Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > evenz | Structured version Visualization version GIF version |
Description: An even number is an integer. (Contributed by AV, 14-Jun-2020.) |
Ref | Expression |
---|---|
evenz | ⊢ (𝑍 ∈ Even → 𝑍 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iseven 44968 | . 2 ⊢ (𝑍 ∈ Even ↔ (𝑍 ∈ ℤ ∧ (𝑍 / 2) ∈ ℤ)) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝑍 ∈ Even → 𝑍 ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 (class class class)co 7255 / cdiv 11562 2c2 11958 ℤcz 12249 Even ceven 44964 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-even 44966 |
This theorem is referenced by: evenm1odd 44979 evenp1odd 44980 bits0eALTV 45020 opeoALTV 45024 omeoALTV 45026 epoo 45043 emoo 45044 epee 45045 emee 45046 evensumeven 45047 evenltle 45057 even3prm2 45059 mogoldbblem 45060 sbgoldbalt 45121 sgoldbeven3prm 45123 mogoldbb 45125 bgoldbachlt 45153 tgblthelfgott 45155 |
Copyright terms: Public domain | W3C validator |