| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ngpms | Structured version Visualization version GIF version | ||
| Description: A normed group is a metric space. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| ngpms | ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (norm‘𝐺) = (norm‘𝐺) | |
| 2 | eqid 2731 | . . 3 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
| 3 | eqid 2731 | . . 3 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
| 4 | 1, 2, 3 | isngp 24511 | . 2 ⊢ (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ((norm‘𝐺) ∘ (-g‘𝐺)) ⊆ (dist‘𝐺))) |
| 5 | 4 | simp2bi 1146 | 1 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ⊆ wss 3897 ∘ ccom 5618 ‘cfv 6481 distcds 17170 Grpcgrp 18846 -gcsg 18848 MetSpcms 24233 normcnm 24491 NrmGrpcngp 24492 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-co 5623 df-iota 6437 df-fv 6489 df-ngp 24498 |
| This theorem is referenced by: ngpxms 24516 ngptps 24517 ngpmet 24518 isngp4 24527 nmmtri 24537 nmrtri 24539 subgngp 24550 ngptgp 24551 tngngp2 24567 nlmvscnlem2 24600 nlmvscnlem1 24601 nlmvscn 24602 nrginvrcn 24607 nghmcn 24660 nmcn 24760 nmhmcn 25047 ipcnlem2 25171 ipcnlem1 25172 ipcn 25173 nglmle 25229 cssbn 25302 minveclem2 25353 minveclem3b 25355 minveclem3 25356 minveclem4 25359 minveclem7 25362 |
| Copyright terms: Public domain | W3C validator |