Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2zrngagrp Structured version   Visualization version   GIF version

Theorem 2zrngagrp 47362
Description: R is an (additive) group. (Contributed by AV, 6-Jan-2020.)
Hypotheses
Ref Expression
2zrng.e 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
2zrngbas.r 𝑅 = (ℂflds 𝐸)
Assertion
Ref Expression
2zrngagrp 𝑅 ∈ Grp
Distinct variable groups:   𝑥,𝑧,𝑅   𝑥,𝐸,𝑧

Proof of Theorem 2zrngagrp
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 2zrng.e . . 3 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
2 2zrngbas.r . . 3 𝑅 = (ℂflds 𝐸)
31, 22zrngamnd 47360 . 2 𝑅 ∈ Mnd
4 eqeq1 2731 . . . . . . 7 (𝑧 = 𝑦 → (𝑧 = (2 · 𝑥) ↔ 𝑦 = (2 · 𝑥)))
54rexbidv 3174 . . . . . 6 (𝑧 = 𝑦 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 𝑦 = (2 · 𝑥)))
65, 1elrab2 3685 . . . . 5 (𝑦𝐸 ↔ (𝑦 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑦 = (2 · 𝑥)))
7 znegcl 12633 . . . . . . 7 (𝑦 ∈ ℤ → -𝑦 ∈ ℤ)
87adantr 479 . . . . . 6 ((𝑦 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑦 = (2 · 𝑥)) → -𝑦 ∈ ℤ)
9 nfv 1909 . . . . . . . 8 𝑥 𝑦 ∈ ℤ
10 nfre1 3278 . . . . . . . 8 𝑥𝑥 ∈ ℤ -𝑦 = (2 · 𝑥)
11 znegcl 12633 . . . . . . . . . . . . 13 (𝑥 ∈ ℤ → -𝑥 ∈ ℤ)
1211adantl 480 . . . . . . . . . . . 12 ((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) → -𝑥 ∈ ℤ)
1312adantr 479 . . . . . . . . . . 11 (((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 = (2 · 𝑥)) → -𝑥 ∈ ℤ)
14 oveq2 7432 . . . . . . . . . . . . 13 (𝑧 = -𝑥 → (2 · 𝑧) = (2 · -𝑥))
1514eqeq2d 2738 . . . . . . . . . . . 12 (𝑧 = -𝑥 → (-𝑦 = (2 · 𝑧) ↔ -𝑦 = (2 · -𝑥)))
1615adantl 480 . . . . . . . . . . 11 ((((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 = (2 · 𝑥)) ∧ 𝑧 = -𝑥) → (-𝑦 = (2 · 𝑧) ↔ -𝑦 = (2 · -𝑥)))
17 negeq 11488 . . . . . . . . . . . 12 (𝑦 = (2 · 𝑥) → -𝑦 = -(2 · 𝑥))
18 2cnd 12326 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℤ → 2 ∈ ℂ)
19 zcn 12599 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
2018, 19mulneg2d 11704 . . . . . . . . . . . . . 14 (𝑥 ∈ ℤ → (2 · -𝑥) = -(2 · 𝑥))
2120eqcomd 2733 . . . . . . . . . . . . 13 (𝑥 ∈ ℤ → -(2 · 𝑥) = (2 · -𝑥))
2221adantl 480 . . . . . . . . . . . 12 ((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) → -(2 · 𝑥) = (2 · -𝑥))
2317, 22sylan9eqr 2789 . . . . . . . . . . 11 (((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 = (2 · 𝑥)) → -𝑦 = (2 · -𝑥))
2413, 16, 23rspcedvd 3611 . . . . . . . . . 10 (((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 = (2 · 𝑥)) → ∃𝑧 ∈ ℤ -𝑦 = (2 · 𝑧))
25 oveq2 7432 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (2 · 𝑥) = (2 · 𝑧))
2625eqeq2d 2738 . . . . . . . . . . 11 (𝑥 = 𝑧 → (-𝑦 = (2 · 𝑥) ↔ -𝑦 = (2 · 𝑧)))
2726cbvrexvw 3231 . . . . . . . . . 10 (∃𝑥 ∈ ℤ -𝑦 = (2 · 𝑥) ↔ ∃𝑧 ∈ ℤ -𝑦 = (2 · 𝑧))
2824, 27sylibr 233 . . . . . . . . 9 (((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 = (2 · 𝑥)) → ∃𝑥 ∈ ℤ -𝑦 = (2 · 𝑥))
2928exp31 418 . . . . . . . 8 (𝑦 ∈ ℤ → (𝑥 ∈ ℤ → (𝑦 = (2 · 𝑥) → ∃𝑥 ∈ ℤ -𝑦 = (2 · 𝑥))))
309, 10, 29rexlimd 3259 . . . . . . 7 (𝑦 ∈ ℤ → (∃𝑥 ∈ ℤ 𝑦 = (2 · 𝑥) → ∃𝑥 ∈ ℤ -𝑦 = (2 · 𝑥)))
