Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isposixOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of isposix 17933 as of 30-Oct-2024. Properties that determine a poset (explicit structure version). Note that the numeric indices of the structure components are not mentioned explicitly in either the theorem or its proof (Remark: That is not true - it becomes true with the new proof!). (Contributed by NM, 9-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
isposix.a | ⊢ 𝐵 ∈ V |
isposix.b | ⊢ ≤ ∈ V |
isposix.k | ⊢ 𝐾 = {〈(Base‘ndx), 𝐵〉, 〈(le‘ndx), ≤ 〉} |
isposix.1 | ⊢ (𝑥 ∈ 𝐵 → 𝑥 ≤ 𝑥) |
isposix.2 | ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦)) |
isposix.3 | ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)) |
Ref | Expression |
---|---|
isposixOLD | ⊢ 𝐾 ∈ Poset |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isposix.k | . . 3 ⊢ 𝐾 = {〈(Base‘ndx), 𝐵〉, 〈(le‘ndx), ≤ 〉} | |
2 | prex 5349 | . . 3 ⊢ {〈(Base‘ndx), 𝐵〉, 〈(le‘ndx), ≤ 〉} ∈ V | |
3 | 1, 2 | eqeltri 2836 | . 2 ⊢ 𝐾 ∈ V |
4 | isposix.a | . . 3 ⊢ 𝐵 ∈ V | |
5 | df-ple 16883 | . . . 4 ⊢ le = Slot ;10 | |
6 | 1lt10 12480 | . . . 4 ⊢ 1 < ;10 | |
7 | 10nn 12357 | . . . 4 ⊢ ;10 ∈ ℕ | |
8 | 1, 5, 6, 7 | 2strbas 16836 | . . 3 ⊢ (𝐵 ∈ V → 𝐵 = (Base‘𝐾)) |
9 | 4, 8 | ax-mp 5 | . 2 ⊢ 𝐵 = (Base‘𝐾) |
10 | isposix.b | . . 3 ⊢ ≤ ∈ V | |
11 | 1, 5, 6, 7 | 2strop 16837 | . . 3 ⊢ ( ≤ ∈ V → ≤ = (le‘𝐾)) |
12 | 10, 11 | ax-mp 5 | . 2 ⊢ ≤ = (le‘𝐾) |
13 | isposix.1 | . 2 ⊢ (𝑥 ∈ 𝐵 → 𝑥 ≤ 𝑥) | |
14 | isposix.2 | . 2 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦)) | |
15 | isposix.3 | . 2 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)) | |
16 | 3, 9, 12, 13, 14, 15 | isposi 17932 | 1 ⊢ 𝐾 ∈ Poset |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2112 Vcvv 3423 {cpr 4560 〈cop 4564 class class class wbr 5070 ‘cfv 6415 0cc0 10777 1c1 10778 ;cdc 12341 ndxcnx 16797 Basecbs 16815 lecple 16870 Posetcpo 17915 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pow 5282 ax-pr 5346 ax-un 7563 ax-cnex 10833 ax-resscn 10834 ax-1cn 10835 ax-icn 10836 ax-addcl 10837 ax-addrcl 10838 ax-mulcl 10839 ax-mulrcl 10840 ax-mulcom 10841 ax-addass 10842 ax-mulass 10843 ax-distr 10844 ax-i2m1 10845 ax-1ne0 10846 ax-1rid 10847 ax-rnegex 10848 ax-rrecex 10849 ax-cnre 10850 ax-pre-lttri 10851 ax-pre-lttrn 10852 ax-pre-ltadd 10853 ax-pre-mulgt0 10854 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-pss 3903 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5186 df-id 5479 df-eprel 5485 df-po 5493 df-so 5494 df-fr 5534 df-we 5536 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-pred 6189 df-ord 6251 df-on 6252 df-lim 6253 df-suc 6254 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-fv 6423 df-riota 7209 df-ov 7255 df-oprab 7256 df-mpo 7257 df-om 7685 df-1st 7801 df-2nd 7802 df-wrecs 8089 df-recs 8150 df-rdg 8188 df-1o 8244 df-er 8433 df-en 8669 df-dom 8670 df-sdom 8671 df-fin 8672 df-pnf 10917 df-mnf 10918 df-xr 10919 df-ltxr 10920 df-le 10921 df-sub 11112 df-neg 11113 df-nn 11879 df-2 11941 df-3 11942 df-4 11943 df-5 11944 df-6 11945 df-7 11946 df-8 11947 df-9 11948 df-n0 12139 df-z 12225 df-dec 12342 df-uz 12487 df-fz 13144 df-struct 16751 df-slot 16786 df-ndx 16798 df-base 16816 df-ple 16883 df-poset 17921 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |