Step | Hyp | Ref
| Expression |
1 | | ngpgrp 23755 |
. . . . 5
⊢ (𝑇 ∈ NrmGrp → 𝑇 ∈ Grp) |
2 | | tngngp2.x |
. . . . . . . 8
⊢ 𝑋 = (Base‘𝐺) |
3 | 2 | fvexi 6788 |
. . . . . . 7
⊢ 𝑋 ∈ V |
4 | | reex 10962 |
. . . . . . 7
⊢ ℝ
∈ V |
5 | | fex2 7780 |
. . . . . . 7
⊢ ((𝑁:𝑋⟶ℝ ∧ 𝑋 ∈ V ∧ ℝ ∈ V) →
𝑁 ∈
V) |
6 | 3, 4, 5 | mp3an23 1452 |
. . . . . 6
⊢ (𝑁:𝑋⟶ℝ → 𝑁 ∈ V) |
7 | 2 | a1i 11 |
. . . . . . 7
⊢ (𝑁 ∈ V → 𝑋 = (Base‘𝐺)) |
8 | | tngngp2.t |
. . . . . . . 8
⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) |
9 | 8, 2 | tngbas 23798 |
. . . . . . 7
⊢ (𝑁 ∈ V → 𝑋 = (Base‘𝑇)) |
10 | | eqid 2738 |
. . . . . . . . 9
⊢
(+g‘𝐺) = (+g‘𝐺) |
11 | 8, 10 | tngplusg 23800 |
. . . . . . . 8
⊢ (𝑁 ∈ V →
(+g‘𝐺) =
(+g‘𝑇)) |
12 | 11 | oveqdr 7303 |
. . . . . . 7
⊢ ((𝑁 ∈ V ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥(+g‘𝐺)𝑦) = (𝑥(+g‘𝑇)𝑦)) |
13 | 7, 9, 12 | grppropd 18594 |
. . . . . 6
⊢ (𝑁 ∈ V → (𝐺 ∈ Grp ↔ 𝑇 ∈ Grp)) |
14 | 6, 13 | syl 17 |
. . . . 5
⊢ (𝑁:𝑋⟶ℝ → (𝐺 ∈ Grp ↔ 𝑇 ∈ Grp)) |
15 | 1, 14 | syl5ibr 245 |
. . . 4
⊢ (𝑁:𝑋⟶ℝ → (𝑇 ∈ NrmGrp → 𝐺 ∈ Grp)) |
16 | 15 | imp 407 |
. . 3
⊢ ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → 𝐺 ∈ Grp) |
17 | | ngpms 23756 |
. . . . . 6
⊢ (𝑇 ∈ NrmGrp → 𝑇 ∈ MetSp) |
18 | 17 | adantl 482 |
. . . . 5
⊢ ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → 𝑇 ∈ MetSp) |
19 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝑇) =
(Base‘𝑇) |
20 | | tngngp2.d |
. . . . . 6
⊢ 𝐷 = (dist‘𝑇) |
21 | 19, 20 | msmet2 23613 |
. . . . 5
⊢ (𝑇 ∈ MetSp → (𝐷 ↾ ((Base‘𝑇) × (Base‘𝑇))) ∈
(Met‘(Base‘𝑇))) |
22 | 18, 21 | syl 17 |
. . . 4
⊢ ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → (𝐷 ↾ ((Base‘𝑇) × (Base‘𝑇))) ∈ (Met‘(Base‘𝑇))) |
23 | | eqid 2738 |
. . . . . . . . . 10
⊢
(-g‘𝐺) = (-g‘𝐺) |
24 | 2, 23 | grpsubf 18654 |
. . . . . . . . 9
⊢ (𝐺 ∈ Grp →
(-g‘𝐺):(𝑋 × 𝑋)⟶𝑋) |
25 | 16, 24 | syl 17 |
. . . . . . . 8
⊢ ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) →
(-g‘𝐺):(𝑋 × 𝑋)⟶𝑋) |
26 | | fco 6624 |
. . . . . . . 8
⊢ ((𝑁:𝑋⟶ℝ ∧
(-g‘𝐺):(𝑋 × 𝑋)⟶𝑋) → (𝑁 ∘ (-g‘𝐺)):(𝑋 × 𝑋)⟶ℝ) |
27 | 25, 26 | syldan 591 |
. . . . . . 7
⊢ ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → (𝑁 ∘ (-g‘𝐺)):(𝑋 × 𝑋)⟶ℝ) |
28 | 6 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → 𝑁 ∈ V) |
29 | 8, 23 | tngds 23811 |
. . . . . . . . . 10
⊢ (𝑁 ∈ V → (𝑁 ∘
(-g‘𝐺)) =
(dist‘𝑇)) |
30 | 28, 29 | syl 17 |
. . . . . . . . 9
⊢ ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → (𝑁 ∘ (-g‘𝐺)) = (dist‘𝑇)) |
31 | 20, 30 | eqtr4id 2797 |
. . . . . . . 8
⊢ ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → 𝐷 = (𝑁 ∘ (-g‘𝐺))) |
32 | 31 | feq1d 6585 |
. . . . . . 7
⊢ ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → (𝐷:(𝑋 × 𝑋)⟶ℝ ↔ (𝑁 ∘ (-g‘𝐺)):(𝑋 × 𝑋)⟶ℝ)) |
