MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ngpgrp Structured version   Visualization version   GIF version

Theorem ngpgrp 23755
Description: A normed group is a group. (Contributed by Mario Carneiro, 2-Oct-2015.)
Assertion
Ref Expression
ngpgrp (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp)

Proof of Theorem ngpgrp
StepHypRef Expression
1 eqid 2738 . . 3 (norm‘𝐺) = (norm‘𝐺)
2 eqid 2738 . . 3 (-g𝐺) = (-g𝐺)
3 eqid 2738 . . 3 (dist‘𝐺) = (dist‘𝐺)
41, 2, 3isngp 23752 . 2 (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ((norm‘𝐺) ∘ (-g𝐺)) ⊆ (dist‘𝐺)))
54simp1bi 1144 1 (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  wss 3887  ccom 5593  cfv 6433  distcds 16971  Grpcgrp 18577  -gcsg 18579  MetSpcms 23471  normcnm 23732  NrmGrpcngp 23733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-co 5598  df-iota 6391  df-fv 6441  df-ngp 23739
This theorem is referenced by:  ngpds  23760  ngpds2  23762  ngpds3  23764  ngprcan  23766  isngp4  23768  ngpinvds  23769  ngpsubcan  23770  nmf  23771  nmge0  23773  nmeq0  23774  nminv  23777  nmmtri  23778  nmsub  23779  nmrtri  23780  nm2dif  23781  nmtri  23782  nmtri2  23783  ngpi  23784  nm0  23785  ngptgp  23792  tngngp2  23816  tnggrpr  23819  nrmtngnrm  23822  nlmdsdi  23845  nlmdsdir  23846  nrginvrcnlem  23855  ngpocelbl  23868  nmo0  23899  nmotri  23903  0nghm  23905  nmoid  23906  idnghm  23907  nmods  23908  nmcn  24007  nmoleub2lem2  24279  nmhmcn  24283  cphpyth  24380  cphipval2  24405  4cphipval2  24406  cphipval  24407  ipcnlem2  24408  nglmle  24466  qqhcn  31941
  Copyright terms: Public domain W3C validator