![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > evenz | Structured version Visualization version GIF version |
Description: An even number is an integer. (Contributed by AV, 14-Jun-2020.) |
Ref | Expression |
---|---|
evenz | ⊢ (𝑍 ∈ Even → 𝑍 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iseven 42566 | . 2 ⊢ (𝑍 ∈ Even ↔ (𝑍 ∈ ℤ ∧ (𝑍 / 2) ∈ ℤ)) | |
2 | 1 | simplbi 493 | 1 ⊢ (𝑍 ∈ Even → 𝑍 ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 (class class class)co 6922 / cdiv 11032 2c2 11430 ℤcz 11728 Even ceven 42562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-rex 3096 df-rab 3099 df-v 3400 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-br 4887 df-iota 6099 df-fv 6143 df-ov 6925 df-even 42564 |
This theorem is referenced by: evenm1odd 42577 evenp1odd 42578 bits0eALTV 42616 opeoALTV 42620 omeoALTV 42622 epoo 42637 emoo 42638 epee 42639 emee 42640 evensumeven 42641 evenltle 42651 even3prm2 42653 mogoldbblem 42654 sbgoldbalt 42694 sgoldbeven3prm 42696 mogoldbb 42698 bgoldbachlt 42726 tgblthelfgott 42728 |
Copyright terms: Public domain | W3C validator |