MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isngp2 Structured version   Visualization version   GIF version

Theorem isngp2 24631
Description: The property of being a normed group. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
isngp.n 𝑁 = (norm‘𝐺)
isngp.z = (-g𝐺)
isngp.d 𝐷 = (dist‘𝐺)
isngp2.x 𝑋 = (Base‘𝐺)
isngp2.e 𝐸 = (𝐷 ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
isngp2 (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ) = 𝐸))

Proof of Theorem isngp2
StepHypRef Expression
1 isngp.n . . 3 𝑁 = (norm‘𝐺)
2 isngp.z . . 3 = (-g𝐺)
3 isngp.d . . 3 𝐷 = (dist‘𝐺)
41, 2, 3isngp 24630 . 2 (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ) ⊆ 𝐷))
5 isngp2.e . . . . . . 7 𝐸 = (𝐷 ↾ (𝑋 × 𝑋))
6 resss 6031 . . . . . . 7 (𝐷 ↾ (𝑋 × 𝑋)) ⊆ 𝐷
75, 6eqsstri 4043 . . . . . 6 𝐸𝐷
8 sseq1 4034 . . . . . 6 ((𝑁 ) = 𝐸 → ((𝑁 ) ⊆ 𝐷𝐸𝐷))
97, 8mpbiri 258 . . . . 5 ((𝑁 ) = 𝐸 → (𝑁 ) ⊆ 𝐷)
10 isngp2.x . . . . . . . . . . . 12 𝑋 = (Base‘𝐺)
113reseq1i 6005 . . . . . . . . . . . . 13 (𝐷 ↾ (𝑋 × 𝑋)) = ((dist‘𝐺) ↾ (𝑋 × 𝑋))
125, 11eqtri 2768 . . . . . . . . . . . 12 𝐸 = ((dist‘𝐺) ↾ (𝑋 × 𝑋))
1310, 12msmet 24488 . . . . . . . . . . 11 (𝐺 ∈ MetSp → 𝐸 ∈ (Met‘𝑋))
141, 10, 3, 5nmf2 24627 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋)) → 𝑁:𝑋⟶ℝ)
1513, 14sylan2 592 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) → 𝑁:𝑋⟶ℝ)
1610, 2grpsubf 19059 . . . . . . . . . . 11 (𝐺 ∈ Grp → :(𝑋 × 𝑋)⟶𝑋)
1716ad2antrr 725 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → :(𝑋 × 𝑋)⟶𝑋)
18 fco 6771 . . . . . . . . . 10 ((𝑁:𝑋⟶ℝ ∧ :(𝑋 × 𝑋)⟶𝑋) → (𝑁 ):(𝑋 × 𝑋)⟶ℝ)
1915, 17, 18syl2an2r 684 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → (𝑁 ):(𝑋 × 𝑋)⟶ℝ)
2019fdmd 6757 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → dom (𝑁 ) = (𝑋 × 𝑋))
2120reseq2d 6009 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → (𝐸 ↾ dom (𝑁 )) = (𝐸 ↾ (𝑋 × 𝑋)))
2210, 12msf 24489 . . . . . . . . . 10 (𝐺 ∈ MetSp → 𝐸:(𝑋 × 𝑋)⟶ℝ)
2322ad2antlr 726 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → 𝐸:(𝑋 × 𝑋)⟶ℝ)
2423ffund 6751 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → Fun 𝐸)
25 simpr 484 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → (𝑁 ) ⊆ 𝐷)
26 ssv 4033 . . . . . . . . . . . 12 ℝ ⊆ V
27 fss 6763 . . . . . . . . . . . 12 (((𝑁 ):(𝑋 × 𝑋)⟶ℝ ∧ ℝ ⊆ V) → (𝑁 ):(𝑋 × 𝑋)⟶V)
2819, 26, 27sylancl 585 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → (𝑁 ):(𝑋 × 𝑋)⟶V)
29 fssxp 6775 . . . . . . . . . . 11 ((𝑁 ):(𝑋 × 𝑋)⟶V → (𝑁 ) ⊆ ((𝑋 × 𝑋) × V))
3028, 29syl 17 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → (𝑁 ) ⊆ ((𝑋 × 𝑋) × V))
3125, 30ssind 4262 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → (𝑁 ) ⊆ (𝐷 ∩ ((𝑋 × 𝑋) × V)))
32 df-res 5712 . . . . . . . . . 10 (𝐷 ↾ (𝑋 × 𝑋)) = (𝐷 ∩ ((𝑋 × 𝑋) × V))
335, 32eqtri 2768 . . . . . . . . 9 𝐸 = (𝐷 ∩ ((𝑋 × 𝑋) × V))
3431, 33sseqtrrdi 4060 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → (𝑁 ) ⊆ 𝐸)
35 funssres 6622 . . . . . . . 8 ((Fun 𝐸 ∧ (𝑁 ) ⊆ 𝐸) → (𝐸 ↾ dom (𝑁 )) = (𝑁 ))
3624, 34, 35syl2anc 583 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → (𝐸 ↾ dom (𝑁 )) = (𝑁 ))
37 ffn 6747 . . . . . . . 8 (𝐸:(𝑋 × 𝑋)⟶ℝ → 𝐸 Fn (𝑋 × 𝑋))
38 fnresdm 6699 . . . . . . . 8 (𝐸 Fn (𝑋 × 𝑋) → (𝐸 ↾ (𝑋 × 𝑋)) = 𝐸)
3923, 37, 383syl 18 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → (𝐸 ↾ (𝑋 × 𝑋)) = 𝐸)
4021, 36, 393eqtr3d 2788 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → (𝑁 ) = 𝐸)
4140ex 412 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) → ((𝑁 ) ⊆ 𝐷 → (𝑁 ) = 𝐸))
429, 41impbid2 226 . . . 4 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) → ((𝑁 ) = 𝐸 ↔ (𝑁 ) ⊆ 𝐷))
4342pm5.32i 574 . . 3 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) = 𝐸) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷))
44 df-3an 1089 . . 3 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ) = 𝐸) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) = 𝐸))
45 df-3an 1089 . . 3 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ) ⊆ 𝐷) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷))
4643, 44, 453bitr4i 303 . 2 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ) = 𝐸) ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ) ⊆ 𝐷))
474, 46bitr4i 278 1 (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ) = 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  Vcvv 3488  cin 3975  wss 3976   × cxp 5698  dom cdm 5700  cres 5702  ccom 5704  Fun wfun 6567   Fn wfn 6568  wf 6569  cfv 6573  cr 11183  Basecbs 17258  distcds 17320  Grpcgrp 18973  -gcsg 18975  Metcmet 21373  MetSpcms 24349  normcnm 24610  NrmGrpcngp 24611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-0g 17501  df-topgen 17503  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-xms 24351  df-ms 24352  df-nm 24616  df-ngp 24617
This theorem is referenced by:  isngp3  24632  ngpds  24638  ngppropd  24671  nrmtngdist  24699
  Copyright terms: Public domain W3C validator