33 | 27, 32 | mpbird 256 |
. . . . . 6
⊢ ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → 𝐷:(𝑋 × 𝑋)⟶ℝ) |
34 | | ffn 6600 |
. . . . . 6
⊢ (𝐷:(𝑋 × 𝑋)⟶ℝ → 𝐷 Fn (𝑋 × 𝑋)) |
35 | | fnresdm 6551 |
. . . . . 6
⊢ (𝐷 Fn (𝑋 × 𝑋) → (𝐷 ↾ (𝑋 × 𝑋)) = 𝐷) |
36 | 33, 34, 35 | 3syl 18 |
. . . . 5
⊢ ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → (𝐷 ↾ (𝑋 × 𝑋)) = 𝐷) |
37 | 28, 9 | syl 17 |
. . . . . . 7
⊢ ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → 𝑋 = (Base‘𝑇)) |
38 | 37 | sqxpeqd 5621 |
. . . . . 6
⊢ ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → (𝑋 × 𝑋) = ((Base‘𝑇) × (Base‘𝑇))) |
39 | 38 | reseq2d 5891 |
. . . . 5
⊢ ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → (𝐷 ↾ (𝑋 × 𝑋)) = (𝐷 ↾ ((Base‘𝑇) × (Base‘𝑇)))) |
40 | 36, 39 | eqtr3d 2780 |
. . . 4
⊢ ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → 𝐷 = (𝐷 ↾ ((Base‘𝑇) × (Base‘𝑇)))) |
41 | 37 | fveq2d 6778 |
. . . 4
⊢ ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → (Met‘𝑋) = (Met‘(Base‘𝑇))) |
42 | 22, 40, 41 | 3eltr4d 2854 |
. . 3
⊢ ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → 𝐷 ∈ (Met‘𝑋)) |
43 | 16, 42 | jca 512 |
. 2
⊢ ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) |
44 | 14 | biimpa 477 |
. . . 4
⊢ ((𝑁:𝑋⟶ℝ ∧ 𝐺 ∈ Grp) → 𝑇 ∈ Grp) |
45 | 44 | adantrr 714 |
. . 3
⊢ ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → 𝑇 ∈ Grp) |
46 | | simprr 770 |
. . . . . . . 8
⊢ ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → 𝐷 ∈ (Met‘𝑋)) |
47 | 6 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → 𝑁 ∈ V) |
48 | 47, 9 | syl 17 |
. . . . . . . . 9
⊢ ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → 𝑋 = (Base‘𝑇)) |
49 | 48 | fveq2d 6778 |
. . . . . . . 8
⊢ ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → (Met‘𝑋) = (Met‘(Base‘𝑇))) |
50 | 46, 49 | eleqtrd 2841 |
. . . . . . 7
⊢ ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → 𝐷 ∈ (Met‘(Base‘𝑇))) |
51 | | metf 23483 |
. . . . . . 7
⊢ (𝐷 ∈
(Met‘(Base‘𝑇))
→ 𝐷:((Base‘𝑇) × (Base‘𝑇))⟶ℝ) |
52 | 50, 51 | syl 17 |
. . . . . 6
⊢ ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → 𝐷:((Base‘𝑇) × (Base‘𝑇))⟶ℝ) |
53 | | ffn 6600 |
. . . . . 6
⊢ (𝐷:((Base‘𝑇) × (Base‘𝑇))⟶ℝ → 𝐷 Fn ((Base‘𝑇) × (Base‘𝑇))) |
54 | | fnresdm 6551 |
. . . . . 6
⊢ (𝐷 Fn ((Base‘𝑇) × (Base‘𝑇)) → (𝐷 ↾ ((Base‘𝑇) × (Base‘𝑇))) = 𝐷) |
55 | 52, 53, 54 | 3syl 18 |
. . . . 5
⊢ ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → (𝐷 ↾ ((Base‘𝑇) × (Base‘𝑇))) = 𝐷) |
56 | 55, 50 | eqeltrd 2839 |
. . . 4
⊢ ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → (𝐷 ↾ ((Base‘𝑇) × (Base‘𝑇))) ∈ (Met‘(Base‘𝑇))) |
57 | 55 | fveq2d 6778 |
. . . . 5
⊢ ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → (MetOpen‘(𝐷 ↾ ((Base‘𝑇) × (Base‘𝑇)))) = (MetOpen‘𝐷)) |
