Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ngpgrp | Structured version Visualization version GIF version |
Description: A normed group is a group. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
ngpgrp | ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . 3 ⊢ (norm‘𝐺) = (norm‘𝐺) | |
2 | eqid 2736 | . . 3 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
3 | eqid 2736 | . . 3 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
4 | 1, 2, 3 | isngp 23850 | . 2 ⊢ (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ((norm‘𝐺) ∘ (-g‘𝐺)) ⊆ (dist‘𝐺))) |
5 | 4 | simp1bi 1144 | 1 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 ⊆ wss 3897 ∘ ccom 5618 ‘cfv 6473 distcds 17060 Grpcgrp 18665 -gcsg 18667 MetSpcms 23569 normcnm 23830 NrmGrpcngp 23831 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-opab 5152 df-co 5623 df-iota 6425 df-fv 6481 df-ngp 23837 |
This theorem is referenced by: ngpds 23858 ngpds2 23860 ngpds3 23862 ngprcan 23864 isngp4 23866 ngpinvds 23867 ngpsubcan 23868 nmf 23869 nmge0 23871 nmeq0 23872 nminv 23875 nmmtri 23876 nmsub 23877 nmrtri 23878 nm2dif 23879 nmtri 23880 nmtri2 23881 ngpi 23882 nm0 23883 ngptgp 23890 tngngp2 23914 tnggrpr 23917 nrmtngnrm 23920 nlmdsdi 23943 nlmdsdir 23944 nrginvrcnlem 23953 ngpocelbl 23966 nmo0 23997 nmotri 24001 0nghm 24003 nmoid 24004 idnghm 24005 nmods 24006 nmcn 24105 nmoleub2lem2 24377 nmhmcn 24381 cphpyth 24478 cphipval2 24503 4cphipval2 24504 cphipval 24505 ipcnlem2 24506 nglmle 24564 qqhcn 32180 |
Copyright terms: Public domain | W3C validator |