| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ngpgrp | Structured version Visualization version GIF version | ||
| Description: A normed group is a group. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| ngpgrp | ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (norm‘𝐺) = (norm‘𝐺) | |
| 2 | eqid 2730 | . . 3 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
| 3 | eqid 2730 | . . 3 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
| 4 | 1, 2, 3 | isngp 24491 | . 2 ⊢ (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ((norm‘𝐺) ∘ (-g‘𝐺)) ⊆ (dist‘𝐺))) |
| 5 | 4 | simp1bi 1145 | 1 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3917 ∘ ccom 5645 ‘cfv 6514 distcds 17236 Grpcgrp 18872 -gcsg 18874 MetSpcms 24213 normcnm 24471 NrmGrpcngp 24472 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-co 5650 df-iota 6467 df-fv 6522 df-ngp 24478 |
| This theorem is referenced by: ngpds 24499 ngpds2 24501 ngpds3 24503 ngprcan 24505 isngp4 24507 ngpinvds 24508 ngpsubcan 24509 nmf 24510 nmge0 24512 nmeq0 24513 nminv 24516 nmmtri 24517 nmsub 24518 nmrtri 24519 nm2dif 24520 nmtri 24521 nmtri2 24522 ngpi 24523 nm0 24524 ngptgp 24531 tngngp2 24547 tnggrpr 24550 nrmtngnrm 24553 nlmdsdi 24576 nlmdsdir 24577 nrginvrcnlem 24586 ngpocelbl 24599 nmo0 24630 nmotri 24634 0nghm 24636 nmoid 24637 idnghm 24638 nmods 24639 nmcn 24740 nmoleub2lem2 25023 nmhmcn 25027 cphpyth 25123 cphipval2 25148 4cphipval2 25149 cphipval 25150 ipcnlem2 25151 nglmle 25209 qqhcn 33988 |
| Copyright terms: Public domain | W3C validator |