| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grp1 | Structured version Visualization version GIF version | ||
| Description: The (smallest) structure representing a trivial group. According to Wikipedia ("Trivial group", 28-Apr-2019, https://en.wikipedia.org/wiki/Trivial_group) "In mathematics, a trivial group is a group consisting of a single element. All such groups are isomorphic, so one often speaks of the trivial group. The single element of the trivial group is the identity element". (Contributed by AV, 28-Apr-2019.) |
| Ref | Expression |
|---|---|
| grp1.m | ⊢ 𝑀 = {〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉} |
| Ref | Expression |
|---|---|
| grp1 | ⊢ (𝐼 ∈ 𝑉 → 𝑀 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grp1.m | . . 3 ⊢ 𝑀 = {〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉} | |
| 2 | 1 | mnd1 18687 | . 2 ⊢ (𝐼 ∈ 𝑉 → 𝑀 ∈ Mnd) |
| 3 | df-ov 7349 | . . . . 5 ⊢ (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = ({〈〈𝐼, 𝐼〉, 𝐼〉}‘〈𝐼, 𝐼〉) | |
| 4 | opex 5402 | . . . . . 6 ⊢ 〈𝐼, 𝐼〉 ∈ V | |
| 5 | fvsng 7114 | . . . . . 6 ⊢ ((〈𝐼, 𝐼〉 ∈ V ∧ 𝐼 ∈ 𝑉) → ({〈〈𝐼, 𝐼〉, 𝐼〉}‘〈𝐼, 𝐼〉) = 𝐼) | |
| 6 | 4, 5 | mpan 690 | . . . . 5 ⊢ (𝐼 ∈ 𝑉 → ({〈〈𝐼, 𝐼〉, 𝐼〉}‘〈𝐼, 𝐼〉) = 𝐼) |
| 7 | 3, 6 | eqtrid 2778 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = 𝐼) |
| 8 | 1 | mnd1id 18688 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (0g‘𝑀) = 𝐼) |
| 9 | 7, 8 | eqtr4d 2769 | . . 3 ⊢ (𝐼 ∈ 𝑉 → (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = (0g‘𝑀)) |
| 10 | oveq2 7354 | . . . . . . 7 ⊢ (𝑖 = 𝐼 → (𝑒{〈〈𝐼, 𝐼〉, 𝐼〉}𝑖) = (𝑒{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼)) | |
| 11 | 10 | eqeq1d 2733 | . . . . . 6 ⊢ (𝑖 = 𝐼 → ((𝑒{〈〈𝐼, 𝐼〉, 𝐼〉}𝑖) = (0g‘𝑀) ↔ (𝑒{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = (0g‘𝑀))) |
| 12 | 11 | rexbidv 3156 | . . . . 5 ⊢ (𝑖 = 𝐼 → (∃𝑒 ∈ {𝐼} (𝑒{〈〈𝐼, 𝐼〉, 𝐼〉}𝑖) = (0g‘𝑀) ↔ ∃𝑒 ∈ {𝐼} (𝑒{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = (0g‘𝑀))) |
| 13 | 12 | ralsng 4625 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (∀𝑖 ∈ {𝐼}∃𝑒 ∈ {𝐼} (𝑒{〈〈𝐼, 𝐼〉, 𝐼〉}𝑖) = (0g‘𝑀) ↔ ∃𝑒 ∈ {𝐼} (𝑒{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = (0g‘𝑀))) |
| 14 | oveq1 7353 | . . . . . 6 ⊢ (𝑒 = 𝐼 → (𝑒{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼)) | |
| 15 | 14 | eqeq1d 2733 | . . . . 5 ⊢ (𝑒 = 𝐼 → ((𝑒{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = (0g‘𝑀) ↔ (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = (0g‘𝑀))) |
| 16 | 15 | rexsng 4626 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (∃𝑒 ∈ {𝐼} (𝑒{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = (0g‘𝑀) ↔ (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = (0g‘𝑀))) |
| 17 | 13, 16 | bitrd 279 | . . 3 ⊢ (𝐼 ∈ 𝑉 → (∀𝑖 ∈ {𝐼}∃𝑒 ∈ {𝐼} (𝑒{〈〈𝐼, 𝐼〉, 𝐼〉}𝑖) = (0g‘𝑀) ↔ (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = (0g‘𝑀))) |
| 18 | 9, 17 | mpbird 257 | . 2 ⊢ (𝐼 ∈ 𝑉 → ∀𝑖 ∈ {𝐼}∃𝑒 ∈ {𝐼} (𝑒{〈〈𝐼, 𝐼〉, 𝐼〉}𝑖) = (0g‘𝑀)) |
| 19 | snex 5372 | . . . 4 ⊢ {𝐼} ∈ V | |
| 20 | 1 | grpbase 17193 | . . . 4 ⊢ ({𝐼} ∈ V → {𝐼} = (Base‘𝑀)) |
| 21 | 19, 20 | ax-mp 5 | . . 3 ⊢ {𝐼} = (Base‘𝑀) |
| 22 | snex 5372 | . . . 4 ⊢ {〈〈𝐼, 𝐼〉, 𝐼〉} ∈ V | |
| 23 | 1 | grpplusg 17194 | . . . 4 ⊢ ({〈〈𝐼, 𝐼〉, 𝐼〉} ∈ V → {〈〈𝐼, 𝐼〉, 𝐼〉} = (+g‘𝑀)) |
| 24 | 22, 23 | ax-mp 5 | . . 3 ⊢ {〈〈𝐼, 𝐼〉, 𝐼〉} = (+g‘𝑀) |
| 25 | eqid 2731 | . . 3 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
| 26 | 21, 24, 25 | isgrp 18852 | . 2 ⊢ (𝑀 ∈ Grp ↔ (𝑀 ∈ Mnd ∧ ∀𝑖 ∈ {𝐼}∃𝑒 ∈ {𝐼} (𝑒{〈〈𝐼, 𝐼〉, 𝐼〉}𝑖) = (0g‘𝑀))) |
| 27 | 2, 18, 26 | sylanbrc 583 | 1 ⊢ (𝐼 ∈ 𝑉 → 𝑀 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 Vcvv 3436 {csn 4573 {cpr 4575 〈cop 4579 ‘cfv 6481 (class class class)co 7346 ndxcnx 17104 Basecbs 17120 +gcplusg 17161 0gc0g 17343 Mndcmnd 18642 Grpcgrp 18846 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 |
| This theorem is referenced by: grp1inv 18961 abl1 19778 ring1 20228 lmod1 48532 |
| Copyright terms: Public domain | W3C validator |