Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pconntop Structured version   Visualization version   GIF version

Theorem pconntop 32703
Description: A simply connected space is a topology. (Contributed by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
pconntop (𝐽 ∈ PConn → 𝐽 ∈ Top)

Proof of Theorem pconntop
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2758 . . 3 𝐽 = 𝐽
21ispconn 32701 . 2 (𝐽 ∈ PConn ↔ (𝐽 ∈ Top ∧ ∀𝑥 𝐽𝑦 𝐽𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
32simplbi 501 1 (𝐽 ∈ PConn → 𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wral 3070  wrex 3071   cuni 4798  cfv 6335  (class class class)co 7150  0cc0 10575  1c1 10576  Topctop 21593   Cn ccn 21924  IIcii 23576  PConncpconn 32697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-un 3863  df-in 3865  df-ss 3875  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-br 5033  df-iota 6294  df-fv 6343  df-ov 7153  df-pconn 32699
This theorem is referenced by:  sconntop  32706  pconnconn  32709  txpconn  32710  ptpconn  32711  qtoppconn  32714  pconnpi1  32715  sconnpi1  32717  cvxsconn  32721
  Copyright terms: Public domain W3C validator