Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > evenz | Structured version Visualization version GIF version |
Description: An even number is an integer. (Contributed by AV, 14-Jun-2020.) |
Ref | Expression |
---|---|
evenz | ⊢ (𝑍 ∈ Even → 𝑍 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iseven 45080 | . 2 ⊢ (𝑍 ∈ Even ↔ (𝑍 ∈ ℤ ∧ (𝑍 / 2) ∈ ℤ)) | |
2 | 1 | simplbi 498 | 1 ⊢ (𝑍 ∈ Even → 𝑍 ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 (class class class)co 7275 / cdiv 11632 2c2 12028 ℤcz 12319 Even ceven 45076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 df-even 45078 |
This theorem is referenced by: evenm1odd 45091 evenp1odd 45092 bits0eALTV 45132 opeoALTV 45136 omeoALTV 45138 epoo 45155 emoo 45156 epee 45157 emee 45158 evensumeven 45159 evenltle 45169 even3prm2 45171 mogoldbblem 45172 sbgoldbalt 45233 sgoldbeven3prm 45235 mogoldbb 45237 bgoldbachlt 45265 tgblthelfgott 45267 |
Copyright terms: Public domain | W3C validator |