Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2zrngagrp Structured version   Visualization version   GIF version

Theorem 2zrngagrp 48170
Description: R is an (additive) group. (Contributed by AV, 6-Jan-2020.)
Hypotheses
Ref Expression
2zrng.e 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
2zrngbas.r 𝑅 = (ℂflds 𝐸)
Assertion
Ref Expression
2zrngagrp 𝑅 ∈ Grp
Distinct variable groups:   𝑥,𝑧,𝑅   𝑥,𝐸,𝑧

Proof of Theorem 2zrngagrp
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 2zrng.e . . 3 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
2 2zrngbas.r . . 3 𝑅 = (ℂflds 𝐸)
31, 22zrngamnd 48168 . 2 𝑅 ∈ Mnd
4 eqeq1 2740 . . . . . . 7 (𝑧 = 𝑦 → (𝑧 = (2 · 𝑥) ↔ 𝑦 = (2 · 𝑥)))
54rexbidv 3178 . . . . . 6 (𝑧 = 𝑦 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 𝑦 = (2 · 𝑥)))
65, 1elrab2 3694 . . . . 5 (𝑦𝐸 ↔ (𝑦 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑦 = (2 · 𝑥)))
7 znegcl 12654 . . . . . . 7 (𝑦 ∈ ℤ → -𝑦 ∈ ℤ)
87adantr 480 . . . . . 6 ((𝑦 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑦 = (2 · 𝑥)) → -𝑦 ∈ ℤ)
9 nfv 1913 . . . . . . . 8 𝑥 𝑦 ∈ ℤ
10 nfre1 3284 . . . . . . . 8 𝑥𝑥 ∈ ℤ -𝑦 = (2 · 𝑥)
11 znegcl 12654 . . . . . . . . . . . . 13 (𝑥 ∈ ℤ → -𝑥 ∈ ℤ)
1211adantl 481 . . . . . . . . . . . 12 ((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) → -𝑥 ∈ ℤ)
1312adantr 480 . . . . . . . . . . 11 (((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 = (2 · 𝑥)) → -𝑥 ∈ ℤ)
14 oveq2 7440 . . . . . . . . . . . . 13 (𝑧 = -𝑥 → (2 · 𝑧) = (2 · -𝑥))
1514eqeq2d 2747 . . . . . . . . . . . 12 (𝑧 = -𝑥 → (-𝑦 = (2 · 𝑧) ↔ -𝑦 = (2 · -𝑥)))
1615adantl 481 . . . . . . . . . . 11 ((((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 = (2 · 𝑥)) ∧ 𝑧 = -𝑥) → (-𝑦 = (2 · 𝑧) ↔ -𝑦 = (2 · -𝑥)))
17 negeq 11501 . . . . . . . . . . . 12 (𝑦 = (2 · 𝑥) → -𝑦 = -(2 · 𝑥))
18 2cnd 12345 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℤ → 2 ∈ ℂ)
19 zcn 12620 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
2018, 19mulneg2d 11718 . . . . . . . . . . . . . 14 (𝑥 ∈ ℤ → (2 · -𝑥) = -(2 · 𝑥))
2120eqcomd 2742 . . . . . . . . . . . . 13 (𝑥 ∈ ℤ → -(2 · 𝑥) = (2 · -𝑥))
2221adantl 481 . . . . . . . . . . . 12 ((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) → -(2 · 𝑥) = (2 · -𝑥))
2317, 22sylan9eqr 2798 . . . . . . . . . . 11 (((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 = (2 · 𝑥)) → -𝑦 = (2 · -𝑥))
2413, 16, 23rspcedvd 3623 . . . . . . . . . 10 (((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 = (2 · 𝑥)) → ∃𝑧 ∈ ℤ -𝑦 = (2 · 𝑧))
25 oveq2 7440 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (2 · 𝑥) = (2 · 𝑧))
