| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ngpms | Structured version Visualization version GIF version | ||
| Description: A normed group is a metric space. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| ngpms | ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (norm‘𝐺) = (norm‘𝐺) | |
| 2 | eqid 2730 | . . 3 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
| 3 | eqid 2730 | . . 3 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
| 4 | 1, 2, 3 | isngp 24491 | . 2 ⊢ (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ((norm‘𝐺) ∘ (-g‘𝐺)) ⊆ (dist‘𝐺))) |
| 5 | 4 | simp2bi 1146 | 1 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3917 ∘ ccom 5645 ‘cfv 6514 distcds 17236 Grpcgrp 18872 -gcsg 18874 MetSpcms 24213 normcnm 24471 NrmGrpcngp 24472 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-co 5650 df-iota 6467 df-fv 6522 df-ngp 24478 |
| This theorem is referenced by: ngpxms 24496 ngptps 24497 ngpmet 24498 isngp4 24507 nmmtri 24517 nmrtri 24519 subgngp 24530 ngptgp 24531 tngngp2 24547 nlmvscnlem2 24580 nlmvscnlem1 24581 nlmvscn 24582 nrginvrcn 24587 nghmcn 24640 nmcn 24740 nmhmcn 25027 ipcnlem2 25151 ipcnlem1 25152 ipcn 25153 nglmle 25209 cssbn 25282 minveclem2 25333 minveclem3b 25335 minveclem3 25336 minveclem4 25339 minveclem7 25342 |
| Copyright terms: Public domain | W3C validator |