Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2zrngagrp Structured version   Visualization version   GIF version

Theorem 2zrngagrp 46231
Description: R is an (additive) group. (Contributed by AV, 6-Jan-2020.)
Hypotheses
Ref Expression
2zrng.e 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
2zrngbas.r 𝑅 = (ℂflds 𝐸)
Assertion
Ref Expression
2zrngagrp 𝑅 ∈ Grp
Distinct variable groups:   𝑥,𝑧,𝑅   𝑥,𝐸,𝑧

Proof of Theorem 2zrngagrp
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 2zrng.e . . 3 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
2 2zrngbas.r . . 3 𝑅 = (ℂflds 𝐸)
31, 22zrngamnd 46229 . 2 𝑅 ∈ Mnd
4 eqeq1 2740 . . . . . . 7 (𝑧 = 𝑦 → (𝑧 = (2 · 𝑥) ↔ 𝑦 = (2 · 𝑥)))
54rexbidv 3175 . . . . . 6 (𝑧 = 𝑦 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 𝑦 = (2 · 𝑥)))
65, 1elrab2 3648 . . . . 5 (𝑦𝐸 ↔ (𝑦 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑦 = (2 · 𝑥)))
7 znegcl 12538 . . . . . . 7 (𝑦 ∈ ℤ → -𝑦 ∈ ℤ)
87adantr 481 . . . . . 6 ((𝑦 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑦 = (2 · 𝑥)) → -𝑦 ∈ ℤ)
9 nfv 1917 . . . . . . . 8 𝑥 𝑦 ∈ ℤ
10 nfre1 3268 . . . . . . . 8 𝑥𝑥 ∈ ℤ -𝑦 = (2 · 𝑥)
11 znegcl 12538 . . . . . . . . . . . . 13 (𝑥 ∈ ℤ → -𝑥 ∈ ℤ)
1211adantl 482 . . . . . . . . . . . 12 ((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) → -𝑥 ∈ ℤ)
1312adantr 481 . . . . . . . . . . 11 (((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 = (2 · 𝑥)) → -𝑥 ∈ ℤ)
14 oveq2 7365 . . . . . . . . . . . . 13 (𝑧 = -𝑥 → (2 · 𝑧) = (2 · -𝑥))
1514eqeq2d 2747 . . . . . . . . . . . 12 (𝑧 = -𝑥 → (-𝑦 = (2 · 𝑧) ↔ -𝑦 = (2 · -𝑥)))
1615adantl 482 . . . . . . . . . . 11 ((((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 = (2 · 𝑥)) ∧ 𝑧 = -𝑥) → (-𝑦 = (2 · 𝑧) ↔ -𝑦 = (2 · -𝑥)))
17 negeq 11393 . . . . . . . . . . . 12 (𝑦 = (2 · 𝑥) → -𝑦 = -(2 · 𝑥))
18 2cnd 12231 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℤ → 2 ∈ ℂ)
19 zcn 12504 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
2018, 19mulneg2d 11609 . . . . . . . . . . . . . 14 (𝑥 ∈ ℤ → (2 · -𝑥) = -(2 · 𝑥))
2120eqcomd 2742 . . . . . . . . . . . . 13 (𝑥 ∈ ℤ → -(2 · 𝑥) = (2 · -𝑥))
2221adantl 482 . . . . . . . . . . . 12 ((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) → -(2 · 𝑥) = (2 · -𝑥))
2317, 22sylan9eqr 2798 . . . . . . . . . . 11 (((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 = (2 · 𝑥)) → -𝑦 = (2 · -𝑥))
2413, 16, 23rspcedvd 3583 . . . . . . . . . 10 (((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 = (2 · 𝑥)) → ∃𝑧 ∈ ℤ -𝑦 = (2 · 𝑧))
