MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isngp2 Structured version   Visualization version   GIF version

Theorem isngp2 24485
Description: The property of being a normed group. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
isngp.n 𝑁 = (norm‘𝐺)
isngp.z = (-g𝐺)
isngp.d 𝐷 = (dist‘𝐺)
isngp2.x 𝑋 = (Base‘𝐺)
isngp2.e 𝐸 = (𝐷 ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
isngp2 (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ) = 𝐸))

Proof of Theorem isngp2
StepHypRef Expression
1 isngp.n . . 3 𝑁 = (norm‘𝐺)
2 isngp.z . . 3 = (-g𝐺)
3 isngp.d . . 3 𝐷 = (dist‘𝐺)
41, 2, 3isngp 24484 . 2 (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ) ⊆ 𝐷))
5 isngp2.e . . . . . . 7 𝐸 = (𝐷 ↾ (𝑋 × 𝑋))
6 resss 5972 . . . . . . 7 (𝐷 ↾ (𝑋 × 𝑋)) ⊆ 𝐷
75, 6eqsstri 3993 . . . . . 6 𝐸𝐷
8 sseq1 3972 . . . . . 6 ((𝑁 ) = 𝐸 → ((𝑁 ) ⊆ 𝐷𝐸𝐷))
97, 8mpbiri 258 . . . . 5 ((𝑁 ) = 𝐸 → (𝑁 ) ⊆ 𝐷)
10 isngp2.x . . . . . . . . . . . 12 𝑋 = (Base‘𝐺)
113reseq1i 5946 . . . . . . . . . . . . 13 (𝐷 ↾ (𝑋 × 𝑋)) = ((dist‘𝐺) ↾ (𝑋 × 𝑋))
125, 11eqtri 2752 . . . . . . . . . . . 12 𝐸 = ((dist‘𝐺) ↾ (𝑋 × 𝑋))
1310, 12msmet 24345 . . . . . . . . . . 11 (𝐺 ∈ MetSp → 𝐸 ∈ (Met‘𝑋))
141, 10, 3, 5nmf2 24481 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋)) → 𝑁:𝑋⟶ℝ)
1513, 14sylan2 593 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) → 𝑁:𝑋⟶ℝ)
1610, 2grpsubf 18951 . . . . . . . . . . 11 (𝐺 ∈ Grp → :(𝑋 × 𝑋)⟶𝑋)
1716ad2antrr 726 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → :(𝑋 × 𝑋)⟶𝑋)
18 fco 6712 . . . . . . . . . 10 ((𝑁:𝑋⟶ℝ ∧ :(𝑋 × 𝑋)⟶𝑋) → (𝑁 ):(𝑋 × 𝑋)⟶ℝ)
1915, 17, 18syl2an2r 685 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → (𝑁 ):(𝑋 × 𝑋)⟶ℝ)
2019fdmd 6698 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → dom (𝑁 ) = (𝑋 × 𝑋))
2120reseq2d 5950 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → (𝐸 ↾ dom (𝑁 )) = (𝐸 ↾ (𝑋 × 𝑋)))
2210, 12msf 24346 . . . . . . . . . 10 (𝐺 ∈ MetSp → 𝐸:(𝑋 × 𝑋)⟶ℝ)
2322ad2antlr 727 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → 𝐸:(𝑋 × 𝑋)⟶ℝ)
2423ffund 6692 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → Fun 𝐸)
25 simpr 484 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → (𝑁 ) ⊆ 𝐷)
26 ssv 3971 . . . . . . . . . . . 12 ℝ ⊆ V
27 fss 6704 . . . . . . . . . . . 12 (((𝑁 ):(𝑋 × 𝑋)⟶ℝ ∧ ℝ ⊆ V) → (𝑁 ):(𝑋 × 𝑋)⟶V)
2819, 26, 27sylancl 586 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → (𝑁 ):(𝑋 × 𝑋)⟶V)
29 fssxp 6715 . . . . . . . . . . 11 ((𝑁 ):(𝑋 × 𝑋)⟶V → (𝑁 ) ⊆ ((𝑋 × 𝑋) × V))
3028, 29syl 17 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → (𝑁 ) ⊆ ((𝑋 × 𝑋) × V))
3125, 30ssind 4204 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → (𝑁 ) ⊆ (𝐷 ∩ ((𝑋 × 𝑋) × V)))
32 df-res 5650 . . . . . . . . . 10 (𝐷 ↾ (𝑋 × 𝑋)) = (𝐷 ∩ ((𝑋 × 𝑋) × V))
335, 32eqtri 2752 . . . . . . . . 9 𝐸 = (𝐷 ∩ ((𝑋 × 𝑋) × V))
3431, 33sseqtrrdi 3988 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → (𝑁 ) ⊆ 𝐸)
35 funssres 6560 . . . . . . . 8 ((Fun 𝐸 ∧ (𝑁 ) ⊆ 𝐸) → (𝐸 ↾ dom (𝑁 )) = (𝑁 ))
3624, 34, 35syl2anc 584 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → (𝐸 ↾ dom (𝑁 )) = (𝑁 ))
37 ffn 6688 . . . . . . . 8 (𝐸:(𝑋 × 𝑋)⟶ℝ → 𝐸 Fn (𝑋 × 𝑋))
38 fnresdm 6637 . . . . . . . 8 (𝐸 Fn (𝑋 × 𝑋) → (𝐸 ↾ (𝑋 × 𝑋)) = 𝐸)
3923, 37, 383syl 18 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → (𝐸 ↾ (𝑋 × 𝑋)) = 𝐸)
4021, 36, 393eqtr3d 2772 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → (𝑁 ) = 𝐸)
4140ex 412 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) → ((𝑁 ) ⊆ 𝐷 → (𝑁 ) = 𝐸))
429, 41impbid2 226 . . . 4 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) → ((𝑁 ) = 𝐸 ↔ (𝑁 ) ⊆ 𝐷))
4342pm5.32i 574 . . 3 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) = 𝐸) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷))
44 df-3an 1088 . . 3 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ) = 𝐸) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) = 𝐸))
45 df-3an 1088 . . 3 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ) ⊆ 𝐷) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷))
4643, 44, 453bitr4i 303 . 2 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ) = 𝐸) ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ) ⊆ 𝐷))
474, 46bitr4i 278 1 (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ) = 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3447  cin 3913  wss 3914   × cxp 5636  dom cdm 5638  cres 5640  ccom 5642  Fun wfun 6505   Fn wfn 6506  wf 6507  cfv 6511  cr 11067  Basecbs 17179  distcds 17229  Grpcgrp 18865  -gcsg 18867  Metcmet 21250  MetSpcms 24206  normcnm 24464  NrmGrpcngp 24465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-0g 17404  df-topgen 17406  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-sbg 18870  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-xms 24208  df-ms 24209  df-nm 24470  df-ngp 24471
This theorem is referenced by:  isngp3  24486  ngpds  24492  ngppropd  24525  nrmtngdist  24545
  Copyright terms: Public domain W3C validator