MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ngpgrp Structured version   Visualization version   GIF version

Theorem ngpgrp 24514
Description: A normed group is a group. (Contributed by Mario Carneiro, 2-Oct-2015.)
Assertion
Ref Expression
ngpgrp (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp)

Proof of Theorem ngpgrp
StepHypRef Expression
1 eqid 2731 . . 3 (norm‘𝐺) = (norm‘𝐺)
2 eqid 2731 . . 3 (-g𝐺) = (-g𝐺)
3 eqid 2731 . . 3 (dist‘𝐺) = (dist‘𝐺)
41, 2, 3isngp 24511 . 2 (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ((norm‘𝐺) ∘ (-g𝐺)) ⊆ (dist‘𝐺)))
54simp1bi 1145 1 (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  wss 3897  ccom 5618  cfv 6481  distcds 17170  Grpcgrp 18846  -gcsg 18848  MetSpcms 24233  normcnm 24491  NrmGrpcngp 24492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-co 5623  df-iota 6437  df-fv 6489  df-ngp 24498
This theorem is referenced by:  ngpds  24519  ngpds2  24521  ngpds3  24523  ngprcan  24525  isngp4  24527  ngpinvds  24528  ngpsubcan  24529  nmf  24530  nmge0  24532  nmeq0  24533  nminv  24536  nmmtri  24537  nmsub  24538  nmrtri  24539  nm2dif  24540  nmtri  24541  nmtri2  24542  ngpi  24543  nm0  24544  ngptgp  24551  tngngp2  24567  tnggrpr  24570  nrmtngnrm  24573  nlmdsdi  24596  nlmdsdir  24597  nrginvrcnlem  24606  ngpocelbl  24619  nmo0  24650  nmotri  24654  0nghm  24656  nmoid  24657  idnghm  24658  nmods  24659  nmcn  24760  nmoleub2lem2  25043  nmhmcn  25047  cphpyth  25143  cphipval2  25168  4cphipval2  25169  cphipval  25170  ipcnlem2  25171  nglmle  25229  qqhcn  34004
  Copyright terms: Public domain W3C validator