Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ngpgrp | Structured version Visualization version GIF version |
Description: A normed group is a group. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
ngpgrp | ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (norm‘𝐺) = (norm‘𝐺) | |
2 | eqid 2738 | . . 3 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
3 | eqid 2738 | . . 3 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
4 | 1, 2, 3 | isngp 23658 | . 2 ⊢ (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ((norm‘𝐺) ∘ (-g‘𝐺)) ⊆ (dist‘𝐺))) |
5 | 4 | simp1bi 1143 | 1 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ⊆ wss 3883 ∘ ccom 5584 ‘cfv 6418 distcds 16897 Grpcgrp 18492 -gcsg 18494 MetSpcms 23379 normcnm 23638 NrmGrpcngp 23639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-co 5589 df-iota 6376 df-fv 6426 df-ngp 23645 |
This theorem is referenced by: ngpds 23666 ngpds2 23668 ngpds3 23670 ngprcan 23672 isngp4 23674 ngpinvds 23675 ngpsubcan 23676 nmf 23677 nmge0 23679 nmeq0 23680 nminv 23683 nmmtri 23684 nmsub 23685 nmrtri 23686 nm2dif 23687 nmtri 23688 nmtri2 23689 ngpi 23690 nm0 23691 ngptgp 23698 tngngp2 23722 tnggrpr 23725 nrmtngnrm 23728 nlmdsdi 23751 nlmdsdir 23752 nrginvrcnlem 23761 ngpocelbl 23774 nmo0 23805 nmotri 23809 0nghm 23811 nmoid 23812 idnghm 23813 nmods 23814 nmcn 23913 nmoleub2lem2 24185 nmhmcn 24189 cphpyth 24285 cphipval2 24310 4cphipval2 24311 cphipval 24312 ipcnlem2 24313 nglmle 24371 qqhcn 31841 |
Copyright terms: Public domain | W3C validator |