| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > evenz | Structured version Visualization version GIF version | ||
| Description: An even number is an integer. (Contributed by AV, 14-Jun-2020.) |
| Ref | Expression |
|---|---|
| evenz | ⊢ (𝑍 ∈ Even → 𝑍 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iseven 47790 | . 2 ⊢ (𝑍 ∈ Even ↔ (𝑍 ∈ ℤ ∧ (𝑍 / 2) ∈ ℤ)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝑍 ∈ Even → 𝑍 ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 (class class class)co 7355 / cdiv 11785 2c2 12191 ℤcz 12479 Even ceven 47786 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6445 df-fv 6497 df-ov 7358 df-even 47788 |
| This theorem is referenced by: evenm1odd 47801 evenp1odd 47802 bits0eALTV 47842 opeoALTV 47846 omeoALTV 47848 epoo 47865 emoo 47866 epee 47867 emee 47868 evensumeven 47869 evenltle 47879 even3prm2 47881 mogoldbblem 47882 sbgoldbalt 47943 sgoldbeven3prm 47945 mogoldbb 47947 bgoldbachlt 47975 tgblthelfgott 47977 |
| Copyright terms: Public domain | W3C validator |