Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2zrngagrp Structured version   Visualization version   GIF version

Theorem 2zrngagrp 44142
Description: R is an (additive) group. (Contributed by AV, 6-Jan-2020.)
Hypotheses
Ref Expression
2zrng.e 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
2zrngbas.r 𝑅 = (ℂflds 𝐸)
Assertion
Ref Expression
2zrngagrp 𝑅 ∈ Grp
Distinct variable groups:   𝑥,𝑧,𝑅   𝑥,𝐸,𝑧

Proof of Theorem 2zrngagrp
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 2zrng.e . . 3 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
2 2zrngbas.r . . 3 𝑅 = (ℂflds 𝐸)
31, 22zrngamnd 44140 . 2 𝑅 ∈ Mnd
4 eqeq1 2822 . . . . . . 7 (𝑧 = 𝑦 → (𝑧 = (2 · 𝑥) ↔ 𝑦 = (2 · 𝑥)))
54rexbidv 3294 . . . . . 6 (𝑧 = 𝑦 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 𝑦 = (2 · 𝑥)))
65, 1elrab2 3680 . . . . 5 (𝑦𝐸 ↔ (𝑦 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑦 = (2 · 𝑥)))
7 znegcl 12005 . . . . . . 7 (𝑦 ∈ ℤ → -𝑦 ∈ ℤ)
87adantr 481 . . . . . 6 ((𝑦 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑦 = (2 · 𝑥)) → -𝑦 ∈ ℤ)
9 nfv 1906 . . . . . . . 8 𝑥 𝑦 ∈ ℤ
10 nfre1 3303 . . . . . . . 8 𝑥𝑥 ∈ ℤ -𝑦 = (2 · 𝑥)
11 znegcl 12005 . . . . . . . . . . . . 13 (𝑥 ∈ ℤ → -𝑥 ∈ ℤ)
1211adantl 482 . . . . . . . . . . . 12 ((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) → -𝑥 ∈ ℤ)
1312adantr 481 . . . . . . . . . . 11 (((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 = (2 · 𝑥)) → -𝑥 ∈ ℤ)
14 oveq2 7153 . . . . . . . . . . . . 13 (𝑧 = -𝑥 → (2 · 𝑧) = (2 · -𝑥))
1514eqeq2d 2829 . . . . . . . . . . . 12 (𝑧 = -𝑥 → (-𝑦 = (2 · 𝑧) ↔ -𝑦 = (2 · -𝑥)))
1615adantl 482 . . . . . . . . . . 11 ((((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 = (2 · 𝑥)) ∧ 𝑧 = -𝑥) → (-𝑦 = (2 · 𝑧) ↔ -𝑦 = (2 · -𝑥)))
17 negeq 10866 . . . . . . . . . . . 12 (𝑦 = (2 · 𝑥) → -𝑦 = -(2 · 𝑥))
18 2cnd 11703 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℤ → 2 ∈ ℂ)
19 zcn 11974 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
2018, 19mulneg2d 11082 . . . . . . . . . . . . . 14 (𝑥 ∈ ℤ → (2 · -𝑥) = -(2 · 𝑥))
2120eqcomd 2824 . . . . . . . . . . . . 13 (𝑥 ∈ ℤ → -(2 · 𝑥) = (2 · -𝑥))
2221adantl 482 . . . . . . . . . . . 12 ((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) → -(2 · 𝑥) = (2 · -𝑥))
2317, 22sylan9eqr 2875 . . . . . . . . . . 11 (((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 = (2 · 𝑥)) → -𝑦 = (2 · -𝑥))
2413, 16, 23rspcedvd 3623 . . . . . . . . . 10 (((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 = (2 · 𝑥)) → ∃𝑧 ∈ ℤ -𝑦 = (2 · 𝑧))
25 oveq2 7153 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (2 · 𝑥) = (2 · 𝑧))
