MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cygznlem3 Structured version   Visualization version   GIF version

Theorem cygznlem3 21479
Description: A cyclic group with 𝑛 elements is isomorphic to ℤ / 𝑛. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
cygzn.b 𝐵 = (Base‘𝐺)
cygzn.n 𝑁 = if(𝐵 ∈ Fin, (♯‘𝐵), 0)
cygzn.y 𝑌 = (ℤ/nℤ‘𝑁)
cygzn.m · = (.g𝐺)
cygzn.l 𝐿 = (ℤRHom‘𝑌)
cygzn.e 𝐸 = {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵}
cygzn.g (𝜑𝐺 ∈ CycGrp)
cygzn.x (𝜑𝑋𝐸)
cygzn.f 𝐹 = ran (𝑚 ∈ ℤ ↦ ⟨(𝐿𝑚), (𝑚 · 𝑋)⟩)
Assertion
Ref Expression
cygznlem3 (𝜑𝐺𝑔 𝑌)
Distinct variable groups:   𝑚,𝑛,𝑥,𝐵   𝑚,𝐺,𝑛,𝑥   · ,𝑚,𝑛,𝑥   𝑚,𝑌,𝑛,𝑥   𝑚,𝐿,𝑛,𝑥   𝑥,𝑁   𝜑,𝑚   𝑛,𝐹,𝑥   𝑚,𝑋,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝐸(𝑥,𝑚,𝑛)   𝐹(𝑚)   𝑁(𝑚,𝑛)

Proof of Theorem cygznlem3
Dummy variables 𝑎 𝑏 𝑖 𝑗 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 (Base‘𝑌) = (Base‘𝑌)
2 cygzn.b . . . 4 𝐵 = (Base‘𝐺)
3 eqid 2729 . . . 4 (+g𝑌) = (+g𝑌)
4 eqid 2729 . . . 4 (+g𝐺) = (+g𝐺)
5 cygzn.n . . . . . 6 𝑁 = if(𝐵 ∈ Fin, (♯‘𝐵), 0)
6 hashcl 14321 . . . . . . . 8 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
76adantl 481 . . . . . . 7 ((𝜑𝐵 ∈ Fin) → (♯‘𝐵) ∈ ℕ0)
8 0nn0 12457 . . . . . . . 8 0 ∈ ℕ0
98a1i 11 . . . . . . 7 ((𝜑 ∧ ¬ 𝐵 ∈ Fin) → 0 ∈ ℕ0)
107, 9ifclda 4524 . . . . . 6 (𝜑 → if(𝐵 ∈ Fin, (♯‘𝐵), 0) ∈ ℕ0)
115, 10eqeltrid 2832 . . . . 5 (𝜑𝑁 ∈ ℕ0)
12 cygzn.y . . . . . 6 𝑌 = (ℤ/nℤ‘𝑁)
1312zncrng 21454 . . . . 5 (𝑁 ∈ ℕ0𝑌 ∈ CRing)
14 crngring 20154 . . . . 5 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
15 ringgrp 20147 . . . . 5 (𝑌 ∈ Ring → 𝑌 ∈ Grp)
1611, 13, 14, 154syl 19 . . . 4 (𝜑𝑌 ∈ Grp)
17 cygzn.g . . . . 5 (𝜑𝐺 ∈ CycGrp)
18 cyggrp 19820 . . . . 5 (𝐺 ∈ CycGrp → 𝐺 ∈ Grp)
1917, 18syl 17 . . . 4 (𝜑𝐺 ∈ Grp)
20 cygzn.m . . . . 5 · = (.g𝐺)
21 cygzn.l . . . . 5 𝐿 = (ℤRHom‘𝑌)
22 cygzn.e . . . . 5 𝐸 = {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵}
23 cygzn.x . . . . 5 (𝜑𝑋𝐸)
24 cygzn.f . . . . 5 𝐹 = ran (𝑚 ∈ ℤ ↦ ⟨(𝐿𝑚), (𝑚 · 𝑋)⟩)
252, 5, 12, 20, 21, 22, 17, 23, 24cygznlem2a 21477 . . . 4 (𝜑𝐹:(Base‘𝑌)⟶𝐵)
2612, 1, 21znzrhfo 21457 . . . . . . . 8 (𝑁 ∈ ℕ0𝐿:ℤ–onto→(Base‘𝑌))
