Step | Hyp | Ref
| Expression |
1 | | ngpgrp 24099 |
. . . . 5
β’ (π β NrmGrp β π β Grp) |
2 | | tngngp2.x |
. . . . . . . 8
β’ π = (BaseβπΊ) |
3 | 2 | fvexi 6902 |
. . . . . . 7
β’ π β V |
4 | | reex 11197 |
. . . . . . 7
β’ β
β V |
5 | | fex2 7920 |
. . . . . . 7
β’ ((π:πβΆβ β§ π β V β§ β β V) β
π β
V) |
6 | 3, 4, 5 | mp3an23 1453 |
. . . . . 6
β’ (π:πβΆβ β π β V) |
7 | 2 | a1i 11 |
. . . . . . 7
β’ (π β V β π = (BaseβπΊ)) |
8 | | tngngp2.t |
. . . . . . . 8
β’ π = (πΊ toNrmGrp π) |
9 | 8, 2 | tngbas 24142 |
. . . . . . 7
β’ (π β V β π = (Baseβπ)) |
10 | | eqid 2732 |
. . . . . . . . 9
β’
(+gβπΊ) = (+gβπΊ) |
11 | 8, 10 | tngplusg 24144 |
. . . . . . . 8
β’ (π β V β
(+gβπΊ) =
(+gβπ)) |
12 | 11 | oveqdr 7433 |
. . . . . . 7
β’ ((π β V β§ (π₯ β π β§ π¦ β π)) β (π₯(+gβπΊ)π¦) = (π₯(+gβπ)π¦)) |
13 | 7, 9, 12 | grppropd 18833 |
. . . . . 6
β’ (π β V β (πΊ β Grp β π β Grp)) |
14 | 6, 13 | syl 17 |
. . . . 5
β’ (π:πβΆβ β (πΊ β Grp β π β Grp)) |
15 | 1, 14 | imbitrrid 245 |
. . . 4
β’ (π:πβΆβ β (π β NrmGrp β πΊ β Grp)) |
16 | 15 | imp 407 |
. . 3
β’ ((π:πβΆβ β§ π β NrmGrp) β πΊ β Grp) |
17 | | ngpms 24100 |
. . . . . 6
β’ (π β NrmGrp β π β MetSp) |
18 | 17 | adantl 482 |
. . . . 5
β’ ((π:πβΆβ β§ π β NrmGrp) β π β MetSp) |
19 | | eqid 2732 |
. . . . . 6
β’
(Baseβπ) =
(Baseβπ) |
20 | | tngngp2.d |
. . . . . 6
β’ π· = (distβπ) |
21 | 19, 20 | msmet2 23957 |
. . . . 5
β’ (π β MetSp β (π· βΎ ((Baseβπ) Γ (Baseβπ))) β
(Metβ(Baseβπ))) |
22 | 18, 21 | syl 17 |
. . . 4
β’ ((π:πβΆβ β§ π β NrmGrp) β (π· βΎ ((Baseβπ) Γ (Baseβπ))) β (Metβ(Baseβπ))) |
23 | | eqid 2732 |
. . . . . . . . . 10
β’
(-gβπΊ) = (-gβπΊ) |
24 | 2, 23 | grpsubf 18898 |
. . . . . . . . 9
β’ (πΊ β Grp β
(-gβπΊ):(π Γ π)βΆπ) |
25 | 16, 24 | syl 17 |
. . . . . . . 8
β’ ((π:πβΆβ β§ π β NrmGrp) β
(-gβπΊ):(π Γ π)βΆπ) |
26 | | fco 6738 |
. . . . . . . 8
β’ ((π:πβΆβ β§
(-gβπΊ):(π Γ π)βΆπ) β (π β (-gβπΊ)):(π Γ π)βΆβ) |
27 | 25, 26 | syldan 591 |
. . . . . . 7
β’ ((π:πβΆβ β§ π β NrmGrp) β (π β (-gβπΊ)):(π Γ π)βΆβ) |
28 | 6 | adantr 481 |
. . . . . . . . . 10
β’ ((π:πβΆβ β§ π β NrmGrp) β π β V) |
29 | 8, 23 | tngds 24155 |
. . . . . . . . . 10
β’ (π β V β (π β
(-gβπΊ)) =
(distβπ)) |
30 | 28, 29 | syl 17 |
. . . . . . . . 9
β’ ((π:πβΆβ β§ π β NrmGrp) β (π β (-gβπΊ)) = (distβπ)) |
31 | 20, 30 | eqtr4id 2791 |
. . . . . . . 8
β’ ((π:πβΆβ β§ π β NrmGrp) β π· = (π β (-gβπΊ))) |
32 | 31 | feq1d 6699 |
. . . . . . 7
β’ ((π:πβΆβ β§ π β NrmGrp) β (π·:(π Γ π)βΆβ β (π β (-gβπΊ)):(π Γ π)βΆβ)) |
