![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > oddneven | Structured version Visualization version GIF version |
Description: An odd number is not an even number. (Contributed by AV, 16-Jun-2020.) |
Ref | Expression |
---|---|
oddneven | ⊢ (𝑍 ∈ Odd → ¬ 𝑍 ∈ Even ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isodd 46941 | . . . 4 ⊢ (𝑍 ∈ Odd ↔ (𝑍 ∈ ℤ ∧ ((𝑍 + 1) / 2) ∈ ℤ)) | |
2 | zeo2 12673 | . . . . . . 7 ⊢ (𝑍 ∈ ℤ → ((𝑍 / 2) ∈ ℤ ↔ ¬ ((𝑍 + 1) / 2) ∈ ℤ)) | |
3 | 2 | biimpd 228 | . . . . . 6 ⊢ (𝑍 ∈ ℤ → ((𝑍 / 2) ∈ ℤ → ¬ ((𝑍 + 1) / 2) ∈ ℤ)) |
4 | 3 | con2d 134 | . . . . 5 ⊢ (𝑍 ∈ ℤ → (((𝑍 + 1) / 2) ∈ ℤ → ¬ (𝑍 / 2) ∈ ℤ)) |
5 | 4 | imp 406 | . . . 4 ⊢ ((𝑍 ∈ ℤ ∧ ((𝑍 + 1) / 2) ∈ ℤ) → ¬ (𝑍 / 2) ∈ ℤ) |
6 | 1, 5 | sylbi 216 | . . 3 ⊢ (𝑍 ∈ Odd → ¬ (𝑍 / 2) ∈ ℤ) |
7 | 6 | olcd 873 | . 2 ⊢ (𝑍 ∈ Odd → (¬ 𝑍 ∈ ℤ ∨ ¬ (𝑍 / 2) ∈ ℤ)) |
8 | ianor 980 | . . 3 ⊢ (¬ (𝑍 ∈ ℤ ∧ (𝑍 / 2) ∈ ℤ) ↔ (¬ 𝑍 ∈ ℤ ∨ ¬ (𝑍 / 2) ∈ ℤ)) | |
9 | iseven 46940 | . . 3 ⊢ (𝑍 ∈ Even ↔ (𝑍 ∈ ℤ ∧ (𝑍 / 2) ∈ ℤ)) | |
10 | 8, 9 | xchnxbir 333 | . 2 ⊢ (¬ 𝑍 ∈ Even ↔ (¬ 𝑍 ∈ ℤ ∨ ¬ (𝑍 / 2) ∈ ℤ)) |
11 | 7, 10 | sylibr 233 | 1 ⊢ (𝑍 ∈ Odd → ¬ 𝑍 ∈ Even ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 846 ∈ wcel 2099 (class class class)co 7414 1c1 11133 + caddc 11135 / cdiv 11895 2c2 12291 ℤcz 12582 Even ceven 46936 Odd codd 46937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-div 11896 df-nn 12237 df-2 12299 df-n0 12497 df-z 12583 df-even 46938 df-odd 46939 |
This theorem is referenced by: zneoALTV 46981 evenprm2 47026 sbgoldbalt 47093 |
Copyright terms: Public domain | W3C validator |