| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > evenz | Structured version Visualization version GIF version | ||
| Description: An even number is an integer. (Contributed by AV, 14-Jun-2020.) |
| Ref | Expression |
|---|---|
| evenz | ⊢ (𝑍 ∈ Even → 𝑍 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iseven 47633 | . 2 ⊢ (𝑍 ∈ Even ↔ (𝑍 ∈ ℤ ∧ (𝑍 / 2) ∈ ℤ)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝑍 ∈ Even → 𝑍 ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 (class class class)co 7390 / cdiv 11842 2c2 12248 ℤcz 12536 Even ceven 47629 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-even 47631 |
| This theorem is referenced by: evenm1odd 47644 evenp1odd 47645 bits0eALTV 47685 opeoALTV 47689 omeoALTV 47691 epoo 47708 emoo 47709 epee 47710 emee 47711 evensumeven 47712 evenltle 47722 even3prm2 47724 mogoldbblem 47725 sbgoldbalt 47786 sgoldbeven3prm 47788 mogoldbb 47790 bgoldbachlt 47818 tgblthelfgott 47820 |
| Copyright terms: Public domain | W3C validator |