33 | 27, 32 | mpbird 256 |
. . . . . 6
β’ ((π:πβΆβ β§ π β NrmGrp) β π·:(π Γ π)βΆβ) |
34 | | ffn 6714 |
. . . . . 6
β’ (π·:(π Γ π)βΆβ β π· Fn (π Γ π)) |
35 | | fnresdm 6666 |
. . . . . 6
β’ (π· Fn (π Γ π) β (π· βΎ (π Γ π)) = π·) |
36 | 33, 34, 35 | 3syl 18 |
. . . . 5
β’ ((π:πβΆβ β§ π β NrmGrp) β (π· βΎ (π Γ π)) = π·) |
37 | 28, 9 | syl 17 |
. . . . . . 7
β’ ((π:πβΆβ β§ π β NrmGrp) β π = (Baseβπ)) |
38 | 37 | sqxpeqd 5707 |
. . . . . 6
β’ ((π:πβΆβ β§ π β NrmGrp) β (π Γ π) = ((Baseβπ) Γ (Baseβπ))) |
39 | 38 | reseq2d 5979 |
. . . . 5
β’ ((π:πβΆβ β§ π β NrmGrp) β (π· βΎ (π Γ π)) = (π· βΎ ((Baseβπ) Γ (Baseβπ)))) |
40 | 36, 39 | eqtr3d 2774 |
. . . 4
β’ ((π:πβΆβ β§ π β NrmGrp) β π· = (π· βΎ ((Baseβπ) Γ (Baseβπ)))) |
41 | 37 | fveq2d 6892 |
. . . 4
β’ ((π:πβΆβ β§ π β NrmGrp) β (Metβπ) = (Metβ(Baseβπ))) |
42 | 22, 40, 41 | 3eltr4d 2848 |
. . 3
β’ ((π:πβΆβ β§ π β NrmGrp) β π· β (Metβπ)) |
43 | 16, 42 | jca 512 |
. 2
β’ ((π:πβΆβ β§ π β NrmGrp) β (πΊ β Grp β§ π· β (Metβπ))) |
44 | 14 | biimpa 477 |
. . . 4
β’ ((π:πβΆβ β§ πΊ β Grp) β π β Grp) |
45 | 44 | adantrr 715 |
. . 3
β’ ((π:πβΆβ β§ (πΊ β Grp β§ π· β (Metβπ))) β π β Grp) |
46 | | simprr 771 |
. . . . . . . 8
β’ ((π:πβΆβ β§ (πΊ β Grp β§ π· β (Metβπ))) β π· β (Metβπ)) |
47 | 6 | adantr 481 |
. . . . . . . . . 10
β’ ((π:πβΆβ β§ (πΊ β Grp β§ π· β (Metβπ))) β π β V) |
48 | 47, 9 | syl 17 |
. . . . . . . . 9
β’ ((π:πβΆβ β§ (πΊ β Grp β§ π· β (Metβπ))) β π = (Baseβπ)) |
49 | 48 | fveq2d 6892 |
. . . . . . . 8
β’ ((π:πβΆβ β§ (πΊ β Grp β§ π· β (Metβπ))) β (Metβπ) = (Metβ(Baseβπ))) |
50 | 46, 49 | eleqtrd 2835 |
. . . . . . 7
β’ ((π:πβΆβ β§ (πΊ β Grp β§ π· β (Metβπ))) β π· β (Metβ(Baseβπ))) |
51 | | metf 23827 |
. . . . . . 7
β’ (π· β
(Metβ(Baseβπ))
β π·:((Baseβπ) Γ (Baseβπ))βΆβ) |
52 | 50, 51 | syl 17 |
. . . . . 6
β’ ((π:πβΆβ β§ (πΊ β Grp β§ π· β (Metβπ))) β π·:((Baseβπ) Γ (Baseβπ))βΆβ) |
53 | | ffn 6714 |
. . . . . 6
β’ (π·:((Baseβπ) Γ (Baseβπ))βΆβ β π· Fn ((Baseβπ) Γ (Baseβπ))) |
54 | | fnresdm 6666 |
. . . . . 6
β’ (π· Fn ((Baseβπ) Γ (Baseβπ)) β (π· βΎ ((Baseβπ) Γ (Baseβπ))) = π·) |
55 | 52, 53, 54 | 3syl 18 |
. . . . 5
β’ ((π:πβΆβ β§ (πΊ β Grp β§ π· β (Metβπ))) β (π· βΎ ((Baseβπ) Γ (Baseβπ))) = π·) |
56 | 55, 50 | eqeltrd 2833 |
. . . 4
β’ ((π:πβΆβ β§ (πΊ β Grp β§ π· β (Metβπ))) β (π· βΎ ((Baseβπ) Γ (Baseβπ))) β (Metβ(Baseβπ))) |
57 | 55 | fveq2d 6892 |
. . . . 5
β’ ((π:πβΆβ β§ (πΊ β Grp β§ π· β (Metβπ))) β (MetOpenβ(π· βΎ ((Baseβπ) Γ (Baseβπ)))) = (MetOpenβπ·)) |
58 | | simprl 769 |
