Step | Hyp | Ref
| Expression |
1 | | 2zrng.e |
. . 3
⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} |
2 | | 2zrngbas.r |
. . 3
⊢ 𝑅 = (ℂfld
↾s 𝐸) |
3 | 1, 2 | 2zrngamnd 45387 |
. 2
⊢ 𝑅 ∈ Mnd |
4 | | eqeq1 2742 |
. . . . . . 7
⊢ (𝑧 = 𝑦 → (𝑧 = (2 · 𝑥) ↔ 𝑦 = (2 · 𝑥))) |
5 | 4 | rexbidv 3225 |
. . . . . 6
⊢ (𝑧 = 𝑦 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 𝑦 = (2 · 𝑥))) |
6 | 5, 1 | elrab2 3620 |
. . . . 5
⊢ (𝑦 ∈ 𝐸 ↔ (𝑦 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑦 = (2 · 𝑥))) |
7 | | znegcl 12285 |
. . . . . . 7
⊢ (𝑦 ∈ ℤ → -𝑦 ∈
ℤ) |
8 | 7 | adantr 480 |
. . . . . 6
⊢ ((𝑦 ∈ ℤ ∧
∃𝑥 ∈ ℤ
𝑦 = (2 · 𝑥)) → -𝑦 ∈ ℤ) |
9 | | nfv 1918 |
. . . . . . . 8
⊢
Ⅎ𝑥 𝑦 ∈ ℤ |
10 | | nfre1 3234 |
. . . . . . . 8
⊢
Ⅎ𝑥∃𝑥 ∈ ℤ -𝑦 = (2 · 𝑥) |
11 | | znegcl 12285 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℤ → -𝑥 ∈
ℤ) |
12 | 11 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) → -𝑥 ∈
ℤ) |
13 | 12 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 = (2 · 𝑥)) → -𝑥 ∈ ℤ) |
14 | | oveq2 7263 |
. . . . . . . . . . . . 13
⊢ (𝑧 = -𝑥 → (2 · 𝑧) = (2 · -𝑥)) |
15 | 14 | eqeq2d 2749 |
. . . . . . . . . . . 12
⊢ (𝑧 = -𝑥 → (-𝑦 = (2 · 𝑧) ↔ -𝑦 = (2 · -𝑥))) |
16 | 15 | adantl 481 |
. . . . . . . . . . 11
⊢ ((((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 = (2 · 𝑥)) ∧ 𝑧 = -𝑥) → (-𝑦 = (2 · 𝑧) ↔ -𝑦 = (2 · -𝑥))) |
17 | | negeq 11143 |
. . . . . . . . . . . 12
⊢ (𝑦 = (2 · 𝑥) → -𝑦 = -(2 · 𝑥)) |
18 | | 2cnd 11981 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℤ → 2 ∈
ℂ) |
19 | | zcn 12254 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℤ → 𝑥 ∈
ℂ) |
20 | 18, 19 | mulneg2d 11359 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℤ → (2
· -𝑥) = -(2 ·
𝑥)) |
21 | 20 | eqcomd 2744 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℤ → -(2
· 𝑥) = (2 ·
-𝑥)) |
22 | 21 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) → -(2
· 𝑥) = (2 ·
-𝑥)) |
23 | 17, 22 | sylan9eqr 2801 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 = (2 · 𝑥)) → -𝑦 = (2 · -𝑥)) |
24 | 13, 16, 23 | rspcedvd 3555 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 = (2 · 𝑥)) → ∃𝑧 ∈ ℤ -𝑦 = (2 · 𝑧)) |
25 | | oveq2 7263 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → (2 · 𝑥) = (2 · 𝑧)) |
