| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > evenz | Structured version Visualization version GIF version | ||
| Description: An even number is an integer. (Contributed by AV, 14-Jun-2020.) |
| Ref | Expression |
|---|---|
| evenz | ⊢ (𝑍 ∈ Even → 𝑍 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iseven 47602 | . 2 ⊢ (𝑍 ∈ Even ↔ (𝑍 ∈ ℤ ∧ (𝑍 / 2) ∈ ℤ)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝑍 ∈ Even → 𝑍 ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 (class class class)co 7369 / cdiv 11811 2c2 12217 ℤcz 12505 Even ceven 47598 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 df-even 47600 |
| This theorem is referenced by: evenm1odd 47613 evenp1odd 47614 bits0eALTV 47654 opeoALTV 47658 omeoALTV 47660 epoo 47677 emoo 47678 epee 47679 emee 47680 evensumeven 47681 evenltle 47691 even3prm2 47693 mogoldbblem 47694 sbgoldbalt 47755 sgoldbeven3prm 47757 mogoldbb 47759 bgoldbachlt 47787 tgblthelfgott 47789 |
| Copyright terms: Public domain | W3C validator |