Proof of Theorem isngp2
| Step | Hyp | Ref
| Expression |
| 1 | | isngp.n |
. . 3
⊢ 𝑁 = (norm‘𝐺) |
| 2 | | isngp.z |
. . 3
⊢ − =
(-g‘𝐺) |
| 3 | | isngp.d |
. . 3
⊢ 𝐷 = (dist‘𝐺) |
| 4 | 1, 2, 3 | isngp 24609 |
. 2
⊢ (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ∘ − ) ⊆ 𝐷)) |
| 5 | | isngp2.e |
. . . . . . 7
⊢ 𝐸 = (𝐷 ↾ (𝑋 × 𝑋)) |
| 6 | | resss 6019 |
. . . . . . 7
⊢ (𝐷 ↾ (𝑋 × 𝑋)) ⊆ 𝐷 |
| 7 | 5, 6 | eqsstri 4030 |
. . . . . 6
⊢ 𝐸 ⊆ 𝐷 |
| 8 | | sseq1 4009 |
. . . . . 6
⊢ ((𝑁 ∘ − ) = 𝐸 → ((𝑁 ∘ − ) ⊆ 𝐷 ↔ 𝐸 ⊆ 𝐷)) |
| 9 | 7, 8 | mpbiri 258 |
. . . . 5
⊢ ((𝑁 ∘ − ) = 𝐸 → (𝑁 ∘ − ) ⊆ 𝐷) |
| 10 | | isngp2.x |
. . . . . . . . . . . 12
⊢ 𝑋 = (Base‘𝐺) |
| 11 | 3 | reseq1i 5993 |
. . . . . . . . . . . . 13
⊢ (𝐷 ↾ (𝑋 × 𝑋)) = ((dist‘𝐺) ↾ (𝑋 × 𝑋)) |
| 12 | 5, 11 | eqtri 2765 |
. . . . . . . . . . . 12
⊢ 𝐸 = ((dist‘𝐺) ↾ (𝑋 × 𝑋)) |
| 13 | 10, 12 | msmet 24467 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ MetSp → 𝐸 ∈ (Met‘𝑋)) |
| 14 | 1, 10, 3, 5 | nmf2 24606 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋)) → 𝑁:𝑋⟶ℝ) |
| 15 | 13, 14 | sylan2 593 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) → 𝑁:𝑋⟶ℝ) |
| 16 | 10, 2 | grpsubf 19037 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ Grp → − :(𝑋 × 𝑋)⟶𝑋) |
| 17 | 16 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷) → − :(𝑋 × 𝑋)⟶𝑋) |
| 18 | | fco 6760 |
. . . . . . . . . 10
⊢ ((𝑁:𝑋⟶ℝ ∧ − :(𝑋 × 𝑋)⟶𝑋) → (𝑁 ∘ − ):(𝑋 × 𝑋)⟶ℝ) |
| 19 | 15, 17, 18 | syl2an2r 685 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷) → (𝑁 ∘ − ):(𝑋 × 𝑋)⟶ℝ) |
| 20 | 19 | fdmd 6746 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷) → dom (𝑁 ∘ − ) = (𝑋 × 𝑋)) |
| 21 | 20 | reseq2d 5997 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷) → (𝐸 ↾ dom (𝑁 ∘ − )) = (𝐸 ↾ (𝑋 × 𝑋))) |
| 22 | 10, 12 | msf 24468 |
. . . . . . . . . 10
⊢ (𝐺 ∈ MetSp → 𝐸:(𝑋 × 𝑋)⟶ℝ) |
| 23 | 22 | ad2antlr 727 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷) → 𝐸:(𝑋 × 𝑋)⟶ℝ) |
| 24 | 23 | ffund 6740 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷) → Fun 𝐸) |
| 25 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷) → (𝑁 ∘ − ) ⊆ 𝐷) |
| 26 | | ssv 4008 |
. . . . . . . . . . . 12
⊢ ℝ
⊆ V |
| 27 | | fss 6752 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∘ − ):(𝑋 × 𝑋)⟶ℝ ∧ ℝ ⊆ V)
→ (𝑁 ∘ −
):(𝑋 × 𝑋)⟶V) |
| 28 | 19, 26, 27 | sylancl 586 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷) → (𝑁 ∘ − ):(𝑋 × 𝑋)⟶V) |
| 29 | | fssxp 6763 |
. . . . . . . . . . 11
⊢ ((𝑁 ∘ − ):(𝑋 × 𝑋)⟶V → (𝑁 ∘ − ) ⊆ ((𝑋 × 𝑋) × V)) |
| 30 | 28, 29 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷) → (𝑁 ∘ − ) ⊆ ((𝑋 × 𝑋) × V)) |
| 31 | 25, 30 | ssind 4241 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷) → (𝑁 ∘ − ) ⊆ (𝐷 ∩ ((𝑋 × 𝑋) × V))) |
| 32 | | df-res 5697 |
. . . . . . . . . 10
⊢ (𝐷 ↾ (𝑋 × 𝑋)) = (𝐷 ∩ ((𝑋 × 𝑋) × V)) |
| 33 | 5, 32 | eqtri 2765 |
. . . . . . . . 9
⊢ 𝐸 = (𝐷 ∩ ((𝑋 × 𝑋) × V)) |
| 34 | 31, 33 | sseqtrrdi 4025 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷) → (𝑁 ∘ − ) ⊆ 𝐸) |
| 35 | | funssres 6610 |
. . . . . . . 8
⊢ ((Fun
𝐸 ∧ (𝑁 ∘ − ) ⊆ 𝐸) → (𝐸 ↾ dom (𝑁 ∘ − )) = (𝑁 ∘ − )) |
| 36 | 24, 34, 35 | syl2anc 584 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷) → (𝐸 ↾ dom (𝑁 ∘ − )) = (𝑁 ∘ − )) |
| 37 | | ffn 6736 |
. . . . . . . 8
⊢ (𝐸:(𝑋 × 𝑋)⟶ℝ → 𝐸 Fn (𝑋 × 𝑋)) |
| 38 | | fnresdm 6687 |
. . . . . . . 8
⊢ (𝐸 Fn (𝑋 × 𝑋) → (𝐸 ↾ (𝑋 × 𝑋)) = 𝐸) |
| 39 | 23, 37, 38 | 3syl 18 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷) → (𝐸 ↾ (𝑋 × 𝑋)) = 𝐸) |
| 40 | 21, 36, 39 | 3eqtr3d 2785 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷) → (𝑁 ∘ − ) = 𝐸) |
| 41 | 40 | ex 412 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) → ((𝑁 ∘ − ) ⊆ 𝐷 → (𝑁 ∘ − ) = 𝐸)) |
| 42 | 9, 41 | impbid2 226 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) → ((𝑁 ∘ − ) = 𝐸 ↔ (𝑁 ∘ − ) ⊆ 𝐷)) |
| 43 | 42 | pm5.32i 574 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) = 𝐸) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷)) |
| 44 | | df-3an 1089 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ∘ − ) = 𝐸) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) = 𝐸)) |
| 45 | | df-3an 1089 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ∘ − ) ⊆ 𝐷) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷)) |
| 46 | 43, 44, 45 | 3bitr4i 303 |
. 2
⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ∘ − ) = 𝐸) ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ∘ − ) ⊆ 𝐷)) |
| 47 | 4, 46 | bitr4i 278 |
1
⊢ (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ∘ − ) = 𝐸)) |