MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tngngp2 Structured version   Visualization version   GIF version

Theorem tngngp2 24694
Description: A norm turns a group into a normed group iff the generated metric is in fact a metric. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
tngngp2.t 𝑇 = (𝐺 toNrmGrp 𝑁)
tngngp2.x 𝑋 = (Base‘𝐺)
tngngp2.d 𝐷 = (dist‘𝑇)
Assertion
Ref Expression
tngngp2 (𝑁:𝑋⟶ℝ → (𝑇 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))))

Proof of Theorem tngngp2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ngpgrp 24633 . . . . 5 (𝑇 ∈ NrmGrp → 𝑇 ∈ Grp)
2 tngngp2.x . . . . . . . 8 𝑋 = (Base‘𝐺)
32fvexi 6934 . . . . . . 7 𝑋 ∈ V
4 reex 11275 . . . . . . 7 ℝ ∈ V
5 fex2 7974 . . . . . . 7 ((𝑁:𝑋⟶ℝ ∧ 𝑋 ∈ V ∧ ℝ ∈ V) → 𝑁 ∈ V)
63, 4, 5mp3an23 1453 . . . . . 6 (𝑁:𝑋⟶ℝ → 𝑁 ∈ V)
72a1i 11 . . . . . . 7 (𝑁 ∈ V → 𝑋 = (Base‘𝐺))
8 tngngp2.t . . . . . . . 8 𝑇 = (𝐺 toNrmGrp 𝑁)
98, 2tngbas 24676 . . . . . . 7 (𝑁 ∈ V → 𝑋 = (Base‘𝑇))
10 eqid 2740 . . . . . . . . 9 (+g𝐺) = (+g𝐺)
118, 10tngplusg 24678 . . . . . . . 8 (𝑁 ∈ V → (+g𝐺) = (+g𝑇))
1211oveqdr 7476 . . . . . . 7 ((𝑁 ∈ V ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝑇)𝑦))
137, 9, 12grppropd 18991 . . . . . 6 (𝑁 ∈ V → (𝐺 ∈ Grp ↔ 𝑇 ∈ Grp))
146, 13syl 17 . . . . 5 (𝑁:𝑋⟶ℝ → (𝐺 ∈ Grp ↔ 𝑇 ∈ Grp))
151, 14imbitrrid 246 . . . 4 (𝑁:𝑋⟶ℝ → (𝑇 ∈ NrmGrp → 𝐺 ∈ Grp))
1615imp 406 . . 3 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → 𝐺 ∈ Grp)
17 ngpms 24634 . . . . . 6 (𝑇 ∈ NrmGrp → 𝑇 ∈ MetSp)
1817adantl 481 . . . . 5 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → 𝑇 ∈ MetSp)
19 eqid 2740 . . . . . 6 (Base‘𝑇) = (Base‘𝑇)
20 tngngp2.d . . . . . 6 𝐷 = (dist‘𝑇)
2119, 20msmet2 24491 . . . . 5 (𝑇 ∈ MetSp → (𝐷 ↾ ((Base‘𝑇) × (Base‘𝑇))) ∈ (Met‘(Base‘𝑇)))
2218, 21syl 17 . . . 4 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → (𝐷 ↾ ((Base‘𝑇) × (Base‘𝑇))) ∈ (Met‘(Base‘𝑇)))
23 eqid 2740 . . . . . . . . . 10 (-g𝐺) = (-g𝐺)
242, 23grpsubf 19059 . . . . . . . . 9 (𝐺 ∈ Grp → (-g𝐺):(𝑋 × 𝑋)⟶𝑋)
2516, 24syl 17 . . . . . . . 8 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → (-g𝐺):(𝑋 × 𝑋)⟶𝑋)
26 fco 6771 . . . . . . . 8 ((𝑁:𝑋⟶ℝ ∧ (-g𝐺):(𝑋 × 𝑋)⟶𝑋) → (𝑁 ∘ (-g𝐺)):(𝑋 × 𝑋)⟶ℝ)
2725, 26syldan 590 . . . . . . 7 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → (𝑁 ∘ (-g𝐺)):(𝑋 × 𝑋)⟶ℝ)
286adantr 480 . . . . . . . . . 10 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → 𝑁 ∈ V)
298, 23tngds 24689 . . . . . . . . . 10 (𝑁 ∈ V → (𝑁 ∘ (-g𝐺)) = (dist‘𝑇))
3028, 29syl 17 . . . . . . . . 9 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → (𝑁 ∘ (-g𝐺)) = (dist‘𝑇))
3120, 30eqtr4id 2799 . . . . . . . 8 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → 𝐷 = (𝑁 ∘ (-g𝐺)))
3231feq1d 6732 . . . . . . 7 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → (𝐷:(𝑋 × 𝑋)⟶ℝ ↔ (𝑁 ∘ (-g𝐺)):(𝑋 × 𝑋)⟶ℝ))