2711, 26syl 17 . . . . . . 7 (𝜑𝐿:ℤ–onto→(Base‘𝑌))
28 foelrn 7079 . . . . . . 7 ((𝐿:ℤ–onto→(Base‘𝑌) ∧ 𝑎 ∈ (Base‘𝑌)) → ∃𝑖 ∈ ℤ 𝑎 = (𝐿𝑖))
2927, 28sylan 580 . . . . . 6 ((𝜑𝑎 ∈ (Base‘𝑌)) → ∃𝑖 ∈ ℤ 𝑎 = (𝐿𝑖))
30 foelrn 7079 . . . . . . 7 ((𝐿:ℤ–onto→(Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → ∃𝑗 ∈ ℤ 𝑏 = (𝐿𝑗))
3127, 30sylan 580 . . . . . 6 ((𝜑𝑏 ∈ (Base‘𝑌)) → ∃𝑗 ∈ ℤ 𝑏 = (𝐿𝑗))
3229, 31anim12dan 619 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌))) → (∃𝑖 ∈ ℤ 𝑎 = (𝐿𝑖) ∧ ∃𝑗 ∈ ℤ 𝑏 = (𝐿𝑗)))
33 reeanv 3209 . . . . . . 7 (∃𝑖 ∈ ℤ ∃𝑗 ∈ ℤ (𝑎 = (𝐿𝑖) ∧ 𝑏 = (𝐿𝑗)) ↔ (∃𝑖 ∈ ℤ 𝑎 = (𝐿𝑖) ∧ ∃𝑗 ∈ ℤ 𝑏 = (𝐿𝑗)))
3419adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → 𝐺 ∈ Grp)
35 simprl 770 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → 𝑖 ∈ ℤ)
36 simprr 772 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → 𝑗 ∈ ℤ)
372, 20, 22iscyggen 19810 . . . . . . . . . . . . . 14 (𝑋𝐸 ↔ (𝑋𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵))
3837simplbi 497 . . . . . . . . . . . . 13 (𝑋𝐸𝑋𝐵)
3923, 38syl 17 . . . . . . . . . . . 12 (𝜑𝑋𝐵)
4039adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → 𝑋𝐵)
412, 20, 4mulgdir 19038 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑖 + 𝑗) · 𝑋) = ((𝑖 · 𝑋)(+g𝐺)(𝑗 · 𝑋)))
4234, 35, 36, 40, 41syl13anc 1374 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → ((𝑖 + 𝑗) · 𝑋) = ((𝑖 · 𝑋)(+g𝐺)(𝑗 · 𝑋)))
4311, 13syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑌 ∈ CRing)
4421zrhrhm 21421 . . . . . . . . . . . . . . 15 (𝑌 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑌))
45 rhmghm 20393 . . . . . . . . . . . . . . 15 (𝐿 ∈ (ℤring RingHom 𝑌) → 𝐿 ∈ (ℤring GrpHom 𝑌))
4643, 14, 44, 454syl 19 . . . . . . . . . . . . . 14 (𝜑𝐿 ∈ (ℤring GrpHom 𝑌))
4746adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → 𝐿 ∈ (ℤring GrpHom 𝑌))
48 zringbas 21363 . . . . . . . . . . . . . 14 ℤ = (Base‘ℤring)
49 zringplusg 21364 . . . . . . . . . . . . . 14 + = (+g‘ℤring)
5048, 49, 3ghmlin 19153 . . . . . . . . . . . . 13 ((𝐿 ∈ (ℤring GrpHom 𝑌) ∧ 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝐿‘(𝑖 + 𝑗)) = ((𝐿𝑖)(+g𝑌)(𝐿𝑗)))
