MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ngpgrp Structured version   Visualization version   GIF version

Theorem ngpgrp 24487
Description: A normed group is a group. (Contributed by Mario Carneiro, 2-Oct-2015.)
Assertion
Ref Expression
ngpgrp (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp)

Proof of Theorem ngpgrp
StepHypRef Expression
1 eqid 2729 . . 3 (norm‘𝐺) = (norm‘𝐺)
2 eqid 2729 . . 3 (-g𝐺) = (-g𝐺)
3 eqid 2729 . . 3 (dist‘𝐺) = (dist‘𝐺)
41, 2, 3isngp 24484 . 2 (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ((norm‘𝐺) ∘ (-g𝐺)) ⊆ (dist‘𝐺)))
54simp1bi 1145 1 (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wss 3914  ccom 5642  cfv 6511  distcds 17229  Grpcgrp 18865  -gcsg 18867  MetSpcms 24206  normcnm 24464  NrmGrpcngp 24465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-co 5647  df-iota 6464  df-fv 6519  df-ngp 24471
This theorem is referenced by:  ngpds  24492  ngpds2  24494  ngpds3  24496  ngprcan  24498  isngp4  24500  ngpinvds  24501  ngpsubcan  24502  nmf  24503  nmge0  24505  nmeq0  24506  nminv  24509  nmmtri  24510  nmsub  24511  nmrtri  24512  nm2dif  24513  nmtri  24514  nmtri2  24515  ngpi  24516  nm0  24517  ngptgp  24524  tngngp2  24540  tnggrpr  24543  nrmtngnrm  24546  nlmdsdi  24569  nlmdsdir  24570  nrginvrcnlem  24579  ngpocelbl  24592  nmo0  24623  nmotri  24627  0nghm  24629  nmoid  24630  idnghm  24631  nmods  24632  nmcn  24733  nmoleub2lem2  25016  nmhmcn  25020  cphpyth  25116  cphipval2  25141  4cphipval2  25142  cphipval  25143  ipcnlem2  25144  nglmle  25202  qqhcn  33981
  Copyright terms: Public domain W3C validator