MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ngpgrp Structured version   Visualization version   GIF version

Theorem ngpgrp 23661
Description: A normed group is a group. (Contributed by Mario Carneiro, 2-Oct-2015.)
Assertion
Ref Expression
ngpgrp (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp)

Proof of Theorem ngpgrp
StepHypRef Expression
1 eqid 2738 . . 3 (norm‘𝐺) = (norm‘𝐺)
2 eqid 2738 . . 3 (-g𝐺) = (-g𝐺)
3 eqid 2738 . . 3 (dist‘𝐺) = (dist‘𝐺)
41, 2, 3isngp 23658 . 2 (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ((norm‘𝐺) ∘ (-g𝐺)) ⊆ (dist‘𝐺)))
54simp1bi 1143 1 (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wss 3883  ccom 5584  cfv 6418  distcds 16897  Grpcgrp 18492  -gcsg 18494  MetSpcms 23379  normcnm 23638  NrmGrpcngp 23639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-co 5589  df-iota 6376  df-fv 6426  df-ngp 23645
This theorem is referenced by:  ngpds  23666  ngpds2  23668  ngpds3  23670  ngprcan  23672  isngp4  23674  ngpinvds  23675  ngpsubcan  23676  nmf  23677  nmge0  23679  nmeq0  23680  nminv  23683  nmmtri  23684  nmsub  23685  nmrtri  23686  nm2dif  23687  nmtri  23688  nmtri2  23689  ngpi  23690  nm0  23691  ngptgp  23698  tngngp2  23722  tnggrpr  23725  nrmtngnrm  23728  nlmdsdi  23751  nlmdsdir  23752  nrginvrcnlem  23761  ngpocelbl  23774  nmo0  23805  nmotri  23809  0nghm  23811  nmoid  23812  idnghm  23813  nmods  23814  nmcn  23913  nmoleub2lem2  24185  nmhmcn  24189  cphpyth  24285  cphipval2  24310  4cphipval2  24311  cphipval  24312  ipcnlem2  24313  nglmle  24371  qqhcn  31841
  Copyright terms: Public domain W3C validator