MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmpropd2 Structured version   Visualization version   GIF version

Theorem nmpropd2 23749
Description: Strong property deduction for a norm. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
nmpropd2.1 (𝜑𝐵 = (Base‘𝐾))
nmpropd2.2 (𝜑𝐵 = (Base‘𝐿))
nmpropd2.3 (𝜑𝐾 ∈ Grp)
nmpropd2.4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
nmpropd2.5 (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ (𝐵 × 𝐵)))
Assertion
Ref Expression
nmpropd2 (𝜑 → (norm‘𝐾) = (norm‘𝐿))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦

Proof of Theorem nmpropd2
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 nmpropd2.1 . . . 4 (𝜑𝐵 = (Base‘𝐾))
2 nmpropd2.2 . . . 4 (𝜑𝐵 = (Base‘𝐿))
31, 2eqtr3d 2782 . . 3 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
4 nmpropd2.5 . . . . . 6 (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ (𝐵 × 𝐵)))
51sqxpeqd 5622 . . . . . . 7 (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐾) × (Base‘𝐾)))
65reseq2d 5890 . . . . . 6 (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))
74, 6eqtr3d 2782 . . . . 5 (𝜑 → ((dist‘𝐿) ↾ (𝐵 × 𝐵)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))
82sqxpeqd 5622 . . . . . 6 (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐿) × (Base‘𝐿)))
98reseq2d 5890 . . . . 5 (𝜑 → ((dist‘𝐿) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))))
107, 9eqtr3d 2782 . . . 4 (𝜑 → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))))
11 eqidd 2741 . . . 4 (𝜑𝑎 = 𝑎)
12 nmpropd2.4 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
131, 2, 12grpidpropd 18344 . . . 4 (𝜑 → (0g𝐾) = (0g𝐿))
1410, 11, 13oveq123d 7292 . . 3 (𝜑 → (𝑎((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))(0g𝐾)) = (𝑎((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))(0g𝐿)))
153, 14mpteq12dv 5170 . 2 (𝜑 → (𝑎 ∈ (Base‘𝐾) ↦ (𝑎((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))(0g𝐾))) = (𝑎 ∈ (Base‘𝐿) ↦ (𝑎((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))(0g𝐿))))
16 nmpropd2.3 . . 3 (𝜑𝐾 ∈ Grp)
17 eqid 2740 . . . 4 (norm‘𝐾) = (norm‘𝐾)
18 eqid 2740 . . . 4 (Base‘𝐾) = (Base‘𝐾)
19 eqid 2740 . . . 4 (0g𝐾) = (0g𝐾)
20 eqid 2740 . . . 4 (dist‘𝐾) = (dist‘𝐾)
21 eqid 2740 . . . 4 ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))
2217, 18, 19, 20, 21nmfval2 23745 . . 3 (𝐾 ∈ Grp → (norm‘𝐾) = (𝑎 ∈ (Base‘𝐾) ↦ (𝑎((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))(0g𝐾))))
2316, 22syl 17 . 2 (𝜑 → (norm‘𝐾) = (𝑎 ∈ (Base‘𝐾) ↦ (𝑎((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))(0g𝐾))))
241, 2, 12grppropd 18592 . . . 4 (𝜑 → (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp))
2516, 24mpbid 231 . . 3 (𝜑𝐿 ∈ Grp)
26 eqid 2740 . . . 4 (norm‘𝐿) = (norm‘𝐿)
27 eqid 2740 . . . 4 (Base‘𝐿) = (Base‘𝐿)
28 eqid 2740 . . . 4 (0g𝐿) = (0g𝐿)
29 eqid 2740 . . . 4 (dist‘𝐿) = (dist‘𝐿)
30 eqid 2740 . . . 4 ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))
3126, 27, 28, 29, 30nmfval2 23745 . . 3 (𝐿 ∈ Grp → (norm‘𝐿) = (𝑎 ∈ (Base‘𝐿) ↦ (𝑎((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))(0g𝐿))))
3225, 31syl 17 . 2 (𝜑 → (norm‘𝐿) = (𝑎 ∈ (Base‘𝐿) ↦ (𝑎((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))(0g𝐿))))
3315, 23, 323eqtr4d 2790 1 (𝜑 → (norm‘𝐾) = (norm‘𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wcel 2110  cmpt 5162   × cxp 5588  cres 5592  cfv 6432  (class class class)co 7271  Basecbs 16910  +gcplusg 16960  distcds 16969  0gc0g 17148  Grpcgrp 18575  normcnm 23730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-fv 6440  df-riota 7228  df-ov 7274  df-0g 17150  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-grp 18578  df-nm 23736
This theorem is referenced by:  ngppropd  23791
  Copyright terms: Public domain W3C validator