MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tngngp2 Structured version   Visualization version   GIF version

Theorem tngngp2 24016
Description: A norm turns a group into a normed group iff the generated metric is in fact a metric. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
tngngp2.t 𝑇 = (𝐺 toNrmGrp 𝑁)
tngngp2.x 𝑋 = (Base‘𝐺)
tngngp2.d 𝐷 = (dist‘𝑇)
Assertion
Ref Expression
tngngp2 (𝑁:𝑋⟶ℝ → (𝑇 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))))

Proof of Theorem tngngp2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ngpgrp 23955 . . . . 5 (𝑇 ∈ NrmGrp → 𝑇 ∈ Grp)
2 tngngp2.x . . . . . . . 8 𝑋 = (Base‘𝐺)
32fvexi 6856 . . . . . . 7 𝑋 ∈ V
4 reex 11142 . . . . . . 7 ℝ ∈ V
5 fex2 7870 . . . . . . 7 ((𝑁:𝑋⟶ℝ ∧ 𝑋 ∈ V ∧ ℝ ∈ V) → 𝑁 ∈ V)
63, 4, 5mp3an23 1453 . . . . . 6 (𝑁:𝑋⟶ℝ → 𝑁 ∈ V)
72a1i 11 . . . . . . 7 (𝑁 ∈ V → 𝑋 = (Base‘𝐺))
8 tngngp2.t . . . . . . . 8 𝑇 = (𝐺 toNrmGrp 𝑁)
98, 2tngbas 23998 . . . . . . 7 (𝑁 ∈ V → 𝑋 = (Base‘𝑇))
10 eqid 2736 . . . . . . . . 9 (+g𝐺) = (+g𝐺)
118, 10tngplusg 24000 . . . . . . . 8 (𝑁 ∈ V → (+g𝐺) = (+g𝑇))
1211oveqdr 7385 . . . . . . 7 ((𝑁 ∈ V ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝑇)𝑦))
137, 9, 12grppropd 18765 . . . . . 6 (𝑁 ∈ V → (𝐺 ∈ Grp ↔ 𝑇 ∈ Grp))
146, 13syl 17 . . . . 5 (𝑁:𝑋⟶ℝ → (𝐺 ∈ Grp ↔ 𝑇 ∈ Grp))
151, 14syl5ibr 245 . . . 4 (𝑁:𝑋⟶ℝ → (𝑇 ∈ NrmGrp → 𝐺 ∈ Grp))
1615imp 407 . . 3 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → 𝐺 ∈ Grp)
17 ngpms 23956 . . . . . 6 (𝑇 ∈ NrmGrp → 𝑇 ∈ MetSp)
1817adantl 482 . . . . 5 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → 𝑇 ∈ MetSp)
19 eqid 2736 . . . . . 6 (Base‘𝑇) = (Base‘𝑇)
20 tngngp2.d . . . . . 6 𝐷 = (dist‘𝑇)
2119, 20msmet2 23813 . . . . 5 (𝑇 ∈ MetSp → (𝐷 ↾ ((Base‘𝑇) × (Base‘𝑇))) ∈ (Met‘(Base‘𝑇)))
2218, 21syl 17 . . . 4 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → (𝐷 ↾ ((Base‘𝑇) × (Base‘𝑇))) ∈ (Met‘(Base‘𝑇)))
23 eqid 2736 . . . . . . . . . 10 (-g𝐺) = (-g𝐺)
242, 23grpsubf 18826 . . . . . . . . 9 (𝐺 ∈ Grp → (-g𝐺):(𝑋 × 𝑋)⟶𝑋)
2516, 24syl 17 . . . . . . . 8 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → (-g𝐺):(𝑋 × 𝑋)⟶𝑋)
26 fco 6692 . . . . . . . 8 ((𝑁:𝑋⟶ℝ ∧ (-g𝐺):(𝑋 × 𝑋)⟶𝑋) → (𝑁 ∘ (-g𝐺)):(𝑋 × 𝑋)⟶ℝ)
2725, 26syldan 591 . . . . . . 7 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → (𝑁 ∘ (-g𝐺)):(𝑋 × 𝑋)⟶ℝ)
286adantr 481 . . . . . . . . . 10 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → 𝑁 ∈ V)
298, 23tngds 24011 . . . . . . . . . 10 (𝑁 ∈ V → (𝑁 ∘ (-g𝐺)) = (dist‘𝑇))
3028, 29syl 17 . . . . . . . . 9 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → (𝑁 ∘ (-g𝐺)) = (dist‘𝑇))
3120, 30eqtr4id 2795 . . . . . . . 8 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → 𝐷 = (𝑁 ∘ (-g𝐺)))
3231feq1d 6653 . . . . . . 7 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → (𝐷:(𝑋 × 𝑋)⟶ℝ ↔ (𝑁 ∘ (-g𝐺)):(𝑋 × 𝑋)⟶ℝ))
