Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ngpms | Structured version Visualization version GIF version |
Description: A normed group is a metric space. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
ngpms | ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (norm‘𝐺) = (norm‘𝐺) | |
2 | eqid 2738 | . . 3 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
3 | eqid 2738 | . . 3 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
4 | 1, 2, 3 | isngp 23752 | . 2 ⊢ (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ((norm‘𝐺) ∘ (-g‘𝐺)) ⊆ (dist‘𝐺))) |
5 | 4 | simp2bi 1145 | 1 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ⊆ wss 3887 ∘ ccom 5593 ‘cfv 6433 distcds 16971 Grpcgrp 18577 -gcsg 18579 MetSpcms 23471 normcnm 23732 NrmGrpcngp 23733 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-co 5598 df-iota 6391 df-fv 6441 df-ngp 23739 |
This theorem is referenced by: ngpxms 23757 ngptps 23758 ngpmet 23759 isngp4 23768 nmmtri 23778 nmrtri 23780 subgngp 23791 ngptgp 23792 tngngp2 23816 nlmvscnlem2 23849 nlmvscnlem1 23850 nlmvscn 23851 nrginvrcn 23856 nghmcn 23909 nmcn 24007 nmhmcn 24283 ipcnlem2 24408 ipcnlem1 24409 ipcn 24410 nglmle 24466 cssbn 24539 minveclem2 24590 minveclem3b 24592 minveclem3 24593 minveclem4 24596 minveclem7 24599 |
Copyright terms: Public domain | W3C validator |