Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2zrngagrp Structured version   Visualization version   GIF version

Theorem 2zrngagrp 44498
Description: R is an (additive) group. (Contributed by AV, 6-Jan-2020.)
Hypotheses
Ref Expression
2zrng.e 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
2zrngbas.r 𝑅 = (ℂflds 𝐸)
Assertion
Ref Expression
2zrngagrp 𝑅 ∈ Grp
Distinct variable groups:   𝑥,𝑧,𝑅   𝑥,𝐸,𝑧

Proof of Theorem 2zrngagrp
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 2zrng.e . . 3 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
2 2zrngbas.r . . 3 𝑅 = (ℂflds 𝐸)
31, 22zrngamnd 44496 . 2 𝑅 ∈ Mnd
4 eqeq1 2828 . . . . . . 7 (𝑧 = 𝑦 → (𝑧 = (2 · 𝑥) ↔ 𝑦 = (2 · 𝑥)))
54rexbidv 3289 . . . . . 6 (𝑧 = 𝑦 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 𝑦 = (2 · 𝑥)))
65, 1elrab2 3669 . . . . 5 (𝑦𝐸 ↔ (𝑦 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑦 = (2 · 𝑥)))
7 znegcl 12014 . . . . . . 7 (𝑦 ∈ ℤ → -𝑦 ∈ ℤ)
87adantr 484 . . . . . 6 ((𝑦 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑦 = (2 · 𝑥)) → -𝑦 ∈ ℤ)
9 nfv 1916 . . . . . . . 8 𝑥 𝑦 ∈ ℤ
10 nfre1 3298 . . . . . . . 8 𝑥𝑥 ∈ ℤ -𝑦 = (2 · 𝑥)
11 znegcl 12014 . . . . . . . . . . . . 13 (𝑥 ∈ ℤ → -𝑥 ∈ ℤ)
1211adantl 485 . . . . . . . . . . . 12 ((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) → -𝑥 ∈ ℤ)
1312adantr 484 . . . . . . . . . . 11 (((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 = (2 · 𝑥)) → -𝑥 ∈ ℤ)
14 oveq2 7157 . . . . . . . . . . . . 13 (𝑧 = -𝑥 → (2 · 𝑧) = (2 · -𝑥))
1514eqeq2d 2835 . . . . . . . . . . . 12 (𝑧 = -𝑥 → (-𝑦 = (2 · 𝑧) ↔ -𝑦 = (2 · -𝑥)))
1615adantl 485 . . . . . . . . . . 11 ((((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 = (2 · 𝑥)) ∧ 𝑧 = -𝑥) → (-𝑦 = (2 · 𝑧) ↔ -𝑦 = (2 · -𝑥)))
17 negeq 10876 . . . . . . . . . . . 12 (𝑦 = (2 · 𝑥) → -𝑦 = -(2 · 𝑥))
18 2cnd 11712 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℤ → 2 ∈ ℂ)
19 zcn 11983 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
2018, 19mulneg2d 11092 . . . . . . . . . . . . . 14 (𝑥 ∈ ℤ → (2 · -𝑥) = -(2 · 𝑥))
2120eqcomd 2830 . . . . . . . . . . . . 13 (𝑥 ∈ ℤ → -(2 · 𝑥) = (2 · -𝑥))
2221adantl 485 . . . . . . . . . . . 12 ((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) → -(2 · 𝑥) = (2 · -𝑥))
2317, 22sylan9eqr 2881 . . . . . . . . . . 11 (((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 = (2 · 𝑥)) → -𝑦 = (2 · -𝑥))
2413, 16, 23rspcedvd 3612 . . . . . . . . . 10 (((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 = (2 · 𝑥)) → ∃𝑧 ∈ ℤ -𝑦 = (2 · 𝑧))
25 oveq2 7157 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (2 · 𝑥) = (2 · 𝑧))
2625eqeq2d 2835 . . . . . . . . . . 11 (𝑥 = 𝑧 → (-𝑦 = (2 · 𝑥) ↔ -𝑦 = (2 · 𝑧)))