3130imp 405 . . . . . 6 ((𝑦 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑦 = (2 · 𝑥)) → ∃𝑥 ∈ ℤ -𝑦 = (2 · 𝑥))
32 eqeq1 2731 . . . . . . . 8 (𝑧 = -𝑦 → (𝑧 = (2 · 𝑥) ↔ -𝑦 = (2 · 𝑥)))
3332rexbidv 3174 . . . . . . 7 (𝑧 = -𝑦 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ -𝑦 = (2 · 𝑥)))
3433, 1elrab2 3685 . . . . . 6 (-𝑦𝐸 ↔ (-𝑦 ∈ ℤ ∧ ∃𝑥 ∈ ℤ -𝑦 = (2 · 𝑥)))
358, 31, 34sylanbrc 581 . . . . 5 ((𝑦 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑦 = (2 · 𝑥)) → -𝑦𝐸)
366, 35sylbi 216 . . . 4 (𝑦𝐸 → -𝑦𝐸)
37 oveq1 7431 . . . . . 6 (𝑧 = -𝑦 → (𝑧 + 𝑦) = (-𝑦 + 𝑦))
3837eqeq1d 2729 . . . . 5 (𝑧 = -𝑦 → ((𝑧 + 𝑦) = 0 ↔ (-𝑦 + 𝑦) = 0))
3938adantl 480 . . . 4 ((𝑦𝐸𝑧 = -𝑦) → ((𝑧 + 𝑦) = 0 ↔ (-𝑦 + 𝑦) = 0))
40 elrabi 3676 . . . . . . . . 9 (𝑦 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑦 ∈ ℤ)
4140, 1eleq2s 2846 . . . . . . . 8 (𝑦𝐸𝑦 ∈ ℤ)
4241zcnd 12703 . . . . . . 7 (𝑦𝐸𝑦 ∈ ℂ)
4342negcld 11594 . . . . . 6 (𝑦𝐸 → -𝑦 ∈ ℂ)
4443, 42addcomd 11452 . . . . 5 (𝑦𝐸 → (-𝑦 + 𝑦) = (𝑦 + -𝑦))
4542negidd 11597 . . . . 5 (𝑦𝐸 → (𝑦 + -𝑦) = 0)
4644, 45eqtrd 2767 . . . 4 (𝑦𝐸 → (-𝑦 + 𝑦) = 0)
4736, 39, 46rspcedvd 3611 . . 3 (𝑦𝐸 → ∃𝑧𝐸 (𝑧 + 𝑦) = 0)
4847rgen 3059 . 2 𝑦𝐸𝑧𝐸 (𝑧 + 𝑦) = 0
491, 22zrngbas 47355 . . 3 𝐸 = (Base‘𝑅)
501, 22zrngadd 47356 . . 3 + = (+g𝑅)
511, 22zrng0 47357 . . 3 0 = (0g𝑅)
5249, 50, 51isgrp 18901 . 2 (𝑅 ∈ Grp ↔ (𝑅 ∈ Mnd ∧ ∀𝑦𝐸𝑧𝐸 (𝑧 + 𝑦) = 0))
533, 48, 52mpbir2an 709 1 𝑅 ∈ Grp
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394   = wceq 1533  wcel 2098  wral 3057  wrex 3066  {crab 3428  (class class class)co 7424  0cc0 11144   + caddc 11147   · cmul 11149  -cneg 11481  2c2 12303  cz 12594  s cress 17214  Mndcmnd 18699  Grpcgrp 18895  fldccnfld 21284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-cnex 11200  ax-resscn 11201  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-addrcl 11205  ax-mulcl 11206  ax-mulrcl 11207  ax-mulcom 11208  ax-addass 11209  ax-mulass 11210  ax-distr 11211  ax-i2m1 11212  ax-1ne0 11213  ax-1rid 11214  ax-rnegex 11215  ax-rrecex 11216  ax-cnre 11217  ax-pre-lttri 11218  ax-pre-lttrn 11219  ax-pre-ltadd 11220  ax-pre-mulgt0 11221  ax-addf 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4911  df-iun 5000  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7875  df-1st 7997  df-2nd 7998  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-1o 8491  df-er 8729  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290  df-sub 11482  df-neg 11483  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12509  df-z 12595  df-dec 12714  df-uz 12859  df-fz 13523  df-struct 17121  df-sets 17138  df-slot 17156  df-ndx 17168  df-base 17186  df-ress 17215  df-plusg 17251  df-mulr 17252  df-starv 17253  df-tset 17257  df-ple 17258  df-ds 17260  df-unif 17261  df-0g 17428  df-mgm 18605  df-sgrp 18684  df-mnd 18700  df-grp 18898  df-cmn 19742  df-mgp 20080  df-ring 20180  df-cring 20181  df-cnfld 21285
This theorem is referenced by:  2zrngaabl  47363
  Copyright terms: Public domain W3C validator