Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pconntop | Structured version Visualization version GIF version |
Description: A simply connected space is a topology. (Contributed by Mario Carneiro, 11-Feb-2015.) |
Ref | Expression |
---|---|
pconntop | ⊢ (𝐽 ∈ PConn → 𝐽 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2758 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | ispconn 32701 | . 2 ⊢ (𝐽 ∈ PConn ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ ∪ 𝐽∀𝑦 ∈ ∪ 𝐽∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))) |
3 | 2 | simplbi 501 | 1 ⊢ (𝐽 ∈ PConn → 𝐽 ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∀wral 3070 ∃wrex 3071 ∪ cuni 4798 ‘cfv 6335 (class class class)co 7150 0cc0 10575 1c1 10576 Topctop 21593 Cn ccn 21924 IIcii 23576 PConncpconn 32697 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-un 3863 df-in 3865 df-ss 3875 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-iota 6294 df-fv 6343 df-ov 7153 df-pconn 32699 |
This theorem is referenced by: sconntop 32706 pconnconn 32709 txpconn 32710 ptpconn 32711 qtoppconn 32714 pconnpi1 32715 sconnpi1 32717 cvxsconn 32721 |
Copyright terms: Public domain | W3C validator |