| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ngpms | Structured version Visualization version GIF version | ||
| Description: A normed group is a metric space. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| ngpms | ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . 3 ⊢ (norm‘𝐺) = (norm‘𝐺) | |
| 2 | eqid 2735 | . . 3 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
| 3 | eqid 2735 | . . 3 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
| 4 | 1, 2, 3 | isngp 24535 | . 2 ⊢ (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ((norm‘𝐺) ∘ (-g‘𝐺)) ⊆ (dist‘𝐺))) |
| 5 | 4 | simp2bi 1146 | 1 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ⊆ wss 3926 ∘ ccom 5658 ‘cfv 6531 distcds 17280 Grpcgrp 18916 -gcsg 18918 MetSpcms 24257 normcnm 24515 NrmGrpcngp 24516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-co 5663 df-iota 6484 df-fv 6539 df-ngp 24522 |
| This theorem is referenced by: ngpxms 24540 ngptps 24541 ngpmet 24542 isngp4 24551 nmmtri 24561 nmrtri 24563 subgngp 24574 ngptgp 24575 tngngp2 24591 nlmvscnlem2 24624 nlmvscnlem1 24625 nlmvscn 24626 nrginvrcn 24631 nghmcn 24684 nmcn 24784 nmhmcn 25071 ipcnlem2 25196 ipcnlem1 25197 ipcn 25198 nglmle 25254 cssbn 25327 minveclem2 25378 minveclem3b 25380 minveclem3 25381 minveclem4 25384 minveclem7 25387 |
| Copyright terms: Public domain | W3C validator |