| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > evennodd | Structured version Visualization version GIF version | ||
| Description: An even number is not an odd number. (Contributed by AV, 16-Jun-2020.) |
| Ref | Expression |
|---|---|
| evennodd | ⊢ (𝑍 ∈ Even → ¬ 𝑍 ∈ Odd ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iseven 47659 | . . . 4 ⊢ (𝑍 ∈ Even ↔ (𝑍 ∈ ℤ ∧ (𝑍 / 2) ∈ ℤ)) | |
| 2 | zeo2 12555 | . . . . . 6 ⊢ (𝑍 ∈ ℤ → ((𝑍 / 2) ∈ ℤ ↔ ¬ ((𝑍 + 1) / 2) ∈ ℤ)) | |
| 3 | 2 | biimpd 229 | . . . . 5 ⊢ (𝑍 ∈ ℤ → ((𝑍 / 2) ∈ ℤ → ¬ ((𝑍 + 1) / 2) ∈ ℤ)) |
| 4 | 3 | imp 406 | . . . 4 ⊢ ((𝑍 ∈ ℤ ∧ (𝑍 / 2) ∈ ℤ) → ¬ ((𝑍 + 1) / 2) ∈ ℤ) |
| 5 | 1, 4 | sylbi 217 | . . 3 ⊢ (𝑍 ∈ Even → ¬ ((𝑍 + 1) / 2) ∈ ℤ) |
| 6 | 5 | olcd 874 | . 2 ⊢ (𝑍 ∈ Even → (¬ 𝑍 ∈ ℤ ∨ ¬ ((𝑍 + 1) / 2) ∈ ℤ)) |
| 7 | isodd 47660 | . . . 4 ⊢ (𝑍 ∈ Odd ↔ (𝑍 ∈ ℤ ∧ ((𝑍 + 1) / 2) ∈ ℤ)) | |
| 8 | 7 | notbii 320 | . . 3 ⊢ (¬ 𝑍 ∈ Odd ↔ ¬ (𝑍 ∈ ℤ ∧ ((𝑍 + 1) / 2) ∈ ℤ)) |
| 9 | ianor 983 | . . 3 ⊢ (¬ (𝑍 ∈ ℤ ∧ ((𝑍 + 1) / 2) ∈ ℤ) ↔ (¬ 𝑍 ∈ ℤ ∨ ¬ ((𝑍 + 1) / 2) ∈ ℤ)) | |
| 10 | 8, 9 | bitri 275 | . 2 ⊢ (¬ 𝑍 ∈ Odd ↔ (¬ 𝑍 ∈ ℤ ∨ ¬ ((𝑍 + 1) / 2) ∈ ℤ)) |
| 11 | 6, 10 | sylibr 234 | 1 ⊢ (𝑍 ∈ Even → ¬ 𝑍 ∈ Odd ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 ∈ wcel 2111 (class class class)co 7341 1c1 11002 + caddc 11004 / cdiv 11769 2c2 12175 ℤcz 12463 Even ceven 47655 Odd codd 47656 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-n0 12377 df-z 12464 df-even 47657 df-odd 47658 |
| This theorem is referenced by: zeo2ALTV 47702 bits0eALTV 47711 odd2prm2 47749 gbowge7 47794 stgoldbwt 47807 sbgoldbwt 47808 bgoldbtbndlem1 47836 |
| Copyright terms: Public domain | W3C validator |