5147, 35, 36, 50syl3anc 1373 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → (𝐿‘(𝑖 + 𝑗)) = ((𝐿𝑖)(+g𝑌)(𝐿𝑗)))
5251fveq2d 6862 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → (𝐹‘(𝐿‘(𝑖 + 𝑗))) = (𝐹‘((𝐿𝑖)(+g𝑌)(𝐿𝑗))))
53 zaddcl 12573 . . . . . . . . . . . 12 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑖 + 𝑗) ∈ ℤ)
542, 5, 12, 20, 21, 22, 17, 23, 24cygznlem2 21478 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 + 𝑗) ∈ ℤ) → (𝐹‘(𝐿‘(𝑖 + 𝑗))) = ((𝑖 + 𝑗) · 𝑋))
5553, 54sylan2 593 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → (𝐹‘(𝐿‘(𝑖 + 𝑗))) = ((𝑖 + 𝑗) · 𝑋))
5652, 55eqtr3d 2766 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → (𝐹‘((𝐿𝑖)(+g𝑌)(𝐿𝑗))) = ((𝑖 + 𝑗) · 𝑋))
572, 5, 12, 20, 21, 22, 17, 23, 24cygznlem2 21478 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ℤ) → (𝐹‘(𝐿𝑖)) = (𝑖 · 𝑋))
5857adantrr 717 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → (𝐹‘(𝐿𝑖)) = (𝑖 · 𝑋))
592, 5, 12, 20, 21, 22, 17, 23, 24cygznlem2 21478 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℤ) → (𝐹‘(𝐿𝑗)) = (𝑗 · 𝑋))
6059adantrl 716 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → (𝐹‘(𝐿𝑗)) = (𝑗 · 𝑋))
6158, 60oveq12d 7405 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → ((𝐹‘(𝐿𝑖))(+g𝐺)(𝐹‘(𝐿𝑗))) = ((𝑖 · 𝑋)(+g𝐺)(𝑗 · 𝑋)))
6242, 56, 613eqtr4d 2774 . . . . . . . . 9 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → (𝐹‘((𝐿𝑖)(+g𝑌)(𝐿𝑗))) = ((𝐹‘(𝐿𝑖))(+g𝐺)(𝐹‘(𝐿𝑗))))
63 oveq12 7396 . . . . . . . . . . 11 ((𝑎 = (𝐿𝑖) ∧ 𝑏 = (𝐿𝑗)) → (𝑎(+g𝑌)𝑏) = ((𝐿𝑖)(+g𝑌)(𝐿𝑗)))
6463fveq2d 6862 . . . . . . . . . 10 ((𝑎 = (𝐿𝑖) ∧ 𝑏 = (𝐿𝑗)) → (𝐹‘(𝑎(+g𝑌)𝑏)) = (𝐹‘((𝐿𝑖)(+g𝑌)(𝐿𝑗))))
65 fveq2 6858 . . . . . . . . . . 11 (𝑎 = (𝐿𝑖) → (𝐹𝑎) = (𝐹‘(𝐿𝑖)))
66 fveq2 6858 . . . . . . . . . . 11 (𝑏 = (𝐿𝑗) → (𝐹𝑏) = (𝐹‘(𝐿𝑗)))
6765, 66oveqan12d 7406 . . . . . . . . . 10 ((𝑎 = (𝐿𝑖) ∧ 𝑏 = (𝐿𝑗)) → ((𝐹𝑎)(+g𝐺)(𝐹𝑏)) = ((𝐹‘(𝐿𝑖))(+g𝐺)(𝐹‘(𝐿𝑗))))
6864, 67eqeq12d 2745 . . . . . . . . 9 ((𝑎 = (𝐿𝑖) ∧ 𝑏 = (𝐿𝑗)) → ((𝐹‘(𝑎(+g𝑌)𝑏)) = ((𝐹𝑎)(+g𝐺)(𝐹𝑏)) ↔ (𝐹‘((𝐿𝑖)(+g𝑌)(𝐿𝑗))) = ((𝐹‘(𝐿𝑖))(+g𝐺)(𝐹‘(𝐿𝑗)))))
6962, 68syl5ibrcom 247 . . . . . . . 8 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → ((𝑎 = (𝐿𝑖) ∧ 𝑏 = (𝐿𝑗)) → (𝐹‘(𝑎(+g𝑌)𝑏)) = ((𝐹𝑎)(+g𝐺)(𝐹𝑏))))
