![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pconntop | Structured version Visualization version GIF version |
Description: A simply connected space is a topology. (Contributed by Mario Carneiro, 11-Feb-2015.) |
Ref | Expression |
---|---|
pconntop | ⊢ (𝐽 ∈ PConn → 𝐽 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | ispconn 35191 | . 2 ⊢ (𝐽 ∈ PConn ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ ∪ 𝐽∀𝑦 ∈ ∪ 𝐽∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))) |
3 | 2 | simplbi 497 | 1 ⊢ (𝐽 ∈ PConn → 𝐽 ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 ∪ cuni 4931 ‘cfv 6573 (class class class)co 7448 0cc0 11184 1c1 11185 Topctop 22920 Cn ccn 23253 IIcii 24920 PConncpconn 35187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-pconn 35189 |
This theorem is referenced by: sconntop 35196 pconnconn 35199 txpconn 35200 ptpconn 35201 qtoppconn 35204 pconnpi1 35205 sconnpi1 35207 cvxsconn 35211 |
Copyright terms: Public domain | W3C validator |