| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ngpms | Structured version Visualization version GIF version | ||
| Description: A normed group is a metric space. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| ngpms | ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (norm‘𝐺) = (norm‘𝐺) | |
| 2 | eqid 2729 | . . 3 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
| 3 | eqid 2729 | . . 3 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
| 4 | 1, 2, 3 | isngp 24517 | . 2 ⊢ (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ((norm‘𝐺) ∘ (-g‘𝐺)) ⊆ (dist‘𝐺))) |
| 5 | 4 | simp2bi 1146 | 1 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3911 ∘ ccom 5635 ‘cfv 6499 distcds 17205 Grpcgrp 18847 -gcsg 18849 MetSpcms 24239 normcnm 24497 NrmGrpcngp 24498 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-co 5640 df-iota 6452 df-fv 6507 df-ngp 24504 |
| This theorem is referenced by: ngpxms 24522 ngptps 24523 ngpmet 24524 isngp4 24533 nmmtri 24543 nmrtri 24545 subgngp 24556 ngptgp 24557 tngngp2 24573 nlmvscnlem2 24606 nlmvscnlem1 24607 nlmvscn 24608 nrginvrcn 24613 nghmcn 24666 nmcn 24766 nmhmcn 25053 ipcnlem2 25177 ipcnlem1 25178 ipcn 25179 nglmle 25235 cssbn 25308 minveclem2 25359 minveclem3b 25361 minveclem3 25362 minveclem4 25365 minveclem7 25368 |
| Copyright terms: Public domain | W3C validator |