Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ngpgrp | Structured version Visualization version GIF version |
Description: A normed group is a group. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
ngpgrp | ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (norm‘𝐺) = (norm‘𝐺) | |
2 | eqid 2738 | . . 3 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
3 | eqid 2738 | . . 3 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
4 | 1, 2, 3 | isngp 23752 | . 2 ⊢ (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ((norm‘𝐺) ∘ (-g‘𝐺)) ⊆ (dist‘𝐺))) |
5 | 4 | simp1bi 1144 | 1 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ⊆ wss 3887 ∘ ccom 5593 ‘cfv 6433 distcds 16971 Grpcgrp 18577 -gcsg 18579 MetSpcms 23471 normcnm 23732 NrmGrpcngp 23733 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-co 5598 df-iota 6391 df-fv 6441 df-ngp 23739 |
This theorem is referenced by: ngpds 23760 ngpds2 23762 ngpds3 23764 ngprcan 23766 isngp4 23768 ngpinvds 23769 ngpsubcan 23770 nmf 23771 nmge0 23773 nmeq0 23774 nminv 23777 nmmtri 23778 nmsub 23779 nmrtri 23780 nm2dif 23781 nmtri 23782 nmtri2 23783 ngpi 23784 nm0 23785 ngptgp 23792 tngngp2 23816 tnggrpr 23819 nrmtngnrm 23822 nlmdsdi 23845 nlmdsdir 23846 nrginvrcnlem 23855 ngpocelbl 23868 nmo0 23899 nmotri 23903 0nghm 23905 nmoid 23906 idnghm 23907 nmods 23908 nmcn 24007 nmoleub2lem2 24279 nmhmcn 24283 cphpyth 24380 cphipval2 24405 4cphipval2 24406 cphipval 24407 ipcnlem2 24408 nglmle 24466 qqhcn 31941 |
Copyright terms: Public domain | W3C validator |