Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ngpms | Structured version Visualization version GIF version |
Description: A normed group is a metric space. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
ngpms | ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (norm‘𝐺) = (norm‘𝐺) | |
2 | eqid 2738 | . . 3 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
3 | eqid 2738 | . . 3 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
4 | 1, 2, 3 | isngp 23658 | . 2 ⊢ (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ((norm‘𝐺) ∘ (-g‘𝐺)) ⊆ (dist‘𝐺))) |
5 | 4 | simp2bi 1144 | 1 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ⊆ wss 3883 ∘ ccom 5584 ‘cfv 6418 distcds 16897 Grpcgrp 18492 -gcsg 18494 MetSpcms 23379 normcnm 23638 NrmGrpcngp 23639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-co 5589 df-iota 6376 df-fv 6426 df-ngp 23645 |
This theorem is referenced by: ngpxms 23663 ngptps 23664 ngpmet 23665 isngp4 23674 nmmtri 23684 nmrtri 23686 subgngp 23697 ngptgp 23698 tngngp2 23722 nlmvscnlem2 23755 nlmvscnlem1 23756 nlmvscn 23757 nrginvrcn 23762 nghmcn 23815 nmcn 23913 nmhmcn 24189 ipcnlem2 24313 ipcnlem1 24314 ipcn 24315 nglmle 24371 cssbn 24444 minveclem2 24495 minveclem3b 24497 minveclem3 24498 minveclem4 24501 minveclem7 24504 |
Copyright terms: Public domain | W3C validator |