MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grp1 Structured version   Visualization version   GIF version

Theorem grp1 18926
Description: The (smallest) structure representing a trivial group. According to Wikipedia ("Trivial group", 28-Apr-2019, https://en.wikipedia.org/wiki/Trivial_group) "In mathematics, a trivial group is a group consisting of a single element. All such groups are isomorphic, so one often speaks of the trivial group. The single element of the trivial group is the identity element". (Contributed by AV, 28-Apr-2019.)
Hypothesis
Ref Expression
grp1.m 𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}
Assertion
Ref Expression
grp1 (𝐼𝑉𝑀 ∈ Grp)

Proof of Theorem grp1
Dummy variables 𝑒 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grp1.m . . 3 𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}
21mnd1 18663 . 2 (𝐼𝑉𝑀 ∈ Mnd)
3 df-ov 7408 . . . . 5 (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩}‘⟨𝐼, 𝐼⟩)
4 opex 5463 . . . . . 6 𝐼, 𝐼⟩ ∈ V
5 fvsng 7174 . . . . . 6 ((⟨𝐼, 𝐼⟩ ∈ V ∧ 𝐼𝑉) → ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩}‘⟨𝐼, 𝐼⟩) = 𝐼)
64, 5mpan 688 . . . . 5 (𝐼𝑉 → ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩}‘⟨𝐼, 𝐼⟩) = 𝐼)
73, 6eqtrid 2784 . . . 4 (𝐼𝑉 → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝐼)
81mnd1id 18664 . . . 4 (𝐼𝑉 → (0g𝑀) = 𝐼)
97, 8eqtr4d 2775 . . 3 (𝐼𝑉 → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (0g𝑀))
10 oveq2 7413 . . . . . . 7 (𝑖 = 𝐼 → (𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑖) = (𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼))
1110eqeq1d 2734 . . . . . 6 (𝑖 = 𝐼 → ((𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑖) = (0g𝑀) ↔ (𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (0g𝑀)))
1211rexbidv 3178 . . . . 5 (𝑖 = 𝐼 → (∃𝑒 ∈ {𝐼} (𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑖) = (0g𝑀) ↔ ∃𝑒 ∈ {𝐼} (𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (0g𝑀)))
1312ralsng 4676 . . . 4 (𝐼𝑉 → (∀𝑖 ∈ {𝐼}∃𝑒 ∈ {𝐼} (𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑖) = (0g𝑀) ↔ ∃𝑒 ∈ {𝐼} (𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (0g𝑀)))
14 oveq1 7412 . . . . . 6 (𝑒 = 𝐼 → (𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼))
1514eqeq1d 2734 . . . . 5 (𝑒 = 𝐼 → ((𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (0g𝑀) ↔ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (0g𝑀)))
1615rexsng 4677 . . . 4 (𝐼𝑉 → (∃𝑒 ∈ {𝐼} (𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (0g𝑀) ↔ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (0g𝑀)))
1713, 16bitrd 278 . . 3 (𝐼𝑉 → (∀𝑖 ∈ {𝐼}∃𝑒 ∈ {𝐼} (𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑖) = (0g𝑀) ↔ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (0g𝑀)))
189, 17mpbird 256 . 2 (𝐼𝑉 → ∀𝑖 ∈ {𝐼}∃𝑒 ∈ {𝐼} (𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑖) = (0g𝑀))
19 snex 5430 . . . 4 {𝐼} ∈ V
201grpbase 17227 . . . 4 ({𝐼} ∈ V → {𝐼} = (Base‘𝑀))
2119, 20ax-mp 5 . . 3 {𝐼} = (Base‘𝑀)
22 snex 5430 . . . 4 {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V
231grpplusg 17229 . . . 4 ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V → {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} = (+g𝑀))
2422, 23ax-mp 5 . . 3 {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} = (+g𝑀)
25 eqid 2732 . . 3 (0g𝑀) = (0g𝑀)
2621, 24, 25isgrp 18821 . 2 (𝑀 ∈ Grp ↔ (𝑀 ∈ Mnd ∧ ∀𝑖 ∈ {𝐼}∃𝑒 ∈ {𝐼} (𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑖) = (0g𝑀)))
272, 18, 26sylanbrc 583 1 (𝐼𝑉𝑀 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  wral 3061  wrex 3070  Vcvv 3474  {csn 4627  {cpr 4629  cop 4633  cfv 6540  (class class class)co 7405  ndxcnx 17122  Basecbs 17140  +gcplusg 17193  0gc0g 17381  Mndcmnd 18621  Grpcgrp 18815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-struct 17076  df-slot 17111  df-ndx 17123  df-base 17141  df-plusg 17206  df-0g 17383  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-grp 18818
This theorem is referenced by:  grp1inv  18927  abl1  19728  ring1  20115  lmod1  47126
  Copyright terms: Public domain W3C validator