| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ngpgrp | Structured version Visualization version GIF version | ||
| Description: A normed group is a group. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| ngpgrp | ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (norm‘𝐺) = (norm‘𝐺) | |
| 2 | eqid 2731 | . . 3 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
| 3 | eqid 2731 | . . 3 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
| 4 | 1, 2, 3 | isngp 24511 | . 2 ⊢ (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ((norm‘𝐺) ∘ (-g‘𝐺)) ⊆ (dist‘𝐺))) |
| 5 | 4 | simp1bi 1145 | 1 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ⊆ wss 3897 ∘ ccom 5618 ‘cfv 6481 distcds 17170 Grpcgrp 18846 -gcsg 18848 MetSpcms 24233 normcnm 24491 NrmGrpcngp 24492 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-co 5623 df-iota 6437 df-fv 6489 df-ngp 24498 |
| This theorem is referenced by: ngpds 24519 ngpds2 24521 ngpds3 24523 ngprcan 24525 isngp4 24527 ngpinvds 24528 ngpsubcan 24529 nmf 24530 nmge0 24532 nmeq0 24533 nminv 24536 nmmtri 24537 nmsub 24538 nmrtri 24539 nm2dif 24540 nmtri 24541 nmtri2 24542 ngpi 24543 nm0 24544 ngptgp 24551 tngngp2 24567 tnggrpr 24570 nrmtngnrm 24573 nlmdsdi 24596 nlmdsdir 24597 nrginvrcnlem 24606 ngpocelbl 24619 nmo0 24650 nmotri 24654 0nghm 24656 nmoid 24657 idnghm 24658 nmods 24659 nmcn 24760 nmoleub2lem2 25043 nmhmcn 25047 cphpyth 25143 cphipval2 25168 4cphipval2 25169 cphipval 25170 ipcnlem2 25171 nglmle 25229 qqhcn 34004 |
| Copyright terms: Public domain | W3C validator |