Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > onego | Structured version Visualization version GIF version |
Description: The negative of an odd number is odd. (Contributed by AV, 20-Jun-2020.) |
Ref | Expression |
---|---|
onego | ⊢ (𝐴 ∈ Odd → -𝐴 ∈ Odd ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | znegcl 12285 | . . . 4 ⊢ (𝐴 ∈ ℤ → -𝐴 ∈ ℤ) | |
2 | 1 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℤ) → -𝐴 ∈ ℤ) |
3 | znegcl 12285 | . . . . . 6 ⊢ (((𝐴 − 1) / 2) ∈ ℤ → -((𝐴 − 1) / 2) ∈ ℤ) | |
4 | 3 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℤ) → -((𝐴 − 1) / 2) ∈ ℤ) |
5 | peano2zm 12293 | . . . . . . . 8 ⊢ (𝐴 ∈ ℤ → (𝐴 − 1) ∈ ℤ) | |
6 | 5 | zcnd 12356 | . . . . . . 7 ⊢ (𝐴 ∈ ℤ → (𝐴 − 1) ∈ ℂ) |
7 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℤ) → (𝐴 − 1) ∈ ℂ) |
8 | 2cnd 11981 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℤ) → 2 ∈ ℂ) | |
9 | 2ne0 12007 | . . . . . . 7 ⊢ 2 ≠ 0 | |
10 | 9 | a1i 11 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℤ) → 2 ≠ 0) |
11 | divneg 11597 | . . . . . . 7 ⊢ (((𝐴 − 1) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -((𝐴 − 1) / 2) = (-(𝐴 − 1) / 2)) | |
12 | 11 | eleq1d 2823 | . . . . . 6 ⊢ (((𝐴 − 1) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (-((𝐴 − 1) / 2) ∈ ℤ ↔ (-(𝐴 − 1) / 2) ∈ ℤ)) |
13 | 7, 8, 10, 12 | syl3anc 1369 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℤ) → (-((𝐴 − 1) / 2) ∈ ℤ ↔ (-(𝐴 − 1) / 2) ∈ ℤ)) |
14 | 4, 13 | mpbid 231 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℤ) → (-(𝐴 − 1) / 2) ∈ ℤ) |
15 | zcn 12254 | . . . . . . . 8 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℂ) | |
16 | 1cnd 10901 | . . . . . . . 8 ⊢ (𝐴 ∈ ℤ → 1 ∈ ℂ) | |
17 | negsubdi 11207 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → -(𝐴 − 1) = (-𝐴 + 1)) | |
18 | 17 | eqcomd 2744 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (-𝐴 + 1) = -(𝐴 − 1)) |
19 | 15, 16, 18 | syl2anc 583 | . . . . . . 7 ⊢ (𝐴 ∈ ℤ → (-𝐴 + 1) = -(𝐴 − 1)) |
20 | 19 | oveq1d 7270 | . . . . . 6 ⊢ (𝐴 ∈ ℤ → ((-𝐴 + 1) / 2) = (-(𝐴 − 1) / 2)) |
21 | 20 | eleq1d 2823 | . . . . 5 ⊢ (𝐴 ∈ ℤ → (((-𝐴 + 1) / 2) ∈ ℤ ↔ (-(𝐴 − 1) / 2) ∈ ℤ)) |
22 | 21 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℤ) → (((-𝐴 + 1) / 2) ∈ ℤ ↔ (-(𝐴 − 1) / 2) ∈ ℤ)) |
23 | 14, 22 | mpbird 256 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℤ) → ((-𝐴 + 1) / 2) ∈ ℤ) |
24 | 2, 23 | jca 511 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℤ) → (-𝐴 ∈ ℤ ∧ ((-𝐴 + 1) / 2) ∈ ℤ)) |
25 | isodd2 44975 | . 2 ⊢ (𝐴 ∈ Odd ↔ (𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℤ)) | |
26 | isodd 44969 | . 2 ⊢ (-𝐴 ∈ Odd ↔ (-𝐴 ∈ ℤ ∧ ((-𝐴 + 1) / 2) ∈ ℤ)) | |
27 | 24, 25, 26 | 3imtr4i 291 | 1 ⊢ (𝐴 ∈ Odd → -𝐴 ∈ Odd ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 (class class class)co 7255 ℂcc 10800 0cc0 10802 1c1 10803 + caddc 10805 − cmin 11135 -cneg 11136 / cdiv 11562 2c2 11958 ℤcz 12249 Odd codd 44965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-odd 44967 |
This theorem is referenced by: omoeALTV 45025 emoo 45044 |
Copyright terms: Public domain | W3C validator |