| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ngpgrp | Structured version Visualization version GIF version | ||
| Description: A normed group is a group. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| ngpgrp | ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . 3 ⊢ (norm‘𝐺) = (norm‘𝐺) | |
| 2 | eqid 2735 | . . 3 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
| 3 | eqid 2735 | . . 3 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
| 4 | 1, 2, 3 | isngp 24533 | . 2 ⊢ (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ((norm‘𝐺) ∘ (-g‘𝐺)) ⊆ (dist‘𝐺))) |
| 5 | 4 | simp1bi 1145 | 1 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ⊆ wss 3926 ∘ ccom 5658 ‘cfv 6530 distcds 17278 Grpcgrp 18914 -gcsg 18916 MetSpcms 24255 normcnm 24513 NrmGrpcngp 24514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-co 5663 df-iota 6483 df-fv 6538 df-ngp 24520 |
| This theorem is referenced by: ngpds 24541 ngpds2 24543 ngpds3 24545 ngprcan 24547 isngp4 24549 ngpinvds 24550 ngpsubcan 24551 nmf 24552 nmge0 24554 nmeq0 24555 nminv 24558 nmmtri 24559 nmsub 24560 nmrtri 24561 nm2dif 24562 nmtri 24563 nmtri2 24564 ngpi 24565 nm0 24566 ngptgp 24573 tngngp2 24589 tnggrpr 24592 nrmtngnrm 24595 nlmdsdi 24618 nlmdsdir 24619 nrginvrcnlem 24628 ngpocelbl 24641 nmo0 24672 nmotri 24676 0nghm 24678 nmoid 24679 idnghm 24680 nmods 24681 nmcn 24782 nmoleub2lem2 25065 nmhmcn 25069 cphpyth 25166 cphipval2 25191 4cphipval2 25192 cphipval 25193 ipcnlem2 25194 nglmle 25252 qqhcn 33968 |
| Copyright terms: Public domain | W3C validator |