3327, 32mpbird 256 . . . . . 6 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → 𝐷:(𝑋 × 𝑋)⟶ℝ)
34 ffn 6668 . . . . . 6 (𝐷:(𝑋 × 𝑋)⟶ℝ → 𝐷 Fn (𝑋 × 𝑋))
35 fnresdm 6620 . . . . . 6 (𝐷 Fn (𝑋 × 𝑋) → (𝐷 ↾ (𝑋 × 𝑋)) = 𝐷)
3633, 34, 353syl 18 . . . . 5 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → (𝐷 ↾ (𝑋 × 𝑋)) = 𝐷)
3728, 9syl 17 . . . . . . 7 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → 𝑋 = (Base‘𝑇))
3837sqxpeqd 5665 . . . . . 6 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → (𝑋 × 𝑋) = ((Base‘𝑇) × (Base‘𝑇)))
3938reseq2d 5937 . . . . 5 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → (𝐷 ↾ (𝑋 × 𝑋)) = (𝐷 ↾ ((Base‘𝑇) × (Base‘𝑇))))
4036, 39eqtr3d 2778 . . . 4 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → 𝐷 = (𝐷 ↾ ((Base‘𝑇) × (Base‘𝑇))))
4137fveq2d 6846 . . . 4 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → (Met‘𝑋) = (Met‘(Base‘𝑇)))
4222, 40, 413eltr4d 2853 . . 3 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → 𝐷 ∈ (Met‘𝑋))
4316, 42jca 512 . 2 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋)))
4414biimpa 477 . . . 4 ((𝑁:𝑋⟶ℝ ∧ 𝐺 ∈ Grp) → 𝑇 ∈ Grp)
4544adantrr 715 . . 3 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → 𝑇 ∈ Grp)
46 simprr 771 . . . . . . . 8 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → 𝐷 ∈ (Met‘𝑋))
476adantr 481 . . . . . . . . . 10 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → 𝑁 ∈ V)
4847, 9syl 17 . . . . . . . . 9 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → 𝑋 = (Base‘𝑇))
4948fveq2d 6846 . . . . . . . 8 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → (Met‘𝑋) = (Met‘(Base‘𝑇)))
5046, 49eleqtrd 2840 . . . . . . 7 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → 𝐷 ∈ (Met‘(Base‘𝑇)))
51 metf 23683 . . . . . . 7 (𝐷 ∈ (Met‘(Base‘𝑇)) → 𝐷:((Base‘𝑇) × (Base‘𝑇))⟶ℝ)
5250, 51syl 17 . . . . . 6 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → 𝐷:((Base‘𝑇) × (Base‘𝑇))⟶ℝ)
53 ffn 6668 . . . . . 6 (𝐷:((Base‘𝑇) × (Base‘𝑇))⟶ℝ → 𝐷 Fn ((Base‘𝑇) × (Base‘𝑇)))
54 fnresdm 6620 . . . . . 6 (𝐷 Fn ((Base‘𝑇) × (Base‘𝑇)) → (𝐷 ↾ ((Base‘𝑇) × (Base‘𝑇))) = 𝐷)
5552, 53, 543syl 18 . . . . 5 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → (𝐷 ↾ ((Base‘𝑇) × (Base‘𝑇))) = 𝐷)
5655, 50eqeltrd 2838 . . . 4 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → (𝐷 ↾ ((Base‘𝑇) × (Base‘𝑇))) ∈ (Met‘(Base‘𝑇)))
5755fveq2d 6846 . . . . 5 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → (MetOpen‘(𝐷 ↾ ((Base‘𝑇) × (Base‘𝑇)))) = (MetOpen‘𝐷))
58 simprl 769 . . . . . 6 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → 𝐺 ∈ Grp)
59 eqid 2736 . . . . . . 7 (MetOpen‘𝐷) = (MetOpen‘𝐷)
608, 20, 59tngtopn 24014 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑁 ∈ V) → (MetOpen‘𝐷) = (TopOpen‘𝑇))
6158, 47, 60syl2anc 584 . . . . 5 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → (MetOpen‘𝐷) = (TopOpen‘𝑇))
