![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ngpms | Structured version Visualization version GIF version |
Description: A normed group is a metric space. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
ngpms | ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2731 | . . 3 ⊢ (norm‘𝐺) = (norm‘𝐺) | |
2 | eqid 2731 | . . 3 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
3 | eqid 2731 | . . 3 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
4 | 1, 2, 3 | isngp 24425 | . 2 ⊢ (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ((norm‘𝐺) ∘ (-g‘𝐺)) ⊆ (dist‘𝐺))) |
5 | 4 | simp2bi 1145 | 1 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 ⊆ wss 3948 ∘ ccom 5680 ‘cfv 6543 distcds 17213 Grpcgrp 18861 -gcsg 18863 MetSpcms 24144 normcnm 24405 NrmGrpcngp 24406 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-co 5685 df-iota 6495 df-fv 6551 df-ngp 24412 |
This theorem is referenced by: ngpxms 24430 ngptps 24431 ngpmet 24432 isngp4 24441 nmmtri 24451 nmrtri 24453 subgngp 24464 ngptgp 24465 tngngp2 24489 nlmvscnlem2 24522 nlmvscnlem1 24523 nlmvscn 24524 nrginvrcn 24529 nghmcn 24582 nmcn 24680 nmhmcn 24967 ipcnlem2 25092 ipcnlem1 25093 ipcn 25094 nglmle 25150 cssbn 25223 minveclem2 25274 minveclem3b 25276 minveclem3 25277 minveclem4 25280 minveclem7 25283 |
Copyright terms: Public domain | W3C validator |