MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnngp Structured version   Visualization version   GIF version

Theorem cnngp 24695
Description: The complex numbers form a normed group. (Contributed by Mario Carneiro, 4-Oct-2015.)
Assertion
Ref Expression
cnngp fld ∈ NrmGrp

Proof of Theorem cnngp
StepHypRef Expression
1 cnring 21317 . . 3 fld ∈ Ring
2 ringgrp 20177 . . 3 (ℂfld ∈ Ring → ℂfld ∈ Grp)
31, 2ax-mp 5 . 2 fld ∈ Grp
4 cnfldms 24691 . 2 fld ∈ MetSp
5 ssid 4002 . 2 (abs ∘ − ) ⊆ (abs ∘ − )
6 cnfldnm 24694 . . 3 abs = (norm‘ℂfld)
7 cnfldsub 21324 . . 3 − = (-g‘ℂfld)
8 cnfldds 21290 . . 3 (abs ∘ − ) = (dist‘ℂfld)
96, 7, 8isngp 24504 . 2 (ℂfld ∈ NrmGrp ↔ (ℂfld ∈ Grp ∧ ℂfld ∈ MetSp ∧ (abs ∘ − ) ⊆ (abs ∘ − )))
103, 4, 5, 9mpbir3an 1339 1 fld ∈ NrmGrp
Colors of variables: wff setvar class
Syntax hints:  wcel 2099  wss 3947  ccom 5682  cmin 11474  abscabs 15213  Grpcgrp 18889  Ringcrg 20172  fldccnfld 21278  MetSpcms 24223  NrmGrpcngp 24485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216  ax-addf 11217
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-1o 8486  df-er 8724  df-map 8846  df-en 8964  df-dom 8965  df-sdom 8966  df-fin 8967  df-sup 9465  df-inf 9466  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-div 11902  df-nn 12243  df-2 12305  df-3 12306  df-4 12307  df-5 12308  df-6 12309  df-7 12310  df-8 12311  df-9 12312  df-n0 12503  df-z 12589  df-dec 12708  df-uz 12853  df-q 12963  df-rp 13007  df-xneg 13124  df-xadd 13125  df-xmul 13126  df-fz 13517  df-seq 13999  df-exp 14059  df-cj 15078  df-re 15079  df-im 15080  df-sqrt 15214  df-abs 15215  df-struct 17115  df-sets 17132  df-slot 17150  df-ndx 17162  df-base 17180  df-plusg 17245  df-mulr 17246  df-starv 17247  df-tset 17251  df-ple 17252  df-ds 17254  df-unif 17255  df-rest 17403  df-topn 17404  df-0g 17422  df-topgen 17424  df-mgm 18599  df-sgrp 18678  df-mnd 18694  df-grp 18892  df-minusg 18893  df-sbg 18894  df-cmn 19736  df-mgp 20074  df-ring 20174  df-cring 20175  df-psmet 21270  df-xmet 21271  df-met 21272  df-bl 21273  df-mopn 21274  df-cnfld 21279  df-top 22795  df-topon 22812  df-topsp 22834  df-bases 22848  df-xms 24225  df-ms 24226  df-nm 24490  df-ngp 24491
This theorem is referenced by:  cnnrg  24696  abscn  24761  cnncvsabsnegdemo  25092
  Copyright terms: Public domain W3C validator