2726cbvrexvw 3435 . . . . . . . . . 10 (∃𝑥 ∈ ℤ -𝑦 = (2 · 𝑥) ↔ ∃𝑧 ∈ ℤ -𝑦 = (2 · 𝑧))
2824, 27sylibr 237 . . . . . . . . 9 (((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 = (2 · 𝑥)) → ∃𝑥 ∈ ℤ -𝑦 = (2 · 𝑥))
2928exp31 423 . . . . . . . 8 (𝑦 ∈ ℤ → (𝑥 ∈ ℤ → (𝑦 = (2 · 𝑥) → ∃𝑥 ∈ ℤ -𝑦 = (2 · 𝑥))))
309, 10, 29rexlimd 3309 . . . . . . 7 (𝑦 ∈ ℤ → (∃𝑥 ∈ ℤ 𝑦 = (2 · 𝑥) → ∃𝑥 ∈ ℤ -𝑦 = (2 · 𝑥)))
3130imp 410 . . . . . 6 ((𝑦 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑦 = (2 · 𝑥)) → ∃𝑥 ∈ ℤ -𝑦 = (2 · 𝑥))
32 eqeq1 2828 . . . . . . . 8 (𝑧 = -𝑦 → (𝑧 = (2 · 𝑥) ↔ -𝑦 = (2 · 𝑥)))
3332rexbidv 3289 . . . . . . 7 (𝑧 = -𝑦 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ -𝑦 = (2 · 𝑥)))
3433, 1elrab2 3669 . . . . . 6 (-𝑦𝐸 ↔ (-𝑦 ∈ ℤ ∧ ∃𝑥 ∈ ℤ -𝑦 = (2 · 𝑥)))
358, 31, 34sylanbrc 586 . . . . 5 ((𝑦 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑦 = (2 · 𝑥)) → -𝑦𝐸)
366, 35sylbi 220 . . . 4 (𝑦𝐸 → -𝑦𝐸)
37 oveq1 7156 . . . . . 6 (𝑧 = -𝑦 → (𝑧 + 𝑦) = (-𝑦 + 𝑦))
3837eqeq1d 2826 . . . . 5 (𝑧 = -𝑦 → ((𝑧 + 𝑦) = 0 ↔ (-𝑦 + 𝑦) = 0))
3938adantl 485 . . . 4 ((𝑦𝐸𝑧 = -𝑦) → ((𝑧 + 𝑦) = 0 ↔ (-𝑦 + 𝑦) = 0))
40 elrabi 3661 . . . . . . . . 9 (𝑦 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑦 ∈ ℤ)
4140, 1eleq2s 2934 . . . . . . . 8 (𝑦𝐸𝑦 ∈ ℤ)
4241zcnd 12085 . . . . . . 7 (𝑦𝐸𝑦 ∈ ℂ)
4342negcld 10982 . . . . . 6 (𝑦𝐸 → -𝑦 ∈ ℂ)
4443, 42addcomd 10840 . . . . 5 (𝑦𝐸 → (-𝑦 + 𝑦) = (𝑦 + -𝑦))
4542negidd 10985 . . . . 5 (𝑦𝐸 → (𝑦 + -𝑦) = 0)
4644, 45eqtrd 2859 . . . 4 (𝑦𝐸 → (-𝑦 + 𝑦) = 0)
4736, 39, 46rspcedvd 3612 . . 3 (𝑦𝐸 → ∃𝑧𝐸 (𝑧 + 𝑦) = 0)
4847rgen 3143 . 2 𝑦𝐸𝑧𝐸 (𝑧 + 𝑦) = 0
491, 22zrngbas 44491 . . 3 𝐸 = (Base‘𝑅)
501, 22zrngadd 44492 . . 3 + = (+g𝑅)
511, 22zrng0 44493 . . 3 0 = (0g𝑅)
5249, 50, 51isgrp 18109 . 2 (𝑅 ∈ Grp ↔ (𝑅 ∈ Mnd ∧ ∀𝑦𝐸𝑧𝐸 (𝑧 + 𝑦) = 0))
533, 48, 52mpbir2an 710 1 𝑅 ∈ Grp
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1538  wcel 2115  wral 3133  wrex 3134  {crab 3137  (class class class)co 7149  0cc0 10535   + caddc 10538   · cmul 10540  -cneg 10869  2c2 11689  cz 11978  s cress 16484  Mndcmnd 17911  Grpcgrp 18103  fldccnfld 20098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612  ax-addf 10614  ax-mulf 10615
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8285  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-nn 11635  df-2 11697  df-3 11698  df-4 11699  df-5 11700  df-6 11701  df-7 11702  df-8 11703  df-9 11704  df-n0 11895  df-z 11979  df-dec 12096  df-uz 12241  df-fz 12895  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-cmn 18908  df-mgp 19240  df-ring 19299  df-cring 19300  df-cnfld 20099
This theorem is referenced by:  2zrngaabl  44499
  Copyright terms: Public domain W3C validator