| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > evenz | Structured version Visualization version GIF version | ||
| Description: An even number is an integer. (Contributed by AV, 14-Jun-2020.) |
| Ref | Expression |
|---|---|
| evenz | ⊢ (𝑍 ∈ Even → 𝑍 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iseven 47629 | . 2 ⊢ (𝑍 ∈ Even ↔ (𝑍 ∈ ℤ ∧ (𝑍 / 2) ∈ ℤ)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝑍 ∈ Even → 𝑍 ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 (class class class)co 7387 / cdiv 11835 2c2 12241 ℤcz 12529 Even ceven 47625 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-even 47627 |
| This theorem is referenced by: evenm1odd 47640 evenp1odd 47641 bits0eALTV 47681 opeoALTV 47685 omeoALTV 47687 epoo 47704 emoo 47705 epee 47706 emee 47707 evensumeven 47708 evenltle 47718 even3prm2 47720 mogoldbblem 47721 sbgoldbalt 47782 sgoldbeven3prm 47784 mogoldbb 47786 bgoldbachlt 47814 tgblthelfgott 47816 |
| Copyright terms: Public domain | W3C validator |