![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ngpms | Structured version Visualization version GIF version |
Description: A normed group is a metric space. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
ngpms | ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . 3 ⊢ (norm‘𝐺) = (norm‘𝐺) | |
2 | eqid 2735 | . . 3 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
3 | eqid 2735 | . . 3 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
4 | 1, 2, 3 | isngp 24625 | . 2 ⊢ (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ((norm‘𝐺) ∘ (-g‘𝐺)) ⊆ (dist‘𝐺))) |
5 | 4 | simp2bi 1145 | 1 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ⊆ wss 3963 ∘ ccom 5693 ‘cfv 6563 distcds 17307 Grpcgrp 18964 -gcsg 18966 MetSpcms 24344 normcnm 24605 NrmGrpcngp 24606 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-co 5698 df-iota 6516 df-fv 6571 df-ngp 24612 |
This theorem is referenced by: ngpxms 24630 ngptps 24631 ngpmet 24632 isngp4 24641 nmmtri 24651 nmrtri 24653 subgngp 24664 ngptgp 24665 tngngp2 24689 nlmvscnlem2 24722 nlmvscnlem1 24723 nlmvscn 24724 nrginvrcn 24729 nghmcn 24782 nmcn 24880 nmhmcn 25167 ipcnlem2 25292 ipcnlem1 25293 ipcn 25294 nglmle 25350 cssbn 25423 minveclem2 25474 minveclem3b 25476 minveclem3 25477 minveclem4 25480 minveclem7 25483 |
Copyright terms: Public domain | W3C validator |