| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ngpms | Structured version Visualization version GIF version | ||
| Description: A normed group is a metric space. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| ngpms | ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (norm‘𝐺) = (norm‘𝐺) | |
| 2 | eqid 2729 | . . 3 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
| 3 | eqid 2729 | . . 3 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
| 4 | 1, 2, 3 | isngp 24484 | . 2 ⊢ (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ((norm‘𝐺) ∘ (-g‘𝐺)) ⊆ (dist‘𝐺))) |
| 5 | 4 | simp2bi 1146 | 1 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3914 ∘ ccom 5642 ‘cfv 6511 distcds 17229 Grpcgrp 18865 -gcsg 18867 MetSpcms 24206 normcnm 24464 NrmGrpcngp 24465 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-co 5647 df-iota 6464 df-fv 6519 df-ngp 24471 |
| This theorem is referenced by: ngpxms 24489 ngptps 24490 ngpmet 24491 isngp4 24500 nmmtri 24510 nmrtri 24512 subgngp 24523 ngptgp 24524 tngngp2 24540 nlmvscnlem2 24573 nlmvscnlem1 24574 nlmvscn 24575 nrginvrcn 24580 nghmcn 24633 nmcn 24733 nmhmcn 25020 ipcnlem2 25144 ipcnlem1 25145 ipcn 25146 nglmle 25202 cssbn 25275 minveclem2 25326 minveclem3b 25328 minveclem3 25329 minveclem4 25332 minveclem7 25335 |
| Copyright terms: Public domain | W3C validator |