![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ngpms | Structured version Visualization version GIF version |
Description: A normed group is a metric space. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
ngpms | ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ (norm‘𝐺) = (norm‘𝐺) | |
2 | eqid 2740 | . . 3 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
3 | eqid 2740 | . . 3 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
4 | 1, 2, 3 | isngp 24630 | . 2 ⊢ (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ((norm‘𝐺) ∘ (-g‘𝐺)) ⊆ (dist‘𝐺))) |
5 | 4 | simp2bi 1146 | 1 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ⊆ wss 3976 ∘ ccom 5704 ‘cfv 6573 distcds 17320 Grpcgrp 18973 -gcsg 18975 MetSpcms 24349 normcnm 24610 NrmGrpcngp 24611 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-co 5709 df-iota 6525 df-fv 6581 df-ngp 24617 |
This theorem is referenced by: ngpxms 24635 ngptps 24636 ngpmet 24637 isngp4 24646 nmmtri 24656 nmrtri 24658 subgngp 24669 ngptgp 24670 tngngp2 24694 nlmvscnlem2 24727 nlmvscnlem1 24728 nlmvscn 24729 nrginvrcn 24734 nghmcn 24787 nmcn 24885 nmhmcn 25172 ipcnlem2 25297 ipcnlem1 25298 ipcn 25299 nglmle 25355 cssbn 25428 minveclem2 25479 minveclem3b 25481 minveclem3 25482 minveclem4 25485 minveclem7 25488 |
Copyright terms: Public domain | W3C validator |