26 | 25 | eqeq2d 2749 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → (-𝑦 = (2 · 𝑥) ↔ -𝑦 = (2 · 𝑧))) |
27 | 26 | cbvrexvw 3373 |
. . . . . . . . . 10
⊢
(∃𝑥 ∈
ℤ -𝑦 = (2 ·
𝑥) ↔ ∃𝑧 ∈ ℤ -𝑦 = (2 · 𝑧)) |
28 | 24, 27 | sylibr 233 |
. . . . . . . . 9
⊢ (((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 = (2 · 𝑥)) → ∃𝑥 ∈ ℤ -𝑦 = (2 · 𝑥)) |
29 | 28 | exp31 419 |
. . . . . . . 8
⊢ (𝑦 ∈ ℤ → (𝑥 ∈ ℤ → (𝑦 = (2 · 𝑥) → ∃𝑥 ∈ ℤ -𝑦 = (2 · 𝑥)))) |
30 | 9, 10, 29 | rexlimd 3245 |
. . . . . . 7
⊢ (𝑦 ∈ ℤ →
(∃𝑥 ∈ ℤ
𝑦 = (2 · 𝑥) → ∃𝑥 ∈ ℤ -𝑦 = (2 · 𝑥))) |
31 | 30 | imp 406 |
. . . . . 6
⊢ ((𝑦 ∈ ℤ ∧
∃𝑥 ∈ ℤ
𝑦 = (2 · 𝑥)) → ∃𝑥 ∈ ℤ -𝑦 = (2 · 𝑥)) |
32 | | eqeq1 2742 |
. . . . . . . 8
⊢ (𝑧 = -𝑦 → (𝑧 = (2 · 𝑥) ↔ -𝑦 = (2 · 𝑥))) |
33 | 32 | rexbidv 3225 |
. . . . . . 7
⊢ (𝑧 = -𝑦 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ -𝑦 = (2 · 𝑥))) |
34 | 33, 1 | elrab2 3620 |
. . . . . 6
⊢ (-𝑦 ∈ 𝐸 ↔ (-𝑦 ∈ ℤ ∧ ∃𝑥 ∈ ℤ -𝑦 = (2 · 𝑥))) |
35 | 8, 31, 34 | sylanbrc 582 |
. . . . 5
⊢ ((𝑦 ∈ ℤ ∧
∃𝑥 ∈ ℤ
𝑦 = (2 · 𝑥)) → -𝑦 ∈ 𝐸) |
36 | 6, 35 | sylbi 216 |
. . . 4
⊢ (𝑦 ∈ 𝐸 → -𝑦 ∈ 𝐸) |
37 | | oveq1 7262 |
. . . . . 6
⊢ (𝑧 = -𝑦 → (𝑧 + 𝑦) = (-𝑦 + 𝑦)) |
38 | 37 | eqeq1d 2740 |
. . . . 5
⊢ (𝑧 = -𝑦 → ((𝑧 + 𝑦) = 0 ↔ (-𝑦 + 𝑦) = 0)) |
39 | 38 | adantl 481 |
. . . 4
⊢ ((𝑦 ∈ 𝐸 ∧ 𝑧 = -𝑦) → ((𝑧 + 𝑦) = 0 ↔ (-𝑦 + 𝑦) = 0)) |
40 | | elrabi 3611 |
. . . . . . . . 9
⊢ (𝑦 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑦 ∈ ℤ) |
41 | 40, 1 | eleq2s 2857 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝐸 → 𝑦 ∈ ℤ) |
42 | 41 | zcnd 12356 |
. . . . . . 7
⊢ (𝑦 ∈ 𝐸 → 𝑦 ∈ ℂ) |
43 | 42 | negcld 11249 |
. . . . . 6
⊢ (𝑦 ∈ 𝐸 → -𝑦 ∈ ℂ) |
44 | 43, 42 | addcomd 11107 |
. . . . 5
⊢ (𝑦 ∈ 𝐸 → (-𝑦 + 𝑦) = (𝑦 + -𝑦)) |
45 | 42 | negidd 11252 |
. . . . 5
⊢ (𝑦 ∈ 𝐸 → (𝑦 + -𝑦) = 0) |
46 | 44, 45 | eqtrd 2778 |
. . . 4
⊢ (𝑦 ∈ 𝐸 → (-𝑦 + 𝑦) = 0) |
47 | 36, 39, 46 | rspcedvd 3555 |
. . 3
⊢ (𝑦 ∈ 𝐸 → ∃𝑧 ∈ 𝐸 (𝑧 + 𝑦) = 0) |
48 | 47 | rgen 3073 |
. 2
⊢
∀𝑦 ∈
𝐸 ∃𝑧 ∈ 𝐸 (𝑧 + 𝑦) = 0 |
49 | 1, 2 | 2zrngbas 45382 |
. . 3
⊢ 𝐸 = (Base‘𝑅) |
50 | 1, 2 | 2zrngadd 45383 |
. . 3
⊢ + =
(+g‘𝑅) |
51 | 1, 2 | 2zrng0 45384 |
. . 3
⊢ 0 =
(0g‘𝑅) |
52 | 49, 50, 51 | isgrp 18498 |
. 2
⊢ (𝑅 ∈ Grp ↔ (𝑅 ∈ Mnd ∧ ∀𝑦 ∈ 𝐸 ∃𝑧 ∈ 𝐸 (𝑧 + 𝑦) = 0)) |
53 | 3, 48, 52 | mpbir2an 707 |
1
⊢ 𝑅 ∈ Grp |