| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ngpgrp | Structured version Visualization version GIF version | ||
| Description: A normed group is a group. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| ngpgrp | ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (norm‘𝐺) = (norm‘𝐺) | |
| 2 | eqid 2729 | . . 3 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
| 3 | eqid 2729 | . . 3 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
| 4 | 1, 2, 3 | isngp 24482 | . 2 ⊢ (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ((norm‘𝐺) ∘ (-g‘𝐺)) ⊆ (dist‘𝐺))) |
| 5 | 4 | simp1bi 1145 | 1 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3903 ∘ ccom 5623 ‘cfv 6482 distcds 17170 Grpcgrp 18812 -gcsg 18814 MetSpcms 24204 normcnm 24462 NrmGrpcngp 24463 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-co 5628 df-iota 6438 df-fv 6490 df-ngp 24469 |
| This theorem is referenced by: ngpds 24490 ngpds2 24492 ngpds3 24494 ngprcan 24496 isngp4 24498 ngpinvds 24499 ngpsubcan 24500 nmf 24501 nmge0 24503 nmeq0 24504 nminv 24507 nmmtri 24508 nmsub 24509 nmrtri 24510 nm2dif 24511 nmtri 24512 nmtri2 24513 ngpi 24514 nm0 24515 ngptgp 24522 tngngp2 24538 tnggrpr 24541 nrmtngnrm 24544 nlmdsdi 24567 nlmdsdir 24568 nrginvrcnlem 24577 ngpocelbl 24590 nmo0 24621 nmotri 24625 0nghm 24627 nmoid 24628 idnghm 24629 nmods 24630 nmcn 24731 nmoleub2lem2 25014 nmhmcn 25018 cphpyth 25114 cphipval2 25139 4cphipval2 25140 cphipval 25141 ipcnlem2 25142 nglmle 25200 qqhcn 33958 |
| Copyright terms: Public domain | W3C validator |