MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmpropd2 Structured version   Visualization version   GIF version

Theorem nmpropd2 24534
Description: Strong property deduction for a norm. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
nmpropd2.1 (𝜑𝐵 = (Base‘𝐾))
nmpropd2.2 (𝜑𝐵 = (Base‘𝐿))
nmpropd2.3 (𝜑𝐾 ∈ Grp)
nmpropd2.4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
nmpropd2.5 (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ (𝐵 × 𝐵)))
Assertion
Ref Expression
nmpropd2 (𝜑 → (norm‘𝐾) = (norm‘𝐿))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦

Proof of Theorem nmpropd2
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 nmpropd2.1 . . . 4 (𝜑𝐵 = (Base‘𝐾))
2 nmpropd2.2 . . . 4 (𝜑𝐵 = (Base‘𝐿))
31, 2eqtr3d 2772 . . 3 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
4 nmpropd2.5 . . . . . 6 (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ (𝐵 × 𝐵)))
51sqxpeqd 5686 . . . . . . 7 (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐾) × (Base‘𝐾)))
65reseq2d 5966 . . . . . 6 (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))
74, 6eqtr3d 2772 . . . . 5 (𝜑 → ((dist‘𝐿) ↾ (𝐵 × 𝐵)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))
82sqxpeqd 5686 . . . . . 6 (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐿) × (Base‘𝐿)))
98reseq2d 5966 . . . . 5 (𝜑 → ((dist‘𝐿) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))))
107, 9eqtr3d 2772 . . . 4 (𝜑 → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))))
11 eqidd 2736 . . . 4 (𝜑𝑎 = 𝑎)
12 nmpropd2.4 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
131, 2, 12grpidpropd 18640 . . . 4 (𝜑 → (0g𝐾) = (0g𝐿))
1410, 11, 13oveq123d 7426 . . 3 (𝜑 → (𝑎((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))(0g𝐾)) = (𝑎((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))(0g𝐿)))
153, 14mpteq12dv 5207 . 2 (𝜑 → (𝑎 ∈ (Base‘𝐾) ↦ (𝑎((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))(0g𝐾))) = (𝑎 ∈ (Base‘𝐿) ↦ (𝑎((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))(0g𝐿))))
16 nmpropd2.3 . . 3 (𝜑𝐾 ∈ Grp)
17 eqid 2735 . . . 4 (norm‘𝐾) = (norm‘𝐾)
18 eqid 2735 . . . 4 (Base‘𝐾) = (Base‘𝐾)
19 eqid 2735 . . . 4 (0g𝐾) = (0g𝐾)
20 eqid 2735 . . . 4 (dist‘𝐾) = (dist‘𝐾)
21 eqid 2735 . . . 4 ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))
2217, 18, 19, 20, 21nmfval2 24530 . . 3 (𝐾 ∈ Grp → (norm‘𝐾) = (𝑎 ∈ (Base‘𝐾) ↦ (𝑎((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))(0g𝐾))))
2316, 22syl 17 . 2 (𝜑 → (norm‘𝐾) = (𝑎 ∈ (Base‘𝐾) ↦ (𝑎((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))(0g𝐾))))
241, 2, 12grppropd 18934 . . . 4 (𝜑 → (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp))
2516, 24mpbid 232 . . 3 (𝜑𝐿 ∈ Grp)
26 eqid 2735 . . . 4 (norm‘𝐿) = (norm‘𝐿)
27 eqid 2735 . . . 4 (Base‘𝐿) = (Base‘𝐿)
28 eqid 2735 . . . 4 (0g𝐿) = (0g𝐿)
29 eqid 2735 . . . 4 (dist‘𝐿) = (dist‘𝐿)
30 eqid 2735 . . . 4 ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))
3126, 27, 28, 29, 30nmfval2 24530 . . 3 (𝐿 ∈ Grp → (norm‘𝐿) = (𝑎 ∈ (Base‘𝐿) ↦ (𝑎((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))(0g𝐿))))
3225, 31syl 17 . 2 (𝜑 → (norm‘𝐿) = (𝑎 ∈ (Base‘𝐿) ↦ (𝑎((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))(0g𝐿))))
3315, 23, 323eqtr4d 2780 1 (𝜑 → (norm‘𝐾) = (norm‘𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cmpt 5201   × cxp 5652  cres 5656  cfv 6531  (class class class)co 7405  Basecbs 17228  +gcplusg 17271  distcds 17280  0gc0g 17453  Grpcgrp 18916  normcnm 24515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fv 6539  df-riota 7362  df-ov 7408  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-nm 24521
This theorem is referenced by:  ngppropd  24576
  Copyright terms: Public domain W3C validator