Step | Hyp | Ref
| Expression |
1 | | nmpropd2.1 |
. . . 4
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
2 | | nmpropd2.2 |
. . . 4
⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
3 | 1, 2 | eqtr3d 2780 |
. . 3
⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) |
4 | | nmpropd2.5 |
. . . . . 6
⊢ (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ (𝐵 × 𝐵))) |
5 | 1 | sqxpeqd 5612 |
. . . . . . 7
⊢ (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐾) × (Base‘𝐾))) |
6 | 5 | reseq2d 5880 |
. . . . . 6
⊢ (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) |
7 | 4, 6 | eqtr3d 2780 |
. . . . 5
⊢ (𝜑 → ((dist‘𝐿) ↾ (𝐵 × 𝐵)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) |
8 | 2 | sqxpeqd 5612 |
. . . . . 6
⊢ (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐿) × (Base‘𝐿))) |
9 | 8 | reseq2d 5880 |
. . . . 5
⊢ (𝜑 → ((dist‘𝐿) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))) |
10 | 7, 9 | eqtr3d 2780 |
. . . 4
⊢ (𝜑 → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))) |
11 | | eqidd 2739 |
. . . 4
⊢ (𝜑 → 𝑎 = 𝑎) |
12 | | nmpropd2.4 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
13 | 1, 2, 12 | grpidpropd 18261 |
. . . 4
⊢ (𝜑 → (0g‘𝐾) = (0g‘𝐿)) |
14 | 10, 11, 13 | oveq123d 7276 |
. . 3
⊢ (𝜑 → (𝑎((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))(0g‘𝐾)) = (𝑎((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))(0g‘𝐿))) |
15 | 3, 14 | mpteq12dv 5161 |
. 2
⊢ (𝜑 → (𝑎 ∈ (Base‘𝐾) ↦ (𝑎((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))(0g‘𝐾))) = (𝑎 ∈ (Base‘𝐿) ↦ (𝑎((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))(0g‘𝐿)))) |
16 | | nmpropd2.3 |
. . 3
⊢ (𝜑 → 𝐾 ∈ Grp) |
17 | | eqid 2738 |
. . . 4
⊢
(norm‘𝐾) =
(norm‘𝐾) |
18 | | eqid 2738 |
. . . 4
⊢
(Base‘𝐾) =
(Base‘𝐾) |
19 | | eqid 2738 |
. . . 4
⊢
(0g‘𝐾) = (0g‘𝐾) |
20 | | eqid 2738 |
. . . 4
⊢
(dist‘𝐾) =
(dist‘𝐾) |
21 | | eqid 2738 |
. . . 4
⊢
((dist‘𝐾)
↾ ((Base‘𝐾)
× (Base‘𝐾))) =
((dist‘𝐾) ↾
((Base‘𝐾) ×
(Base‘𝐾))) |
22 | 17, 18, 19, 20, 21 | nmfval2 23653 |
. . 3
⊢ (𝐾 ∈ Grp →
(norm‘𝐾) = (𝑎 ∈ (Base‘𝐾) ↦ (𝑎((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))(0g‘𝐾)))) |
23 | 16, 22 | syl 17 |
. 2
⊢ (𝜑 → (norm‘𝐾) = (𝑎 ∈ (Base‘𝐾) ↦ (𝑎((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))(0g‘𝐾)))) |
24 | 1, 2, 12 | grppropd 18509 |
. . . 4
⊢ (𝜑 → (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp)) |
25 | 16, 24 | mpbid 231 |
. . 3
⊢ (𝜑 → 𝐿 ∈ Grp) |
26 | | eqid 2738 |
. . . 4
⊢
(norm‘𝐿) =
(norm‘𝐿) |
27 | | eqid 2738 |
. . . 4
⊢
(Base‘𝐿) =
(Base‘𝐿) |
28 | | eqid 2738 |
. . . 4
⊢
(0g‘𝐿) = (0g‘𝐿) |
29 | | eqid 2738 |
. . . 4
⊢
(dist‘𝐿) =
(dist‘𝐿) |
30 | | eqid 2738 |
. . . 4
⊢
((dist‘𝐿)
↾ ((Base‘𝐿)
× (Base‘𝐿))) =
((dist‘𝐿) ↾
((Base‘𝐿) ×
(Base‘𝐿))) |
31 | 26, 27, 28, 29, 30 | nmfval2 23653 |
. . 3
⊢ (𝐿 ∈ Grp →
(norm‘𝐿) = (𝑎 ∈ (Base‘𝐿) ↦ (𝑎((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))(0g‘𝐿)))) |
32 | 25, 31 | syl 17 |
. 2
⊢ (𝜑 → (norm‘𝐿) = (𝑎 ∈ (Base‘𝐿) ↦ (𝑎((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))(0g‘𝐿)))) |
33 | 15, 23, 32 | 3eqtr4d 2788 |
1
⊢ (𝜑 → (norm‘𝐾) = (norm‘𝐿)) |