6257, 61eqtr2d 2777 . . . 4 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → (TopOpen‘𝑇) = (MetOpen‘(𝐷 ↾ ((Base‘𝑇) × (Base‘𝑇)))))
63 eqid 2736 . . . . 5 (TopOpen‘𝑇) = (TopOpen‘𝑇)
6420reseq1i 5933 . . . . 5 (𝐷 ↾ ((Base‘𝑇) × (Base‘𝑇))) = ((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))
6563, 19, 64isms2 23803 . . . 4 (𝑇 ∈ MetSp ↔ ((𝐷 ↾ ((Base‘𝑇) × (Base‘𝑇))) ∈ (Met‘(Base‘𝑇)) ∧ (TopOpen‘𝑇) = (MetOpen‘(𝐷 ↾ ((Base‘𝑇) × (Base‘𝑇))))))
6656, 62, 65sylanbrc 583 . . 3 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → 𝑇 ∈ MetSp)
67 simpl 483 . . . . . . 7 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → 𝑁:𝑋⟶ℝ)
688, 2, 4tngnm 24015 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑁:𝑋⟶ℝ) → 𝑁 = (norm‘𝑇))
6958, 67, 68syl2anc 584 . . . . . 6 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → 𝑁 = (norm‘𝑇))
707, 9eqtr3d 2778 . . . . . . . 8 (𝑁 ∈ V → (Base‘𝐺) = (Base‘𝑇))
7170, 11grpsubpropd 18852 . . . . . . 7 (𝑁 ∈ V → (-g𝐺) = (-g𝑇))
7247, 71syl 17 . . . . . 6 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → (-g𝐺) = (-g𝑇))
7369, 72coeq12d 5820 . . . . 5 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → (𝑁 ∘ (-g𝐺)) = ((norm‘𝑇) ∘ (-g𝑇)))
7447, 29syl 17 . . . . 5 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → (𝑁 ∘ (-g𝐺)) = (dist‘𝑇))
7573, 74eqtr3d 2778 . . . 4 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → ((norm‘𝑇) ∘ (-g𝑇)) = (dist‘𝑇))
76 eqimss 4000 . . . 4 (((norm‘𝑇) ∘ (-g𝑇)) = (dist‘𝑇) → ((norm‘𝑇) ∘ (-g𝑇)) ⊆ (dist‘𝑇))
7775, 76syl 17 . . 3 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → ((norm‘𝑇) ∘ (-g𝑇)) ⊆ (dist‘𝑇))
78 eqid 2736 . . . 4 (norm‘𝑇) = (norm‘𝑇)
79 eqid 2736 . . . 4 (-g𝑇) = (-g𝑇)
80 eqid 2736 . . . 4 (dist‘𝑇) = (dist‘𝑇)
8178, 79, 80isngp 23952 . . 3 (𝑇 ∈ NrmGrp ↔ (𝑇 ∈ Grp ∧ 𝑇 ∈ MetSp ∧ ((norm‘𝑇) ∘ (-g𝑇)) ⊆ (dist‘𝑇)))
8245, 66, 77, 81syl3anbrc 1343 . 2 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → 𝑇 ∈ NrmGrp)
8343, 82impbida 799 1 (𝑁:𝑋⟶ℝ → (𝑇 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  Vcvv 3445  wss 3910   × cxp 5631  cres 5635  ccom 5637   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  cr 11050  Basecbs 17083  +gcplusg 17133  distcds 17142  TopOpenctopn 17303  Grpcgrp 18748  -gcsg 18750  Metcmet 20782  MetOpencmopn 20786  MetSpcms 23671  normcnm 23932  NrmGrpcngp 23933   toNrmGrp ctng 23934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-plusg 17146  df-tset 17152  df-ds 17155  df-rest 17304  df-topn 17305  df-0g 17323  df-topgen 17325  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-grp 18751  df-minusg 18752  df-sbg 18753  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-xms 23673  df-ms 23674  df-nm 23938  df-ngp 23939  df-tng 23940
This theorem is referenced by:  tngngpd  24017  tngngp  24018  nrmtngnrm  24022  tngngpim  24023  tngnrg  24038
  Copyright terms: Public domain W3C validator