MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grppropd Structured version   Visualization version   GIF version

Theorem grppropd 18866
Description: If two structures have the same group components (properties), one is a group iff the other one is. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
grppropd.1 (𝜑𝐵 = (Base‘𝐾))
grppropd.2 (𝜑𝐵 = (Base‘𝐿))
grppropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
Assertion
Ref Expression
grppropd (𝜑 → (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦

Proof of Theorem grppropd
StepHypRef Expression
1 grppropd.1 . . . 4 (𝜑𝐵 = (Base‘𝐾))
2 grppropd.2 . . . 4 (𝜑𝐵 = (Base‘𝐿))
3 grppropd.3 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
41, 2, 3mndpropd 18669 . . 3 (𝜑 → (𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd))
51, 2, 3grpidpropd 18572 . . . . . . . . 9 (𝜑 → (0g𝐾) = (0g𝐿))
65adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (0g𝐾) = (0g𝐿))
73, 6eqeq12d 2749 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥(+g𝐾)𝑦) = (0g𝐾) ↔ (𝑥(+g𝐿)𝑦) = (0g𝐿)))
87anass1rs 655 . . . . . 6 (((𝜑𝑦𝐵) ∧ 𝑥𝐵) → ((𝑥(+g𝐾)𝑦) = (0g𝐾) ↔ (𝑥(+g𝐿)𝑦) = (0g𝐿)))
98rexbidva 3155 . . . . 5 ((𝜑𝑦𝐵) → (∃𝑥𝐵 (𝑥(+g𝐾)𝑦) = (0g𝐾) ↔ ∃𝑥𝐵 (𝑥(+g𝐿)𝑦) = (0g𝐿)))
109ralbidva 3154 . . . 4 (𝜑 → (∀𝑦𝐵𝑥𝐵 (𝑥(+g𝐾)𝑦) = (0g𝐾) ↔ ∀𝑦𝐵𝑥𝐵 (𝑥(+g𝐿)𝑦) = (0g𝐿)))
111rexeqdv 3294 . . . . 5 (𝜑 → (∃𝑥𝐵 (𝑥(+g𝐾)𝑦) = (0g𝐾) ↔ ∃𝑥 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) = (0g𝐾)))
121, 11raleqbidv 3313 . . . 4 (𝜑 → (∀𝑦𝐵𝑥𝐵 (𝑥(+g𝐾)𝑦) = (0g𝐾) ↔ ∀𝑦 ∈ (Base‘𝐾)∃𝑥 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) = (0g𝐾)))
132rexeqdv 3294 . . . . 5 (𝜑 → (∃𝑥𝐵 (𝑥(+g𝐿)𝑦) = (0g𝐿) ↔ ∃𝑥 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) = (0g𝐿)))
142, 13raleqbidv 3313 . . . 4 (𝜑 → (∀𝑦𝐵𝑥𝐵 (𝑥(+g𝐿)𝑦) = (0g𝐿) ↔ ∀𝑦 ∈ (Base‘𝐿)∃𝑥 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) = (0g𝐿)))
1510, 12, 143bitr3d 309 . . 3 (𝜑 → (∀𝑦 ∈ (Base‘𝐾)∃𝑥 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) = (0g𝐾) ↔ ∀𝑦 ∈ (Base‘𝐿)∃𝑥 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) = (0g𝐿)))
164, 15anbi12d 632 . 2 (𝜑 → ((𝐾 ∈ Mnd ∧ ∀𝑦 ∈ (Base‘𝐾)∃𝑥 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) = (0g𝐾)) ↔ (𝐿 ∈ Mnd ∧ ∀𝑦 ∈ (Base‘𝐿)∃𝑥 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) = (0g𝐿))))
17 eqid 2733 . . 3 (Base‘𝐾) = (Base‘𝐾)
18 eqid 2733 . . 3 (+g𝐾) = (+g𝐾)
19 eqid 2733 . . 3 (0g𝐾) = (0g𝐾)
2017, 18, 19isgrp 18854 . 2 (𝐾 ∈ Grp ↔ (𝐾 ∈ Mnd ∧ ∀𝑦 ∈ (Base‘𝐾)∃𝑥 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) = (0g𝐾)))
21 eqid 2733 . . 3 (Base‘𝐿) = (Base‘𝐿)
22 eqid 2733 . . 3 (+g𝐿) = (+g𝐿)
23 eqid 2733 . . 3 (0g𝐿) = (0g𝐿)
2421, 22, 23isgrp 18854 . 2 (𝐿 ∈ Grp ↔ (𝐿 ∈ Mnd ∧ ∀𝑦 ∈ (Base‘𝐿)∃𝑥 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) = (0g𝐿)))
2516, 20, 243bitr4g 314 1 (𝜑 → (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048  wrex 3057  cfv 6486  (class class class)co 7352  Basecbs 17122  +gcplusg 17163  0gc0g 17345  Mndcmnd 18644  Grpcgrp 18848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7355  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-grp 18851
This theorem is referenced by:  grpprop  18867  ghmpropd  19170  oppggrpb  19272  ablpropd  19706  ringpropd  20208  lmodprop2d  20859  sralmod  21123  psrgrp  21895  nmpropd2  24511  ngppropd  24553  tngngp2  24568  tnggrpr  24571  zhmnrg  33999
  Copyright terms: Public domain W3C validator