2625eqeq2d 2829 . . . . . . . . . . 11 (𝑥 = 𝑧 → (-𝑦 = (2 · 𝑥) ↔ -𝑦 = (2 · 𝑧)))
2726cbvrexvw 3448 . . . . . . . . . 10 (∃𝑥 ∈ ℤ -𝑦 = (2 · 𝑥) ↔ ∃𝑧 ∈ ℤ -𝑦 = (2 · 𝑧))
2824, 27sylibr 235 . . . . . . . . 9 (((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 = (2 · 𝑥)) → ∃𝑥 ∈ ℤ -𝑦 = (2 · 𝑥))
2928exp31 420 . . . . . . . 8 (𝑦 ∈ ℤ → (𝑥 ∈ ℤ → (𝑦 = (2 · 𝑥) → ∃𝑥 ∈ ℤ -𝑦 = (2 · 𝑥))))
309, 10, 29rexlimd 3314 . . . . . . 7 (𝑦 ∈ ℤ → (∃𝑥 ∈ ℤ 𝑦 = (2 · 𝑥) → ∃𝑥 ∈ ℤ -𝑦 = (2 · 𝑥)))
3130imp 407 . . . . . 6 ((𝑦 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑦 = (2 · 𝑥)) → ∃𝑥 ∈ ℤ -𝑦 = (2 · 𝑥))
32 eqeq1 2822 . . . . . . . 8 (𝑧 = -𝑦 → (𝑧 = (2 · 𝑥) ↔ -𝑦 = (2 · 𝑥)))
3332rexbidv 3294 . . . . . . 7 (𝑧 = -𝑦 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ -𝑦 = (2 · 𝑥)))
3433, 1elrab2 3680 . . . . . 6 (-𝑦𝐸 ↔ (-𝑦 ∈ ℤ ∧ ∃𝑥 ∈ ℤ -𝑦 = (2 · 𝑥)))
358, 31, 34sylanbrc 583 . . . . 5 ((𝑦 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑦 = (2 · 𝑥)) → -𝑦𝐸)
366, 35sylbi 218 . . . 4 (𝑦𝐸 → -𝑦𝐸)
37 oveq1 7152 . . . . . 6 (𝑧 = -𝑦 → (𝑧 + 𝑦) = (-𝑦 + 𝑦))
3837eqeq1d 2820 . . . . 5 (𝑧 = -𝑦 → ((𝑧 + 𝑦) = 0 ↔ (-𝑦 + 𝑦) = 0))
3938adantl 482 . . . 4 ((𝑦𝐸𝑧 = -𝑦) → ((𝑧 + 𝑦) = 0 ↔ (-𝑦 + 𝑦) = 0))
40 elrabi 3672 . . . . . . . . 9 (𝑦 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑦 ∈ ℤ)
4140, 1eleq2s 2928 . . . . . . . 8 (𝑦𝐸𝑦 ∈ ℤ)
4241zcnd 12076 . . . . . . 7 (𝑦𝐸𝑦 ∈ ℂ)
4342negcld 10972 . . . . . 6 (𝑦𝐸 → -𝑦 ∈ ℂ)
4443, 42addcomd 10830 . . . . 5 (𝑦𝐸 → (-𝑦 + 𝑦) = (𝑦 + -𝑦))
4542negidd 10975 . . . . 5 (𝑦𝐸 → (𝑦 + -𝑦) = 0)
4644, 45eqtrd 2853 . . . 4 (𝑦𝐸 → (-𝑦 + 𝑦) = 0)
4736, 39, 46rspcedvd 3623 . . 3 (𝑦𝐸 → ∃𝑧𝐸 (𝑧 + 𝑦) = 0)
4847rgen 3145 . 2 𝑦𝐸𝑧𝐸 (𝑧 + 𝑦) = 0
491, 22zrngbas 44135 . . 3 𝐸 = (Base‘𝑅)
501, 22zrngadd 44136 . . 3 + = (+g𝑅)
511, 22zrng0 44137 . . 3 0 = (0g𝑅)
5249, 50, 51isgrp 18047 . 2 (𝑅 ∈ Grp ↔ (𝑅 ∈ Mnd ∧ ∀𝑦𝐸𝑧𝐸 (𝑧 + 𝑦) = 0))
533, 48, 52mpbir2an 707 1 𝑅 ∈ Grp
Colors of variables: wff setvar class
Syntax hints:  wb 207  wa 396   = wceq 1528  wcel 2105  wral 3135  wrex 3136  {crab 3139  (class class class)co 7145  0cc0 10525   + caddc 10528   · cmul 10530  -cneg 10859  2c2 11680  cz 11969  s cress 16472  Mndcmnd 17899  Grpcgrp 18041  fldccnfld 20473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-addf 10604  ax-mulf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12881  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-starv 16568  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-0g 16703  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-grp 18044  df-cmn 18837  df-mgp 19169  df-ring 19228  df-cring 19229  df-cnfld 20474
This theorem is referenced by:  2zrngaabl  44143
  Copyright terms: Public domain W3C validator