58 | | simprl 768 |
. . . . . 6
⊢ ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → 𝐺 ∈ Grp) |
59 | | eqid 2738 |
. . . . . . 7
⊢
(MetOpen‘𝐷) =
(MetOpen‘𝐷) |
60 | 8, 20, 59 | tngtopn 23814 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ V) →
(MetOpen‘𝐷) =
(TopOpen‘𝑇)) |
61 | 58, 47, 60 | syl2anc 584 |
. . . . 5
⊢ ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → (MetOpen‘𝐷) = (TopOpen‘𝑇)) |
62 | 57, 61 | eqtr2d 2779 |
. . . 4
⊢ ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → (TopOpen‘𝑇) = (MetOpen‘(𝐷 ↾ ((Base‘𝑇) × (Base‘𝑇))))) |
63 | | eqid 2738 |
. . . . 5
⊢
(TopOpen‘𝑇) =
(TopOpen‘𝑇) |
64 | 20 | reseq1i 5887 |
. . . . 5
⊢ (𝐷 ↾ ((Base‘𝑇) × (Base‘𝑇))) = ((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))) |
65 | 63, 19, 64 | isms2 23603 |
. . . 4
⊢ (𝑇 ∈ MetSp ↔ ((𝐷 ↾ ((Base‘𝑇) × (Base‘𝑇))) ∈
(Met‘(Base‘𝑇))
∧ (TopOpen‘𝑇) =
(MetOpen‘(𝐷 ↾
((Base‘𝑇) ×
(Base‘𝑇)))))) |
66 | 56, 62, 65 | sylanbrc 583 |
. . 3
⊢ ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → 𝑇 ∈ MetSp) |
67 | | simpl 483 |
. . . . . . 7
⊢ ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → 𝑁:𝑋⟶ℝ) |
68 | 8, 2, 4 | tngnm 23815 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑁:𝑋⟶ℝ) → 𝑁 = (norm‘𝑇)) |
69 | 58, 67, 68 | syl2anc 584 |
. . . . . 6
⊢ ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → 𝑁 = (norm‘𝑇)) |
70 | 7, 9 | eqtr3d 2780 |
. . . . . . . 8
⊢ (𝑁 ∈ V →
(Base‘𝐺) =
(Base‘𝑇)) |
71 | 70, 11 | grpsubpropd 18680 |
. . . . . . 7
⊢ (𝑁 ∈ V →
(-g‘𝐺) =
(-g‘𝑇)) |
72 | 47, 71 | syl 17 |
. . . . . 6
⊢ ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → (-g‘𝐺) = (-g‘𝑇)) |
73 | 69, 72 | coeq12d 5773 |
. . . . 5
⊢ ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → (𝑁 ∘ (-g‘𝐺)) = ((norm‘𝑇) ∘
(-g‘𝑇))) |
74 | 47, 29 | syl 17 |
. . . . 5
⊢ ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → (𝑁 ∘ (-g‘𝐺)) = (dist‘𝑇)) |
75 | 73, 74 | eqtr3d 2780 |
. . . 4
⊢ ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → ((norm‘𝑇) ∘ (-g‘𝑇)) = (dist‘𝑇)) |
76 | | eqimss 3977 |
. . . 4
⊢
(((norm‘𝑇)
∘ (-g‘𝑇)) = (dist‘𝑇) → ((norm‘𝑇) ∘ (-g‘𝑇)) ⊆ (dist‘𝑇)) |
77 | 75, 76 | syl 17 |
. . 3
⊢ ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → ((norm‘𝑇) ∘ (-g‘𝑇)) ⊆ (dist‘𝑇)) |
78 | | eqid 2738 |
. . . 4
⊢
(norm‘𝑇) =
(norm‘𝑇) |
79 | | eqid 2738 |
. . . 4
⊢
(-g‘𝑇) = (-g‘𝑇) |
80 | | eqid 2738 |
. . . 4
⊢
(dist‘𝑇) =
(dist‘𝑇) |
81 | 78, 79, 80 | isngp 23752 |
. . 3
⊢ (𝑇 ∈ NrmGrp ↔ (𝑇 ∈ Grp ∧ 𝑇 ∈ MetSp ∧
((norm‘𝑇) ∘
(-g‘𝑇))
⊆ (dist‘𝑇))) |
82 | 45, 66, 77, 81 | syl3anbrc 1342 |
. 2
⊢ ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → 𝑇 ∈ NrmGrp) |
83 | 43, 82 | impbida 798 |
1
⊢ (𝑁:𝑋⟶ℝ → (𝑇 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋)))) |