Proof of Theorem isngp2
Step | Hyp | Ref
| Expression |
1 | | isngp.n |
. . 3
⊢ 𝑁 = (norm‘𝐺) |
2 | | isngp.z |
. . 3
⊢ − =
(-g‘𝐺) |
3 | | isngp.d |
. . 3
⊢ 𝐷 = (dist‘𝐺) |
4 | 1, 2, 3 | isngp 23763 |
. 2
⊢ (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ∘ − ) ⊆ 𝐷)) |
5 | | isngp2.e |
. . . . . . 7
⊢ 𝐸 = (𝐷 ↾ (𝑋 × 𝑋)) |
6 | | resss 5915 |
. . . . . . 7
⊢ (𝐷 ↾ (𝑋 × 𝑋)) ⊆ 𝐷 |
7 | 5, 6 | eqsstri 3960 |
. . . . . 6
⊢ 𝐸 ⊆ 𝐷 |
8 | | sseq1 3951 |
. . . . . 6
⊢ ((𝑁 ∘ − ) = 𝐸 → ((𝑁 ∘ − ) ⊆ 𝐷 ↔ 𝐸 ⊆ 𝐷)) |
9 | 7, 8 | mpbiri 257 |
. . . . 5
⊢ ((𝑁 ∘ − ) = 𝐸 → (𝑁 ∘ − ) ⊆ 𝐷) |
10 | | isngp2.x |
. . . . . . . . . . . 12
⊢ 𝑋 = (Base‘𝐺) |
11 | 3 | reseq1i 5886 |
. . . . . . . . . . . . 13
⊢ (𝐷 ↾ (𝑋 × 𝑋)) = ((dist‘𝐺) ↾ (𝑋 × 𝑋)) |
12 | 5, 11 | eqtri 2768 |
. . . . . . . . . . . 12
⊢ 𝐸 = ((dist‘𝐺) ↾ (𝑋 × 𝑋)) |
13 | 10, 12 | msmet 23621 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ MetSp → 𝐸 ∈ (Met‘𝑋)) |
14 | 1, 10, 3, 5 | nmf2 23760 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋)) → 𝑁:𝑋⟶ℝ) |
15 | 13, 14 | sylan2 593 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) → 𝑁:𝑋⟶ℝ) |
16 | 10, 2 | grpsubf 18665 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ Grp → − :(𝑋 × 𝑋)⟶𝑋) |
17 | 16 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷) → − :(𝑋 × 𝑋)⟶𝑋) |
18 | | fco 6622 |
. . . . . . . . . 10
⊢ ((𝑁:𝑋⟶ℝ ∧ − :(𝑋 × 𝑋)⟶𝑋) → (𝑁 ∘ − ):(𝑋 × 𝑋)⟶ℝ) |
19 | 15, 17, 18 | syl2an2r 682 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷) → (𝑁 ∘ − ):(𝑋 × 𝑋)⟶ℝ) |
20 | 19 | fdmd 6609 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷) → dom (𝑁 ∘ − ) = (𝑋 × 𝑋)) |
21 | 20 | reseq2d 5890 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷) → (𝐸 ↾ dom (𝑁 ∘ − )) = (𝐸 ↾ (𝑋 × 𝑋))) |
22 | 10, 12 | msf 23622 |
. . . . . . . . . 10
⊢ (𝐺 ∈ MetSp → 𝐸:(𝑋 × 𝑋)⟶ℝ) |
23 | 22 | ad2antlr 724 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷) → 𝐸:(𝑋 × 𝑋)⟶ℝ) |
24 | 23 | ffund 6602 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷) → Fun 𝐸) |
25 | | simpr 485 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷) → (𝑁 ∘ − ) ⊆ 𝐷) |
26 | | ssv 3950 |
. . . . . . . . . . . 12
⊢ ℝ
⊆ V |
27 | | fss 6615 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∘ − ):(𝑋 × 𝑋)⟶ℝ ∧ ℝ ⊆ V)
→ (𝑁 ∘ −
):(𝑋 × 𝑋)⟶V) |
28 | 19, 26, 27 | sylancl 586 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷) → (𝑁 ∘ − ):(𝑋 × 𝑋)⟶V) |
29 | | fssxp 6626 |
. . . . . . . . . . 11
⊢ ((𝑁 ∘ − ):(𝑋 × 𝑋)⟶V → (𝑁 ∘ − ) ⊆ ((𝑋 × 𝑋) × V)) |
30 | 28, 29 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷) → (𝑁 ∘ − ) ⊆ ((𝑋 × 𝑋) × V)) |
31 | 25, 30 | ssind 4172 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷) → (𝑁 ∘ − ) ⊆ (𝐷 ∩ ((𝑋 × 𝑋) × V))) |
32 | | df-res 5602 |
. . . . . . . . . 10
⊢ (𝐷 ↾ (𝑋 × 𝑋)) = (𝐷 ∩ ((𝑋 × 𝑋) × V)) |
33 | 5, 32 | eqtri 2768 |
. . . . . . . . 9
⊢ 𝐸 = (𝐷 ∩ ((𝑋 × 𝑋) × V)) |
34 | 31, 33 | sseqtrrdi 3977 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷) → (𝑁 ∘ − ) ⊆ 𝐸) |
35 | | funssres 6476 |
. . . . . . . 8
⊢ ((Fun
𝐸 ∧ (𝑁 ∘ − ) ⊆ 𝐸) → (𝐸 ↾ dom (𝑁 ∘ − )) = (𝑁 ∘ − )) |
36 | 24, 34, 35 | syl2anc 584 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷) → (𝐸 ↾ dom (𝑁 ∘ − )) = (𝑁 ∘ − )) |
37 | | ffn 6598 |
. . . . . . . 8
⊢ (𝐸:(𝑋 × 𝑋)⟶ℝ → 𝐸 Fn (𝑋 × 𝑋)) |
38 | | fnresdm 6549 |
. . . . . . . 8
⊢ (𝐸 Fn (𝑋 × 𝑋) → (𝐸 ↾ (𝑋 × 𝑋)) = 𝐸) |
39 | 23, 37, 38 | 3syl 18 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷) → (𝐸 ↾ (𝑋 × 𝑋)) = 𝐸) |
40 | 21, 36, 39 | 3eqtr3d 2788 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷) → (𝑁 ∘ − ) = 𝐸) |
41 | 40 | ex 413 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) → ((𝑁 ∘ − ) ⊆ 𝐷 → (𝑁 ∘ − ) = 𝐸)) |
42 | 9, 41 | impbid2 225 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) → ((𝑁 ∘ − ) = 𝐸 ↔ (𝑁 ∘ − ) ⊆ 𝐷)) |
43 | 42 | pm5.32i 575 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) = 𝐸) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷)) |
44 | | df-3an 1088 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ∘ − ) = 𝐸) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) = 𝐸)) |
45 | | df-3an 1088 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ∘ − ) ⊆ 𝐷) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷)) |
46 | 43, 44, 45 | 3bitr4i 303 |
. 2
⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ∘ − ) = 𝐸) ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ∘ − ) ⊆ 𝐷)) |
47 | 4, 46 | bitr4i 277 |
1
⊢ (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ∘ − ) = 𝐸)) |