7069rexlimdvva 3194 . . . . . . 7 (𝜑 → (∃𝑖 ∈ ℤ ∃𝑗 ∈ ℤ (𝑎 = (𝐿𝑖) ∧ 𝑏 = (𝐿𝑗)) → (𝐹‘(𝑎(+g𝑌)𝑏)) = ((𝐹𝑎)(+g𝐺)(𝐹𝑏))))
7133, 70biimtrrid 243 . . . . . 6 (𝜑 → ((∃𝑖 ∈ ℤ 𝑎 = (𝐿𝑖) ∧ ∃𝑗 ∈ ℤ 𝑏 = (𝐿𝑗)) → (𝐹‘(𝑎(+g𝑌)𝑏)) = ((𝐹𝑎)(+g𝐺)(𝐹𝑏))))
7271imp 406 . . . . 5 ((𝜑 ∧ (∃𝑖 ∈ ℤ 𝑎 = (𝐿𝑖) ∧ ∃𝑗 ∈ ℤ 𝑏 = (𝐿𝑗))) → (𝐹‘(𝑎(+g𝑌)𝑏)) = ((𝐹𝑎)(+g𝐺)(𝐹𝑏)))
7332, 72syldan 591 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌))) → (𝐹‘(𝑎(+g𝑌)𝑏)) = ((𝐹𝑎)(+g𝐺)(𝐹𝑏)))
741, 2, 3, 4, 16, 19, 25, 73isghmd 19157 . . 3 (𝜑𝐹 ∈ (𝑌 GrpHom 𝐺))
7558, 60eqeq12d 2745 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → ((𝐹‘(𝐿𝑖)) = (𝐹‘(𝐿𝑗)) ↔ (𝑖 · 𝑋) = (𝑗 · 𝑋)))
762, 5, 12, 20, 21, 22, 17, 23cygznlem1 21476 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → ((𝐿𝑖) = (𝐿𝑗) ↔ (𝑖 · 𝑋) = (𝑗 · 𝑋)))
7775, 76bitr4d 282 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → ((𝐹‘(𝐿𝑖)) = (𝐹‘(𝐿𝑗)) ↔ (𝐿𝑖) = (𝐿𝑗)))
7877biimpd 229 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → ((𝐹‘(𝐿𝑖)) = (𝐹‘(𝐿𝑗)) → (𝐿𝑖) = (𝐿𝑗)))
7965, 66eqeqan12d 2743 . . . . . . . . . . . 12 ((𝑎 = (𝐿𝑖) ∧ 𝑏 = (𝐿𝑗)) → ((𝐹𝑎) = (𝐹𝑏) ↔ (𝐹‘(𝐿𝑖)) = (𝐹‘(𝐿𝑗))))
80 eqeq12 2746 . . . . . . . . . . . 12 ((𝑎 = (𝐿𝑖) ∧ 𝑏 = (𝐿𝑗)) → (𝑎 = 𝑏 ↔ (𝐿𝑖) = (𝐿𝑗)))
8179, 80imbi12d 344 . . . . . . . . . . 11 ((𝑎 = (𝐿𝑖) ∧ 𝑏 = (𝐿𝑗)) → (((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏) ↔ ((𝐹‘(𝐿𝑖)) = (𝐹‘(𝐿𝑗)) → (𝐿𝑖) = (𝐿𝑗))))
8278, 81syl5ibrcom 247 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → ((𝑎 = (𝐿𝑖) ∧ 𝑏 = (𝐿𝑗)) → ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏)))
8382rexlimdvva 3194 . . . . . . . . 9 (𝜑 → (∃𝑖 ∈ ℤ ∃𝑗 ∈ ℤ (𝑎 = (𝐿𝑖) ∧ 𝑏 = (𝐿𝑗)) → ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏)))
8433, 83biimtrrid 243 . . . . . . . 8 (𝜑 → ((∃𝑖 ∈ ℤ 𝑎 = (𝐿𝑖) ∧ ∃𝑗 ∈ ℤ 𝑏 = (𝐿𝑗)) → ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏)))
8584imp 406 . . . . . . 7 ((𝜑 ∧ (∃𝑖 ∈ ℤ 𝑎 = (𝐿𝑖) ∧ ∃𝑗 ∈ ℤ 𝑏 = (𝐿𝑗))) → ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏))
8632, 85syldan 591 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌))) → ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏))
