MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isngp2 Structured version   Visualization version   GIF version

Theorem isngp2 24610
Description: The property of being a normed group. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
isngp.n 𝑁 = (norm‘𝐺)
isngp.z = (-g𝐺)
isngp.d 𝐷 = (dist‘𝐺)
isngp2.x 𝑋 = (Base‘𝐺)
isngp2.e 𝐸 = (𝐷 ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
isngp2 (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ) = 𝐸))

Proof of Theorem isngp2
StepHypRef Expression
1 isngp.n . . 3 𝑁 = (norm‘𝐺)
2 isngp.z . . 3 = (-g𝐺)
3 isngp.d . . 3 𝐷 = (dist‘𝐺)
41, 2, 3isngp 24609 . 2 (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ) ⊆ 𝐷))
5 isngp2.e . . . . . . 7 𝐸 = (𝐷 ↾ (𝑋 × 𝑋))
6 resss 6019 . . . . . . 7 (𝐷 ↾ (𝑋 × 𝑋)) ⊆ 𝐷
75, 6eqsstri 4030 . . . . . 6 𝐸𝐷
8 sseq1 4009 . . . . . 6 ((𝑁 ) = 𝐸 → ((𝑁 ) ⊆ 𝐷𝐸𝐷))
97, 8mpbiri 258 . . . . 5 ((𝑁 ) = 𝐸 → (𝑁 ) ⊆ 𝐷)
10 isngp2.x . . . . . . . . . . . 12 𝑋 = (Base‘𝐺)
113reseq1i 5993 . . . . . . . . . . . . 13 (𝐷 ↾ (𝑋 × 𝑋)) = ((dist‘𝐺) ↾ (𝑋 × 𝑋))
125, 11eqtri 2765 . . . . . . . . . . . 12 𝐸 = ((dist‘𝐺) ↾ (𝑋 × 𝑋))
1310, 12msmet 24467 . . . . . . . . . . 11 (𝐺 ∈ MetSp → 𝐸 ∈ (Met‘𝑋))
141, 10, 3, 5nmf2 24606 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋)) → 𝑁:𝑋⟶ℝ)
1513, 14sylan2 593 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) → 𝑁:𝑋⟶ℝ)
1610, 2grpsubf 19037 . . . . . . . . . . 11 (𝐺 ∈ Grp → :(𝑋 × 𝑋)⟶𝑋)
1716ad2antrr 726 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → :(𝑋 × 𝑋)⟶𝑋)
18 fco 6760 . . . . . . . . . 10 ((𝑁:𝑋⟶ℝ ∧ :(𝑋 × 𝑋)⟶𝑋) → (𝑁 ):(𝑋 × 𝑋)⟶ℝ)
1915, 17, 18syl2an2r 685 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → (𝑁 ):(𝑋 × 𝑋)⟶ℝ)
2019fdmd 6746 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → dom (𝑁 ) = (𝑋 × 𝑋))
2120reseq2d 5997 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → (𝐸 ↾ dom (𝑁 )) = (𝐸 ↾ (𝑋 × 𝑋)))
2210, 12msf 24468 . . . . . . . . . 10 (𝐺 ∈ MetSp → 𝐸:(𝑋 × 𝑋)⟶ℝ)
2322ad2antlr 727 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → 𝐸:(𝑋 × 𝑋)⟶ℝ)
2423ffund 6740 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → Fun 𝐸)
25 simpr 484 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → (𝑁 ) ⊆ 𝐷)
26 ssv 4008 . . . . . . . . . . . 12 ℝ ⊆ V
27 fss 6752 . . . . . . . . . . . 12 (((𝑁 ):(𝑋 × 𝑋)⟶ℝ ∧ ℝ ⊆ V) → (𝑁 ):(𝑋 × 𝑋)⟶V)
2819, 26, 27sylancl 586 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → (𝑁 ):(𝑋 × 𝑋)⟶V)
29 fssxp 6763 . . . . . . . . . . 11 ((𝑁 ):(𝑋 × 𝑋)⟶V → (𝑁 ) ⊆ ((𝑋 × 𝑋) × V))
3028, 29syl 17 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → (𝑁 ) ⊆ ((𝑋 × 𝑋) × V))
3125, 30ssind 4241 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → (𝑁 ) ⊆ (𝐷 ∩ ((𝑋 × 𝑋) × V)))
32 df-res 5697 . . . . . . . . . 10 (𝐷 ↾ (𝑋 × 𝑋)) = (𝐷 ∩ ((𝑋 × 𝑋) × V))
335, 32eqtri 2765 . . . . . . . . 9 𝐸 = (𝐷 ∩ ((𝑋 × 𝑋) × V))
3431, 33sseqtrrdi 4025 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → (𝑁 ) ⊆ 𝐸)
35 funssres 6610 . . . . . . . 8 ((Fun 𝐸 ∧ (𝑁 ) ⊆ 𝐸) → (𝐸 ↾ dom (𝑁 )) = (𝑁 ))
3624, 34, 35syl2anc 584 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → (𝐸 ↾ dom (𝑁 )) = (𝑁 ))
37 ffn 6736 . . . . . . . 8 (𝐸:(𝑋 × 𝑋)⟶ℝ → 𝐸 Fn (𝑋 × 𝑋))
38 fnresdm 6687 . . . . . . . 8 (𝐸 Fn (𝑋 × 𝑋) → (𝐸 ↾ (𝑋 × 𝑋)) = 𝐸)
3923, 37, 383syl 18 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → (𝐸 ↾ (𝑋 × 𝑋)) = 𝐸)
4021, 36, 393eqtr3d 2785 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → (𝑁 ) = 𝐸)
4140ex 412 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) → ((𝑁 ) ⊆ 𝐷 → (𝑁 ) = 𝐸))
429, 41impbid2 226 . . . 4 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) → ((𝑁 ) = 𝐸 ↔ (𝑁 ) ⊆ 𝐷))
4342pm5.32i 574 . . 3 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) = 𝐸) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷))
44 df-3an 1089 . . 3 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ) = 𝐸) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) = 𝐸))
45 df-3an 1089 . . 3 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ) ⊆ 𝐷) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷))
4643, 44, 453bitr4i 303 . 2 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ) = 𝐸) ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ) ⊆ 𝐷))
474, 46bitr4i 278 1 (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ) = 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  Vcvv 3480  cin 3950  wss 3951   × cxp 5683  dom cdm 5685  cres 5687  ccom 5689  Fun wfun 6555   Fn wfn 6556  wf 6557  cfv 6561  cr 11154  Basecbs 17247  distcds 17306  Grpcgrp 18951  -gcsg 18953  Metcmet 21350  MetSpcms 24328  normcnm 24589  NrmGrpcngp 24590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-0g 17486  df-topgen 17488  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-sbg 18956  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-xms 24330  df-ms 24331  df-nm 24595  df-ngp 24596
This theorem is referenced by:  isngp3  24611  ngpds  24617  ngppropd  24650  nrmtngdist  24678
  Copyright terms: Public domain W3C validator