3327, 32mpbird 257 . . . . . 6 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → 𝐷:(𝑋 × 𝑋)⟶ℝ)
34 ffn 6747 . . . . . 6 (𝐷:(𝑋 × 𝑋)⟶ℝ → 𝐷 Fn (𝑋 × 𝑋))
35 fnresdm 6699 . . . . . 6 (𝐷 Fn (𝑋 × 𝑋) → (𝐷 ↾ (𝑋 × 𝑋)) = 𝐷)
3633, 34, 353syl 18 . . . . 5 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → (𝐷 ↾ (𝑋 × 𝑋)) = 𝐷)
3728, 9syl 17 . . . . . . 7 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → 𝑋 = (Base‘𝑇))
3837sqxpeqd 5732 . . . . . 6 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → (𝑋 × 𝑋) = ((Base‘𝑇) × (Base‘𝑇)))
3938reseq2d 6009 . . . . 5 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → (𝐷 ↾ (𝑋 × 𝑋)) = (𝐷 ↾ ((Base‘𝑇) × (Base‘𝑇))))
4036, 39eqtr3d 2782 . . . 4 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → 𝐷 = (𝐷 ↾ ((Base‘𝑇) × (Base‘𝑇))))
4137fveq2d 6924 . . . 4 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → (Met‘𝑋) = (Met‘(Base‘𝑇)))
4222, 40, 413eltr4d 2859 . . 3 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → 𝐷 ∈ (Met‘𝑋))
4316, 42jca 511 . 2 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋)))
4414biimpa 476 . . . 4 ((𝑁:𝑋⟶ℝ ∧ 𝐺 ∈ Grp) → 𝑇 ∈ Grp)
4544adantrr 716 . . 3 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → 𝑇 ∈ Grp)
46 simprr 772 . . . . . . 7 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → 𝐷 ∈ (Met‘𝑋))
476adantr 480 . . . . . . . . 9 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → 𝑁 ∈ V)
4847, 9syl 17 . . . . . . . 8 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → 𝑋 = (Base‘𝑇))
4948fveq2d 6924 . . . . . . 7 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → (Met‘𝑋) = (Met‘(Base‘𝑇)))
5046, 49eleqtrd 2846 . . . . . 6 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → 𝐷 ∈ (Met‘(Base‘𝑇)))
51 metf 24361 . . . . . 6 (𝐷 ∈ (Met‘(Base‘𝑇)) → 𝐷:((Base‘𝑇) × (Base‘𝑇))⟶ℝ)
52 ffn 6747 . . . . . 6 (𝐷:((Base‘𝑇) × (Base‘𝑇))⟶ℝ → 𝐷 Fn ((Base‘𝑇) × (Base‘𝑇)))
53 fnresdm 6699 . . . . . 6 (𝐷 Fn ((Base‘𝑇) × (Base‘𝑇)) → (𝐷 ↾ ((Base‘𝑇) × (Base‘𝑇))) = 𝐷)
5450, 51, 52, 534syl 19 . . . . 5 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → (𝐷 ↾ ((Base‘𝑇) × (Base‘𝑇))) = 𝐷)
5554, 50eqeltrd 2844 . . . 4 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → (𝐷 ↾ ((Base‘𝑇) × (Base‘𝑇))) ∈ (Met‘(Base‘𝑇)))
5654fveq2d 6924 . . . . 5 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → (MetOpen‘(𝐷 ↾ ((Base‘𝑇) × (Base‘𝑇)))) = (MetOpen‘𝐷))
57 simprl 770 . . . . . 6 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → 𝐺 ∈ Grp)
58 eqid 2740 . . . . . . 7 (MetOpen‘𝐷) = (MetOpen‘𝐷)
598, 20, 58tngtopn 24692 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑁 ∈ V) → (MetOpen‘𝐷) = (TopOpen‘𝑇))
6057, 47, 59syl2anc 583 . . . . 5 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → (MetOpen‘𝐷) = (TopOpen‘𝑇))