8786ralrimivva 3180 . . . . 5 (𝜑 → ∀𝑎 ∈ (Base‘𝑌)∀𝑏 ∈ (Base‘𝑌)((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏))
88 dff13 7229 . . . . 5 (𝐹:(Base‘𝑌)–1-1𝐵 ↔ (𝐹:(Base‘𝑌)⟶𝐵 ∧ ∀𝑎 ∈ (Base‘𝑌)∀𝑏 ∈ (Base‘𝑌)((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏)))
8925, 87, 88sylanbrc 583 . . . 4 (𝜑𝐹:(Base‘𝑌)–1-1𝐵)
902, 20, 22iscyggen2 19811 . . . . . . . . 9 (𝐺 ∈ Grp → (𝑋𝐸 ↔ (𝑋𝐵 ∧ ∀𝑧𝐵𝑛 ∈ ℤ 𝑧 = (𝑛 · 𝑋))))
9119, 90syl 17 . . . . . . . 8 (𝜑 → (𝑋𝐸 ↔ (𝑋𝐵 ∧ ∀𝑧𝐵𝑛 ∈ ℤ 𝑧 = (𝑛 · 𝑋))))
9223, 91mpbid 232 . . . . . . 7 (𝜑 → (𝑋𝐵 ∧ ∀𝑧𝐵𝑛 ∈ ℤ 𝑧 = (𝑛 · 𝑋)))
9392simprd 495 . . . . . 6 (𝜑 → ∀𝑧𝐵𝑛 ∈ ℤ 𝑧 = (𝑛 · 𝑋))
94 oveq1 7394 . . . . . . . . . 10 (𝑛 = 𝑗 → (𝑛 · 𝑋) = (𝑗 · 𝑋))
9594eqeq2d 2740 . . . . . . . . 9 (𝑛 = 𝑗 → (𝑧 = (𝑛 · 𝑋) ↔ 𝑧 = (𝑗 · 𝑋)))
9695cbvrexvw 3216 . . . . . . . 8 (∃𝑛 ∈ ℤ 𝑧 = (𝑛 · 𝑋) ↔ ∃𝑗 ∈ ℤ 𝑧 = (𝑗 · 𝑋))
9727adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑧𝐵) → 𝐿:ℤ–onto→(Base‘𝑌))
98 fof 6772 . . . . . . . . . . . . 13 (𝐿:ℤ–onto→(Base‘𝑌) → 𝐿:ℤ⟶(Base‘𝑌))
9997, 98syl 17 . . . . . . . . . . . 12 ((𝜑𝑧𝐵) → 𝐿:ℤ⟶(Base‘𝑌))
10099ffvelcdmda 7056 . . . . . . . . . . 11 (((𝜑𝑧𝐵) ∧ 𝑗 ∈ ℤ) → (𝐿𝑗) ∈ (Base‘𝑌))
10159adantlr 715 . . . . . . . . . . . 12 (((𝜑𝑧𝐵) ∧ 𝑗 ∈ ℤ) → (𝐹‘(𝐿𝑗)) = (𝑗 · 𝑋))
102101eqcomd 2735 . . . . . . . . . . 11 (((𝜑𝑧𝐵) ∧ 𝑗 ∈ ℤ) → (𝑗 · 𝑋) = (𝐹‘(𝐿𝑗)))
103 fveq2 6858 . . . . . . . . . . . 12 (𝑎 = (𝐿𝑗) → (𝐹𝑎) = (𝐹‘(𝐿𝑗)))
104103rspceeqv 3611 . . . . . . . . . . 11 (((𝐿𝑗) ∈ (Base‘𝑌) ∧ (𝑗 · 𝑋) = (𝐹‘(𝐿𝑗))) → ∃𝑎 ∈ (Base‘𝑌)(𝑗 · 𝑋) = (𝐹𝑎))
105100, 102, 104syl2anc 584 . . . . . . . . . 10 (((𝜑𝑧𝐵) ∧ 𝑗 ∈ ℤ) → ∃𝑎 ∈ (Base‘𝑌)(𝑗 · 𝑋) = (𝐹𝑎))
106 eqeq1 2733 . . . . . . . . . . 11 (𝑧 = (𝑗 · 𝑋) → (𝑧 = (𝐹𝑎) ↔ (𝑗 · 𝑋) = (𝐹𝑎)))
107106rexbidv 3157 . . . . . . . . . 10 (𝑧 = (𝑗 · 𝑋) → (∃𝑎 ∈ (Base‘𝑌)𝑧 = (𝐹𝑎) ↔ ∃𝑎 ∈ (Base‘𝑌)(𝑗 · 𝑋) = (𝐹𝑎)))
108105, 107syl5ibrcom 247 . . . . . . . . 9 (((𝜑𝑧𝐵) ∧ 𝑗 ∈ ℤ) → (𝑧 = (𝑗 · 𝑋) → ∃𝑎 ∈ (Base‘𝑌)𝑧 = (𝐹𝑎)))
109108rexlimdva 3134 . . . . . . . 8 ((𝜑𝑧𝐵) → (∃𝑗 ∈ ℤ 𝑧 = (𝑗 · 𝑋) → ∃𝑎 ∈ (Base‘𝑌)𝑧 = (𝐹𝑎)))
11096, 109biimtrid 242 . . . . . . 7 ((𝜑𝑧𝐵) → (∃𝑛 ∈ ℤ 𝑧 = (𝑛 · 𝑋) → ∃𝑎 ∈ (Base‘𝑌)𝑧 = (𝐹𝑎)))
