| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ngpgrp | Structured version Visualization version GIF version | ||
| Description: A normed group is a group. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| ngpgrp | ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (norm‘𝐺) = (norm‘𝐺) | |
| 2 | eqid 2729 | . . 3 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
| 3 | eqid 2729 | . . 3 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
| 4 | 1, 2, 3 | isngp 24460 | . 2 ⊢ (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ((norm‘𝐺) ∘ (-g‘𝐺)) ⊆ (dist‘𝐺))) |
| 5 | 4 | simp1bi 1145 | 1 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3911 ∘ ccom 5635 ‘cfv 6499 distcds 17205 Grpcgrp 18841 -gcsg 18843 MetSpcms 24182 normcnm 24440 NrmGrpcngp 24441 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-co 5640 df-iota 6452 df-fv 6507 df-ngp 24447 |
| This theorem is referenced by: ngpds 24468 ngpds2 24470 ngpds3 24472 ngprcan 24474 isngp4 24476 ngpinvds 24477 ngpsubcan 24478 nmf 24479 nmge0 24481 nmeq0 24482 nminv 24485 nmmtri 24486 nmsub 24487 nmrtri 24488 nm2dif 24489 nmtri 24490 nmtri2 24491 ngpi 24492 nm0 24493 ngptgp 24500 tngngp2 24516 tnggrpr 24519 nrmtngnrm 24522 nlmdsdi 24545 nlmdsdir 24546 nrginvrcnlem 24555 ngpocelbl 24568 nmo0 24599 nmotri 24603 0nghm 24605 nmoid 24606 idnghm 24607 nmods 24608 nmcn 24709 nmoleub2lem2 24992 nmhmcn 24996 cphpyth 25092 cphipval2 25117 4cphipval2 25118 cphipval 25119 ipcnlem2 25120 nglmle 25178 qqhcn 33954 |
| Copyright terms: Public domain | W3C validator |