6156, 60eqtr2d 2781 . . . 4 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → (TopOpen‘𝑇) = (MetOpen‘(𝐷 ↾ ((Base‘𝑇) × (Base‘𝑇)))))
62 eqid 2740 . . . . 5 (TopOpen‘𝑇) = (TopOpen‘𝑇)
6320reseq1i 6005 . . . . 5 (𝐷 ↾ ((Base‘𝑇) × (Base‘𝑇))) = ((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))
6462, 19, 63isms2 24481 . . . 4 (𝑇 ∈ MetSp ↔ ((𝐷 ↾ ((Base‘𝑇) × (Base‘𝑇))) ∈ (Met‘(Base‘𝑇)) ∧ (TopOpen‘𝑇) = (MetOpen‘(𝐷 ↾ ((Base‘𝑇) × (Base‘𝑇))))))
6555, 61, 64sylanbrc 582 . . 3 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → 𝑇 ∈ MetSp)
66 simpl 482 . . . . . . 7 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → 𝑁:𝑋⟶ℝ)
678, 2, 4tngnm 24693 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑁:𝑋⟶ℝ) → 𝑁 = (norm‘𝑇))
6857, 66, 67syl2anc 583 . . . . . 6 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → 𝑁 = (norm‘𝑇))
697, 9eqtr3d 2782 . . . . . . . 8 (𝑁 ∈ V → (Base‘𝐺) = (Base‘𝑇))
7069, 11grpsubpropd 19085 . . . . . . 7 (𝑁 ∈ V → (-g𝐺) = (-g𝑇))
7147, 70syl 17 . . . . . 6 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → (-g𝐺) = (-g𝑇))
7268, 71coeq12d 5889 . . . . 5 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → (𝑁 ∘ (-g𝐺)) = ((norm‘𝑇) ∘ (-g𝑇)))
7347, 29syl 17 . . . . 5 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → (𝑁 ∘ (-g𝐺)) = (dist‘𝑇))
7472, 73eqtr3d 2782 . . . 4 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → ((norm‘𝑇) ∘ (-g𝑇)) = (dist‘𝑇))
75 eqimss 4067 . . . 4 (((norm‘𝑇) ∘ (-g𝑇)) = (dist‘𝑇) → ((norm‘𝑇) ∘ (-g𝑇)) ⊆ (dist‘𝑇))
7674, 75syl 17 . . 3 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → ((norm‘𝑇) ∘ (-g𝑇)) ⊆ (dist‘𝑇))
77 eqid 2740 . . . 4 (norm‘𝑇) = (norm‘𝑇)
78 eqid 2740 . . . 4 (-g𝑇) = (-g𝑇)
79 eqid 2740 . . . 4 (dist‘𝑇) = (dist‘𝑇)
8077, 78, 79isngp 24630 . . 3 (𝑇 ∈ NrmGrp ↔ (𝑇 ∈ Grp ∧ 𝑇 ∈ MetSp ∧ ((norm‘𝑇) ∘ (-g𝑇)) ⊆ (dist‘𝑇)))
8145, 65, 76, 80syl3anbrc 1343 . 2 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → 𝑇 ∈ NrmGrp)
8243, 81impbida 800 1 (𝑁:𝑋⟶ℝ → (𝑇 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  wss 3976   × cxp 5698  cres 5702  ccom 5704   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  cr 11183  Basecbs 17258  +gcplusg 17311  distcds 17320  TopOpenctopn 17481  Grpcgrp 18973  -gcsg 18975  Metcmet 21373  MetOpencmopn 21377  MetSpcms 24349  normcnm 24610  NrmGrpcngp 24611   toNrmGrp ctng 24612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-tset 17330  df-ds 17333  df-rest 17482  df-topn 17483  df-0g 17501  df-topgen 17503  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-xms 24351  df-ms 24352  df-nm 24616  df-ngp 24617  df-tng 24618
This theorem is referenced by:  tngngpd  24695  tngngp  24696  nrmtngnrm  24700  tngngpim  24701  tngnrg  24716
  Copyright terms: Public domain W3C validator