| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > evenz | Structured version Visualization version GIF version | ||
| Description: An even number is an integer. (Contributed by AV, 14-Jun-2020.) |
| Ref | Expression |
|---|---|
| evenz | ⊢ (𝑍 ∈ Even → 𝑍 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iseven 47659 | . 2 ⊢ (𝑍 ∈ Even ↔ (𝑍 ∈ ℤ ∧ (𝑍 / 2) ∈ ℤ)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝑍 ∈ Even → 𝑍 ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 (class class class)co 7341 / cdiv 11769 2c2 12175 ℤcz 12463 Even ceven 47655 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-iota 6432 df-fv 6484 df-ov 7344 df-even 47657 |
| This theorem is referenced by: evenm1odd 47670 evenp1odd 47671 bits0eALTV 47711 opeoALTV 47715 omeoALTV 47717 epoo 47734 emoo 47735 epee 47736 emee 47737 evensumeven 47738 evenltle 47748 even3prm2 47750 mogoldbblem 47751 sbgoldbalt 47812 sgoldbeven3prm 47814 mogoldbb 47816 bgoldbachlt 47844 tgblthelfgott 47846 |
| Copyright terms: Public domain | W3C validator |