25 oveq2 7365 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (2 · 𝑥) = (2 · 𝑧))
2625eqeq2d 2747 . . . . . . . . . . 11 (𝑥 = 𝑧 → (-𝑦 = (2 · 𝑥) ↔ -𝑦 = (2 · 𝑧)))
2726cbvrexvw 3226 . . . . . . . . . 10 (∃𝑥 ∈ ℤ -𝑦 = (2 · 𝑥) ↔ ∃𝑧 ∈ ℤ -𝑦 = (2 · 𝑧))
2824, 27sylibr 233 . . . . . . . . 9 (((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 = (2 · 𝑥)) → ∃𝑥 ∈ ℤ -𝑦 = (2 · 𝑥))
2928exp31 420 . . . . . . . 8 (𝑦 ∈ ℤ → (𝑥 ∈ ℤ → (𝑦 = (2 · 𝑥) → ∃𝑥 ∈ ℤ -𝑦 = (2 · 𝑥))))
309, 10, 29rexlimd 3249 . . . . . . 7 (𝑦 ∈ ℤ → (∃𝑥 ∈ ℤ 𝑦 = (2 · 𝑥) → ∃𝑥 ∈ ℤ -𝑦 = (2 · 𝑥)))
3130imp 407 . . . . . 6 ((𝑦 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑦 = (2 · 𝑥)) → ∃𝑥 ∈ ℤ -𝑦 = (2 · 𝑥))
32 eqeq1 2740 . . . . . . . 8 (𝑧 = -𝑦 → (𝑧 = (2 · 𝑥) ↔ -𝑦 = (2 · 𝑥)))
3332rexbidv 3175 . . . . . . 7 (𝑧 = -𝑦 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ -𝑦 = (2 · 𝑥)))
3433, 1elrab2 3648 . . . . . 6 (-𝑦𝐸 ↔ (-𝑦 ∈ ℤ ∧ ∃𝑥 ∈ ℤ -𝑦 = (2 · 𝑥)))
358, 31, 34sylanbrc 583 . . . . 5 ((𝑦 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑦 = (2 · 𝑥)) → -𝑦𝐸)
366, 35sylbi 216 . . . 4 (𝑦𝐸 → -𝑦𝐸)
37 oveq1 7364 . . . . . 6 (𝑧 = -𝑦 → (𝑧 + 𝑦) = (-𝑦 + 𝑦))
3837eqeq1d 2738 . . . . 5 (𝑧 = -𝑦 → ((𝑧 + 𝑦) = 0 ↔ (-𝑦 + 𝑦) = 0))
3938adantl 482 . . . 4 ((𝑦𝐸𝑧 = -𝑦) → ((𝑧 + 𝑦) = 0 ↔ (-𝑦 + 𝑦) = 0))
40 elrabi 3639 . . . . . . . . 9 (𝑦 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑦 ∈ ℤ)
4140, 1eleq2s 2856 . . . . . . . 8 (𝑦𝐸𝑦 ∈ ℤ)
4241zcnd 12608 . . . . . . 7 (𝑦𝐸𝑦 ∈ ℂ)
4342negcld 11499 . . . . . 6 (𝑦𝐸 → -𝑦 ∈ ℂ)
4443, 42addcomd 11357 . . . . 5 (𝑦𝐸 → (-𝑦 + 𝑦) = (𝑦 + -𝑦))
4542negidd 11502 . . . . 5 (𝑦𝐸 → (𝑦 + -𝑦) = 0)
4644, 45eqtrd 2776 . . . 4 (𝑦𝐸 → (-𝑦 + 𝑦) = 0)
4736, 39, 46rspcedvd 3583 . . 3 (𝑦𝐸 → ∃𝑧𝐸 (𝑧 + 𝑦) = 0)
4847rgen 3066 . 2 𝑦𝐸𝑧𝐸 (𝑧 + 𝑦) = 0
491, 22zrngbas 46224 . . 3 𝐸 = (Base‘𝑅)
501, 22zrngadd 46225 . . 3 + = (+g𝑅)
511, 22zrng0 46226 . . 3 0 = (0g𝑅)
5249, 50, 51isgrp 18754 . 2 (𝑅 ∈ Grp ↔ (𝑅 ∈ Mnd ∧ ∀𝑦𝐸𝑧𝐸 (𝑧 + 𝑦) = 0))
533, 48, 52mpbir2an 709 1 𝑅 ∈ Grp
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  wrex 3073  {crab 3407  (class class class)co 7357  0cc0 11051   + caddc 11054   · cmul 11056  -cneg 11386  2c2 12208  cz 12499  s cress 17112  Mndcmnd 18556  Grpcgrp 18748  fldccnfld 20796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-0g 17323  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-grp 18751  df-cmn 19564  df-mgp 19897  df-ring 19966  df-cring 19967  df-cnfld 20797
This theorem is referenced by:  2zrngaabl  46232
  Copyright terms: Public domain W3C validator