ 𝑗 ∈ ℤ) → (𝑗 · 𝑋) = (𝐹‘(𝐿𝑗)))
103 fveq2 6756 . . . . . . . . . . . 12 (𝑎 = (𝐿𝑗) → (𝐹𝑎) = (𝐹‘(𝐿𝑗)))
104103rspceeqv 3567 . . . . . . . . . . 11 (((𝐿𝑗) ∈ (Base‘𝑌) ∧ (𝑗 · 𝑋) = (𝐹‘(𝐿𝑗))) → ∃𝑎 ∈ (Base‘𝑌)(𝑗 · 𝑋) = (𝐹𝑎))
105100, 102, 104syl2anc 583 . . . . . . . . . 10 (((𝜑𝑧𝐵) ∧ 𝑗 ∈ ℤ) → ∃𝑎 ∈ (Base‘𝑌)(𝑗 · 𝑋) = (𝐹𝑎))
106 eqeq1 2742 . . . . . . . . . . 11 (𝑧 = (𝑗 · 𝑋) → (𝑧 = (𝐹𝑎) ↔ (𝑗 · 𝑋) = (𝐹𝑎)))
107106rexbidv 3225 . . . . . . . . . 10 (𝑧 = (𝑗 · 𝑋) → (∃𝑎 ∈ (Base‘𝑌)𝑧 = (𝐹𝑎) ↔ ∃𝑎 ∈ (Base‘𝑌)(𝑗 · 𝑋) = (𝐹𝑎)))
108105, 107syl5ibrcom 246 . . . . . . . . 9 (((𝜑𝑧𝐵) ∧ 𝑗 ∈ ℤ) → (𝑧 = (𝑗 · 𝑋) → ∃𝑎 ∈ (Base‘𝑌)𝑧 = (𝐹𝑎)))
109108rexlimdva 3212 . . . . . . . 8 ((𝜑𝑧𝐵) → (∃𝑗 ∈ ℤ 𝑧 = (𝑗 · 𝑋) → ∃𝑎 ∈ (Base‘𝑌)𝑧 = (𝐹𝑎)))
11096, 109syl5bi 241 . . . . . . 7 ((𝜑𝑧𝐵) → (∃𝑛 ∈ ℤ 𝑧 = (𝑛 · 𝑋) → ∃𝑎 ∈ (Base‘𝑌)𝑧 = (𝐹𝑎)))
111110ralimdva 3102 . . . . . 6 (𝜑 → (∀𝑧𝐵𝑛 ∈ ℤ 𝑧 = (𝑛 · 𝑋) → ∀𝑧𝐵𝑎 ∈ (Base‘𝑌)𝑧 = (𝐹𝑎)))
11293, 111mpd 15 . . . . 5 (𝜑 → ∀𝑧𝐵𝑎 ∈ (Base‘𝑌)𝑧 = (𝐹𝑎))
113 dffo3 6960 . . . . 5 (𝐹:(Base‘𝑌)–onto𝐵 ↔ (𝐹:(Base‘𝑌)⟶𝐵 ∧ ∀𝑧𝐵𝑎 ∈ (Base‘𝑌)𝑧 = (𝐹𝑎)))
11425, 112, 113sylanbrc 582 . . . 4 (𝜑𝐹:(Base‘𝑌)–onto𝐵)
115 df-f1o 6425 . . . 4 (𝐹:(Base‘𝑌)–1-1-onto𝐵 ↔ (𝐹:(Base‘𝑌)–1-1𝐵𝐹:(Base‘𝑌)–onto𝐵))
11689, 114, 115sylanbrc 582 . . 3 (𝜑𝐹:(Base‘𝑌)–1-1-onto𝐵)
1171, 2isgim 18793 . . 3 (𝐹 ∈ (𝑌 GrpIso 𝐺) ↔ (𝐹 ∈ (𝑌 GrpHom 𝐺) ∧ 𝐹:(Base‘𝑌)–1-1-onto𝐵))
11874, 116, 117sylanbrc 582 . 2 (𝜑𝐹 ∈ (𝑌 GrpIso 𝐺))
119 brgici 18801 . 2 (𝐹 ∈ (𝑌 GrpIso 𝐺) → 𝑌𝑔 𝐺)
120 gicsym 18805 . 2 (𝑌𝑔 𝐺𝐺𝑔 𝑌)
121118, 119, 1203syl 18 1 (𝜑𝐺𝑔 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  {crab 3067  ifcif 4456  cop 4564   class class class wbr 5070  cmpt 5153  ran crn 5581  wf 6414  1-1wf1 6415  ontowfo 6416  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  Fincfn 8691  0cc0 10802   + caddc 10805  0cn0 12163  cz 12249  chash 13972  Basecbs 16840  +gcplusg 16888  Grpcgrp 18492  .gcmg 18615   GrpHom cghm 18746   GrpIso cgim 18788  𝑔 cgic 18789  CycGrpccyg 19392  Ringcrg 19698  CRingccrg 19699   RingHom crh 19871  ringzring 20582  ℤRHomczrh 20613  ℤ/nczn 20616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-omul 8272  df-er 8456  df-ec 8458  df-qs 8462  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-acn 9631  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-rp 12660  df-fz 13169  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-dvds 15892  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-0g 17069  df-imas 17136  df-qus 17137  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-nsg 18668  df-eqg 18669  df-ghm 18747  df-gim 18790  df-gic 18791  df-od 19051  df-cmn 19303  df-abl 19304  df-cyg 19393  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-oppr 19777  df-dvdsr 19798  df-rnghom 19874  df-subrg 19937  df-lmod 20040  df-lss 20109  df-lsp 20149  df-sra 20349  df-rgmod 20350  df-lidl 20351  df-rsp 20352  df-2idl 20416  df-cnfld 20511  df-zring 20583  df-zrh 20617  df-zn 20620
This theorem is referenced by:  cygzn  20690
  Copyright terms: Public domain W3C validator