. . . . . 6
β’ ((π:πβΆβ β§ (πΊ β Grp β§ π· β (Metβπ))) β πΊ β Grp) |
59 | | eqid 2732 |
. . . . . . 7
β’
(MetOpenβπ·) =
(MetOpenβπ·) |
60 | 8, 20, 59 | tngtopn 24158 |
. . . . . 6
β’ ((πΊ β Grp β§ π β V) β
(MetOpenβπ·) =
(TopOpenβπ)) |
61 | 58, 47, 60 | syl2anc 584 |
. . . . 5
β’ ((π:πβΆβ β§ (πΊ β Grp β§ π· β (Metβπ))) β (MetOpenβπ·) = (TopOpenβπ)) |
62 | 57, 61 | eqtr2d 2773 |
. . . 4
β’ ((π:πβΆβ β§ (πΊ β Grp β§ π· β (Metβπ))) β (TopOpenβπ) = (MetOpenβ(π· βΎ ((Baseβπ) Γ (Baseβπ))))) |
63 | | eqid 2732 |
. . . . 5
β’
(TopOpenβπ) =
(TopOpenβπ) |
64 | 20 | reseq1i 5975 |
. . . . 5
β’ (π· βΎ ((Baseβπ) Γ (Baseβπ))) = ((distβπ) βΎ ((Baseβπ) Γ (Baseβπ))) |
65 | 63, 19, 64 | isms2 23947 |
. . . 4
β’ (π β MetSp β ((π· βΎ ((Baseβπ) Γ (Baseβπ))) β
(Metβ(Baseβπ))
β§ (TopOpenβπ) =
(MetOpenβ(π· βΎ
((Baseβπ) Γ
(Baseβπ)))))) |
66 | 56, 62, 65 | sylanbrc 583 |
. . 3
β’ ((π:πβΆβ β§ (πΊ β Grp β§ π· β (Metβπ))) β π β MetSp) |
67 | | simpl 483 |
. . . . . . 7
β’ ((π:πβΆβ β§ (πΊ β Grp β§ π· β (Metβπ))) β π:πβΆβ) |
68 | 8, 2, 4 | tngnm 24159 |
. . . . . . 7
β’ ((πΊ β Grp β§ π:πβΆβ) β π = (normβπ)) |
69 | 58, 67, 68 | syl2anc 584 |
. . . . . 6
β’ ((π:πβΆβ β§ (πΊ β Grp β§ π· β (Metβπ))) β π = (normβπ)) |
70 | 7, 9 | eqtr3d 2774 |
. . . . . . . 8
β’ (π β V β
(BaseβπΊ) =
(Baseβπ)) |
71 | 70, 11 | grpsubpropd 18924 |
. . . . . . 7
β’ (π β V β
(-gβπΊ) =
(-gβπ)) |
72 | 47, 71 | syl 17 |
. . . . . 6
β’ ((π:πβΆβ β§ (πΊ β Grp β§ π· β (Metβπ))) β (-gβπΊ) = (-gβπ)) |
73 | 69, 72 | coeq12d 5862 |
. . . . 5
β’ ((π:πβΆβ β§ (πΊ β Grp β§ π· β (Metβπ))) β (π β (-gβπΊ)) = ((normβπ) β
(-gβπ))) |
74 | 47, 29 | syl 17 |
. . . . 5
β’ ((π:πβΆβ β§ (πΊ β Grp β§ π· β (Metβπ))) β (π β (-gβπΊ)) = (distβπ)) |
75 | 73, 74 | eqtr3d 2774 |
. . . 4
β’ ((π:πβΆβ β§ (πΊ β Grp β§ π· β (Metβπ))) β ((normβπ) β (-gβπ)) = (distβπ)) |
76 | | eqimss 4039 |
. . . 4
β’
(((normβπ)
β (-gβπ)) = (distβπ) β ((normβπ) β (-gβπ)) β (distβπ)) |
77 | 75, 76 | syl 17 |
. . 3
β’ ((π:πβΆβ β§ (πΊ β Grp β§ π· β (Metβπ))) β ((normβπ) β (-gβπ)) β (distβπ)) |
78 | | eqid 2732 |
. . . 4
β’
(normβπ) =
(normβπ) |
79 | | eqid 2732 |
. . . 4
β’
(-gβπ) = (-gβπ) |
80 | | eqid 2732 |
. . . 4
β’
(distβπ) =
(distβπ) |
81 | 78, 79, 80 | isngp 24096 |
. . 3
β’ (π β NrmGrp β (π β Grp β§ π β MetSp β§
((normβπ) β
(-gβπ))
β (distβπ))) |
82 | 45, 66, 77, 81 | syl3anbrc 1343 |
. 2
β’ ((π:πβΆβ β§ (πΊ β Grp β§ π· β (Metβπ))) β π β NrmGrp) |
83 | 43, 82 | impbida 799 |
1
β’ (π:πβΆβ β (π β NrmGrp β (πΊ β Grp β§ π· β (Metβπ)))) |