| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ngpgrp | Structured version Visualization version GIF version | ||
| Description: A normed group is a group. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| ngpgrp | ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (norm‘𝐺) = (norm‘𝐺) | |
| 2 | eqid 2729 | . . 3 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
| 3 | eqid 2729 | . . 3 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
| 4 | 1, 2, 3 | isngp 24484 | . 2 ⊢ (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ((norm‘𝐺) ∘ (-g‘𝐺)) ⊆ (dist‘𝐺))) |
| 5 | 4 | simp1bi 1145 | 1 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3914 ∘ ccom 5642 ‘cfv 6511 distcds 17229 Grpcgrp 18865 -gcsg 18867 MetSpcms 24206 normcnm 24464 NrmGrpcngp 24465 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-co 5647 df-iota 6464 df-fv 6519 df-ngp 24471 |
| This theorem is referenced by: ngpds 24492 ngpds2 24494 ngpds3 24496 ngprcan 24498 isngp4 24500 ngpinvds 24501 ngpsubcan 24502 nmf 24503 nmge0 24505 nmeq0 24506 nminv 24509 nmmtri 24510 nmsub 24511 nmrtri 24512 nm2dif 24513 nmtri 24514 nmtri2 24515 ngpi 24516 nm0 24517 ngptgp 24524 tngngp2 24540 tnggrpr 24543 nrmtngnrm 24546 nlmdsdi 24569 nlmdsdir 24570 nrginvrcnlem 24579 ngpocelbl 24592 nmo0 24623 nmotri 24627 0nghm 24629 nmoid 24630 idnghm 24631 nmods 24632 nmcn 24733 nmoleub2lem2 25016 nmhmcn 25020 cphpyth 25116 cphipval2 25141 4cphipval2 25142 cphipval 25143 ipcnlem2 25144 nglmle 25202 qqhcn 33981 |
| Copyright terms: Public domain | W3C validator |