111110ralimdva 3145 . . . . . 6 (𝜑 → (∀𝑧𝐵𝑛 ∈ ℤ 𝑧 = (𝑛 · 𝑋) → ∀𝑧𝐵𝑎 ∈ (Base‘𝑌)𝑧 = (𝐹𝑎)))
11293, 111mpd 15 . . . . 5 (𝜑 → ∀𝑧𝐵𝑎 ∈ (Base‘𝑌)𝑧 = (𝐹𝑎))
113 dffo3 7074 . . . . 5 (𝐹:(Base‘𝑌)–onto𝐵 ↔ (𝐹:(Base‘𝑌)⟶𝐵 ∧ ∀𝑧𝐵𝑎 ∈ (Base‘𝑌)𝑧 = (𝐹𝑎)))
11425, 112, 113sylanbrc 583 . . . 4 (𝜑𝐹:(Base‘𝑌)–onto𝐵)
115 df-f1o 6518 . . . 4 (𝐹:(Base‘𝑌)–1-1-onto𝐵 ↔ (𝐹:(Base‘𝑌)–1-1𝐵𝐹:(Base‘𝑌)–onto𝐵))
11689, 114, 115sylanbrc 583 . . 3 (𝜑𝐹:(Base‘𝑌)–1-1-onto𝐵)
1171, 2isgim 19194 . . 3 (𝐹 ∈ (𝑌 GrpIso 𝐺) ↔ (𝐹 ∈ (𝑌 GrpHom 𝐺) ∧ 𝐹:(Base‘𝑌)–1-1-onto𝐵))
11874, 116, 117sylanbrc 583 . 2 (𝜑𝐹 ∈ (𝑌 GrpIso 𝐺))
119 brgici 19203 . 2 (𝐹 ∈ (𝑌 GrpIso 𝐺) → 𝑌𝑔 𝐺)
120 gicsym 19207 . 2 (𝑌𝑔 𝐺𝐺𝑔 𝑌)
121118, 119, 1203syl 18 1 (𝜑𝐺𝑔 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3405  ifcif 4488  cop 4595   class class class wbr 5107  cmpt 5188  ran crn 5639  wf 6507  1-1wf1 6508  ontowfo 6509  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  Fincfn 8918  0cc0 11068   + caddc 11071  0cn0 12442  cz 12529  chash 14295  Basecbs 17179  +gcplusg 17220  Grpcgrp 18865  .gcmg 18999   GrpHom cghm 19144   GrpIso cgim 19189  𝑔 cgic 19190  CycGrpccyg 19807  Ringcrg 20142  CRingccrg 20143   RingHom crh 20378  ringczring 21356  ℤRHomczrh 21409  ℤ/nczn 21412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-omul 8439  df-er 8671  df-ec 8673  df-qs 8677  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-acn 9895  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-rp 12952  df-fz 13469  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-0g 17404  df-imas 17471  df-qus 17472  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-nsg 19056  df-eqg 19057  df-ghm 19145  df-gim 19191  df-gic 19192  df-od 19458  df-cmn 19712  df-abl 19713  df-cyg 19808  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-oppr 20246  df-dvdsr 20266  df-rhm 20381  df-subrng 20455  df-subrg 20479  df-lmod 20768  df-lss 20838  df-lsp 20878  df-sra 21080  df-rgmod 21081  df-lidl 21118  df-rsp 21119  df-2idl 21160  df-cnfld 21265  df-zring 21357  df-zrh 21413  df-zn 21416
This theorem is referenced by:  cygzn  21480
  Copyright terms: Public domain W3C validator