![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ngpgrp | Structured version Visualization version GIF version |
Description: A normed group is a group. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
ngpgrp | ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ (norm‘𝐺) = (norm‘𝐺) | |
2 | eqid 2740 | . . 3 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
3 | eqid 2740 | . . 3 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
4 | 1, 2, 3 | isngp 24630 | . 2 ⊢ (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ((norm‘𝐺) ∘ (-g‘𝐺)) ⊆ (dist‘𝐺))) |
5 | 4 | simp1bi 1145 | 1 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ⊆ wss 3976 ∘ ccom 5704 ‘cfv 6573 distcds 17320 Grpcgrp 18973 -gcsg 18975 MetSpcms 24349 normcnm 24610 NrmGrpcngp 24611 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-co 5709 df-iota 6525 df-fv 6581 df-ngp 24617 |
This theorem is referenced by: ngpds 24638 ngpds2 24640 ngpds3 24642 ngprcan 24644 isngp4 24646 ngpinvds 24647 ngpsubcan 24648 nmf 24649 nmge0 24651 nmeq0 24652 nminv 24655 nmmtri 24656 nmsub 24657 nmrtri 24658 nm2dif 24659 nmtri 24660 nmtri2 24661 ngpi 24662 nm0 24663 ngptgp 24670 tngngp2 24694 tnggrpr 24697 nrmtngnrm 24700 nlmdsdi 24723 nlmdsdir 24724 nrginvrcnlem 24733 ngpocelbl 24746 nmo0 24777 nmotri 24781 0nghm 24783 nmoid 24784 idnghm 24785 nmods 24786 nmcn 24885 nmoleub2lem2 25168 nmhmcn 25172 cphpyth 25269 cphipval2 25294 4cphipval2 25295 cphipval 25296 ipcnlem2 25297 nglmle 25355 qqhcn 33937 |
Copyright terms: Public domain | W3C validator |