![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > evenz | Structured version Visualization version GIF version |
Description: An even number is an integer. (Contributed by AV, 14-Jun-2020.) |
Ref | Expression |
---|---|
evenz | ⊢ (𝑍 ∈ Even → 𝑍 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iseven 47502 | . 2 ⊢ (𝑍 ∈ Even ↔ (𝑍 ∈ ℤ ∧ (𝑍 / 2) ∈ ℤ)) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝑍 ∈ Even → 𝑍 ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 (class class class)co 7448 / cdiv 11947 2c2 12348 ℤcz 12639 Even ceven 47498 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-even 47500 |
This theorem is referenced by: evenm1odd 47513 evenp1odd 47514 bits0eALTV 47554 opeoALTV 47558 omeoALTV 47560 epoo 47577 emoo 47578 epee 47579 emee 47580 evensumeven 47581 evenltle 47591 even3prm2 47593 mogoldbblem 47594 sbgoldbalt 47655 sgoldbeven3prm 47657 mogoldbb 47659 bgoldbachlt 47687 tgblthelfgott 47689 |
Copyright terms: Public domain | W3C validator |