MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ngpgrp Structured version   Visualization version   GIF version

Theorem ngpgrp 24633
Description: A normed group is a group. (Contributed by Mario Carneiro, 2-Oct-2015.)
Assertion
Ref Expression
ngpgrp (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp)

Proof of Theorem ngpgrp
StepHypRef Expression
1 eqid 2740 . . 3 (norm‘𝐺) = (norm‘𝐺)
2 eqid 2740 . . 3 (-g𝐺) = (-g𝐺)
3 eqid 2740 . . 3 (dist‘𝐺) = (dist‘𝐺)
41, 2, 3isngp 24630 . 2 (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ((norm‘𝐺) ∘ (-g𝐺)) ⊆ (dist‘𝐺)))
54simp1bi 1145 1 (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wss 3976  ccom 5704  cfv 6573  distcds 17320  Grpcgrp 18973  -gcsg 18975  MetSpcms 24349  normcnm 24610  NrmGrpcngp 24611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-co 5709  df-iota 6525  df-fv 6581  df-ngp 24617
This theorem is referenced by:  ngpds  24638  ngpds2  24640  ngpds3  24642  ngprcan  24644  isngp4  24646  ngpinvds  24647  ngpsubcan  24648  nmf  24649  nmge0  24651  nmeq0  24652  nminv  24655  nmmtri  24656  nmsub  24657  nmrtri  24658  nm2dif  24659  nmtri  24660  nmtri2  24661  ngpi  24662  nm0  24663  ngptgp  24670  tngngp2  24694  tnggrpr  24697  nrmtngnrm  24700  nlmdsdi  24723  nlmdsdir  24724  nrginvrcnlem  24733  ngpocelbl  24746  nmo0  24777  nmotri  24781  0nghm  24783  nmoid  24784  idnghm  24785  nmods  24786  nmcn  24885  nmoleub2lem2  25168  nmhmcn  25172  cphpyth  25269  cphipval2  25294  4cphipval2  25295  cphipval  25296  ipcnlem2  25297  nglmle  25355  qqhcn  33937
  Copyright terms: Public domain W3C validator