2625eqeq2d 2747 . . . . . . . . . . 11 (𝑥 = 𝑧 → (-𝑦 = (2 · 𝑥) ↔ -𝑦 = (2 · 𝑧)))
2726cbvrexvw 3237 . . . . . . . . . 10 (∃𝑥 ∈ ℤ -𝑦 = (2 · 𝑥) ↔ ∃𝑧 ∈ ℤ -𝑦 = (2 · 𝑧))
2824, 27sylibr 234 . . . . . . . . 9 (((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 = (2 · 𝑥)) → ∃𝑥 ∈ ℤ -𝑦 = (2 · 𝑥))
2928exp31 419 . . . . . . . 8 (𝑦 ∈ ℤ → (𝑥 ∈ ℤ → (𝑦 = (2 · 𝑥) → ∃𝑥 ∈ ℤ -𝑦 = (2 · 𝑥))))
309, 10, 29rexlimd 3265 . . . . . . 7 (𝑦 ∈ ℤ → (∃𝑥 ∈ ℤ 𝑦 = (2 · 𝑥) → ∃𝑥 ∈ ℤ -𝑦 = (2 · 𝑥)))
3130imp 406 . . . . . 6 ((𝑦 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑦 = (2 · 𝑥)) → ∃𝑥 ∈ ℤ -𝑦 = (2 · 𝑥))
32 eqeq1 2740 . . . . . . . 8 (𝑧 = -𝑦 → (𝑧 = (2 · 𝑥) ↔ -𝑦 = (2 · 𝑥)))
3332rexbidv 3178 . . . . . . 7 (𝑧 = -𝑦 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ -𝑦 = (2 · 𝑥)))
3433, 1elrab2 3694 . . . . . 6 (-𝑦𝐸 ↔ (-𝑦 ∈ ℤ ∧ ∃𝑥 ∈ ℤ -𝑦 = (2 · 𝑥)))
358, 31, 34sylanbrc 583 . . . . 5 ((𝑦 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑦 = (2 · 𝑥)) → -𝑦𝐸)
366, 35sylbi 217 . . . 4 (𝑦𝐸 → -𝑦𝐸)
37 oveq1 7439 . . . . . 6 (𝑧 = -𝑦 → (𝑧 + 𝑦) = (-𝑦 + 𝑦))
3837eqeq1d 2738 . . . . 5 (𝑧 = -𝑦 → ((𝑧 + 𝑦) = 0 ↔ (-𝑦 + 𝑦) = 0))
3938adantl 481 . . . 4 ((𝑦𝐸𝑧 = -𝑦) → ((𝑧 + 𝑦) = 0 ↔ (-𝑦 + 𝑦) = 0))
40 elrabi 3686 . . . . . . . . 9 (𝑦 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑦 ∈ ℤ)
4140, 1eleq2s 2858 . . . . . . . 8 (𝑦𝐸𝑦 ∈ ℤ)
4241zcnd 12725 . . . . . . 7 (𝑦𝐸𝑦 ∈ ℂ)
4342negcld 11608 . . . . . 6 (𝑦𝐸 → -𝑦 ∈ ℂ)
4443, 42addcomd 11464 . . . . 5 (𝑦𝐸 → (-𝑦 + 𝑦) = (𝑦 + -𝑦))
4542negidd 11611 . . . . 5 (𝑦𝐸 → (𝑦 + -𝑦) = 0)
4644, 45eqtrd 2776 . . . 4 (𝑦𝐸 → (-𝑦 + 𝑦) = 0)
4736, 39, 46rspcedvd 3623 . . 3 (𝑦𝐸 → ∃𝑧𝐸 (𝑧 + 𝑦) = 0)
4847rgen 3062 . 2 𝑦𝐸𝑧𝐸 (𝑧 + 𝑦) = 0
491, 22zrngbas 48163 . . 3 𝐸 = (Base‘𝑅)
501, 22zrngadd 48164 . . 3 + = (+g𝑅)
511, 22zrng0 48165 . . 3 0 = (0g𝑅)
5249, 50, 51isgrp 18958 . 2 (𝑅 ∈ Grp ↔ (𝑅 ∈ Mnd ∧ ∀𝑦𝐸𝑧𝐸 (𝑧 + 𝑦) = 0))
533, 48, 52mpbir2an 711 1 𝑅 ∈ Grp
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1539  wcel 2107  wral 3060  wrex 3069  {crab 3435  (class class class)co 7432  0cc0 11156   + caddc 11159   · cmul 11161  -cneg 11494  2c2 12322  cz 12615  s cress 17275  Mndcmnd 18748  Grpcgrp 18952  fldccnfld 21365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-addf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-fz 13549  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-starv 17313  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-0g 17487  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-grp 18955  df-cmn 19801  df-mgp 20139  df-ring 20233  df-cring 20234  df-cnfld 21366
This theorem is referenced by:  2zrngaabl  48171
  Copyright terms: Public domain W3C validator