Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evenz Structured version   Visualization version   GIF version

Theorem evenz 47635
Description: An even number is an integer. (Contributed by AV, 14-Jun-2020.)
Assertion
Ref Expression
evenz (𝑍 ∈ Even → 𝑍 ∈ ℤ)

Proof of Theorem evenz
StepHypRef Expression
1 iseven 47633 . 2 (𝑍 ∈ Even ↔ (𝑍 ∈ ℤ ∧ (𝑍 / 2) ∈ ℤ))
21simplbi 497 1 (𝑍 ∈ Even → 𝑍 ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  (class class class)co 7390   / cdiv 11842  2c2 12248  cz 12536   Even ceven 47629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522  df-ov 7393  df-even 47631
This theorem is referenced by:  evenm1odd  47644  evenp1odd  47645  bits0eALTV  47685  opeoALTV  47689  omeoALTV  47691  epoo  47708  emoo  47709  epee  47710  emee  47711  evensumeven  47712  evenltle  47722  even3prm2  47724  mogoldbblem  47725  sbgoldbalt  47786  sgoldbeven3prm  47788  mogoldbb  47790  bgoldbachlt  47818  tgblthelfgott  47820
  Copyright terms: Public domain W3C validator