Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onego Structured version   Visualization version   GIF version

Theorem onego 46986
Description: The negative of an odd number is odd. (Contributed by AV, 20-Jun-2020.)
Assertion
Ref Expression
onego (𝐴 ∈ Odd → -𝐴 ∈ Odd )

Proof of Theorem onego
StepHypRef Expression
1 znegcl 12627 . . . 4 (𝐴 ∈ ℤ → -𝐴 ∈ ℤ)
21adantr 480 . . 3 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℤ) → -𝐴 ∈ ℤ)
3 znegcl 12627 . . . . . 6 (((𝐴 − 1) / 2) ∈ ℤ → -((𝐴 − 1) / 2) ∈ ℤ)
43adantl 481 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℤ) → -((𝐴 − 1) / 2) ∈ ℤ)
5 peano2zm 12635 . . . . . . . 8 (𝐴 ∈ ℤ → (𝐴 − 1) ∈ ℤ)
65zcnd 12697 . . . . . . 7 (𝐴 ∈ ℤ → (𝐴 − 1) ∈ ℂ)
76adantr 480 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℤ) → (𝐴 − 1) ∈ ℂ)
8 2cnd 12320 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℤ) → 2 ∈ ℂ)
9 2ne0 12346 . . . . . . 7 2 ≠ 0
109a1i 11 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℤ) → 2 ≠ 0)
11 divneg 11936 . . . . . . 7 (((𝐴 − 1) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -((𝐴 − 1) / 2) = (-(𝐴 − 1) / 2))
1211eleq1d 2814 . . . . . 6 (((𝐴 − 1) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (-((𝐴 − 1) / 2) ∈ ℤ ↔ (-(𝐴 − 1) / 2) ∈ ℤ))
137, 8, 10, 12syl3anc 1369 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℤ) → (-((𝐴 − 1) / 2) ∈ ℤ ↔ (-(𝐴 − 1) / 2) ∈ ℤ))
144, 13mpbid 231 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℤ) → (-(𝐴 − 1) / 2) ∈ ℤ)
15 zcn 12593 . . . . . . . 8 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
16 1cnd 11239 . . . . . . . 8 (𝐴 ∈ ℤ → 1 ∈ ℂ)
17 negsubdi 11546 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → -(𝐴 − 1) = (-𝐴 + 1))
1817eqcomd 2734 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (-𝐴 + 1) = -(𝐴 − 1))
1915, 16, 18syl2anc 583 . . . . . . 7 (𝐴 ∈ ℤ → (-𝐴 + 1) = -(𝐴 − 1))
2019oveq1d 7435 . . . . . 6 (𝐴 ∈ ℤ → ((-𝐴 + 1) / 2) = (-(𝐴 − 1) / 2))
2120eleq1d 2814 . . . . 5 (𝐴 ∈ ℤ → (((-𝐴 + 1) / 2) ∈ ℤ ↔ (-(𝐴 − 1) / 2) ∈ ℤ))
2221adantr 480 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℤ) → (((-𝐴 + 1) / 2) ∈ ℤ ↔ (-(𝐴 − 1) / 2) ∈ ℤ))
2314, 22mpbird 257 . . 3 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℤ) → ((-𝐴 + 1) / 2) ∈ ℤ)
242, 23jca 511 . 2 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℤ) → (-𝐴 ∈ ℤ ∧ ((-𝐴 + 1) / 2) ∈ ℤ))
25 isodd2 46975 . 2 (𝐴 ∈ Odd ↔ (𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℤ))
26 isodd 46969 . 2 (-𝐴 ∈ Odd ↔ (-𝐴 ∈ ℤ ∧ ((-𝐴 + 1) / 2) ∈ ℤ))
2724, 25, 263imtr4i 292 1 (𝐴 ∈ Odd → -𝐴 ∈ Odd )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wne 2937  (class class class)co 7420  cc 11136  0cc0 11138  1c1 11139   + caddc 11141  cmin 11474  -cneg 11475   / cdiv 11901  2c2 12297  cz 12588   Odd codd 46965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-er 8724  df-en 8964  df-dom 8965  df-sdom 8966  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-div 11902  df-nn 12243  df-2 12305  df-n0 12503  df-z 12589  df-odd 46967
This theorem is referenced by:  omoeALTV  47025  emoo  47044
  Copyright terms: Public domain W3C validator