Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sconnpi1 Structured version   Visualization version   GIF version

Theorem sconnpi1 32490
Description: A path-connected topological space is simply connected iff its fundamental group is trivial. (Contributed by Mario Carneiro, 12-Feb-2015.)
Hypothesis
Ref Expression
sconnpi1.1 𝑋 = 𝐽
Assertion
Ref Expression
sconnpi1 ((𝐽 ∈ PConn ∧ 𝑌𝑋) → (𝐽 ∈ SConn ↔ (Base‘(𝐽 π1 𝑌)) ≈ 1o))

Proof of Theorem sconnpi1
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sconntop 32479 . . . . . . . . 9 (𝐽 ∈ SConn → 𝐽 ∈ Top)
21adantl 484 . . . . . . . 8 ((𝑌𝑋𝐽 ∈ SConn) → 𝐽 ∈ Top)
3 simpl 485 . . . . . . . 8 ((𝑌𝑋𝐽 ∈ SConn) → 𝑌𝑋)
4 eqid 2824 . . . . . . . . 9 (𝐽 π1 𝑌) = (𝐽 π1 𝑌)
5 eqid 2824 . . . . . . . . 9 (Base‘(𝐽 π1 𝑌)) = (Base‘(𝐽 π1 𝑌))
6 simpl 485 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑌𝑋) → 𝐽 ∈ Top)
7 sconnpi1.1 . . . . . . . . . . 11 𝑋 = 𝐽
87toptopon 21528 . . . . . . . . . 10 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
96, 8sylib 220 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑌𝑋) → 𝐽 ∈ (TopOn‘𝑋))
10 simpr 487 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑌𝑋) → 𝑌𝑋)
114, 5, 9, 10elpi1 23652 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑌𝑋) → (𝑥 ∈ (Base‘(𝐽 π1 𝑌)) ↔ ∃𝑓 ∈ (II Cn 𝐽)(((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌) ∧ 𝑥 = [𝑓]( ≃ph𝐽))))
122, 3, 11syl2anc 586 . . . . . . 7 ((𝑌𝑋𝐽 ∈ SConn) → (𝑥 ∈ (Base‘(𝐽 π1 𝑌)) ↔ ∃𝑓 ∈ (II Cn 𝐽)(((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌) ∧ 𝑥 = [𝑓]( ≃ph𝐽))))
13 phtpcer 23602 . . . . . . . . . . . . 13 ( ≃ph𝐽) Er (II Cn 𝐽)
1413a1i 11 . . . . . . . . . . . 12 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → ( ≃ph𝐽) Er (II Cn 𝐽))
15 simpllr 774 . . . . . . . . . . . . . 14 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → 𝐽 ∈ SConn)
16 simplr 767 . . . . . . . . . . . . . 14 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → 𝑓 ∈ (II Cn 𝐽))
17 simprl 769 . . . . . . . . . . . . . . 15 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → (𝑓‘0) = 𝑌)
18 simprr 771 . . . . . . . . . . . . . . 15 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → (𝑓‘1) = 𝑌)
1917, 18eqtr4d 2862 . . . . . . . . . . . . . 14 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → (𝑓‘0) = (𝑓‘1))
20 sconnpht 32480 . . . . . . . . . . . . . 14 ((𝐽 ∈ SConn ∧ 𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1)) → 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)}))
2115, 16, 19, 20syl3anc 1367 . . . . . . . . . . . . 13 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)}))
2217sneqd 4582 . . . . . . . . . . . . . 14 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → {(𝑓‘0)} = {𝑌})
2322xpeq2d 5588 . . . . . . . . . . . . 13 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → ((0[,]1) × {(𝑓‘0)}) = ((0[,]1) × {𝑌}))
2421, 23breqtrd 5095 . . . . . . . . . . . 12 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → 𝑓( ≃ph𝐽)((0[,]1) × {𝑌}))
2514, 24erthi 8343 . . . . . . . . . . 11 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → [𝑓]( ≃ph𝐽) = [((0[,]1) × {𝑌})]( ≃ph𝐽))
262, 8sylib 220 . . . . . . . . . . . . 13 ((𝑌𝑋𝐽 ∈ SConn) → 𝐽 ∈ (TopOn‘𝑋))
27 eqid 2824 . . . . . . . . . . . . . 14 ((0[,]1) × {𝑌}) = ((0[,]1) × {𝑌})
284, 27pi1id 23658 . . . . . . . . . . . . 13 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌𝑋) → [((0[,]1) × {𝑌})]( ≃ph𝐽) = (0g‘(𝐽 π1 𝑌)))
2926, 3, 28syl2anc 586 . . . . . . . . . . . 12 ((𝑌𝑋𝐽 ∈ SConn) → [((0[,]1) × {𝑌})]( ≃ph𝐽) = (0g‘(𝐽 π1 𝑌)))
3029ad2antrr 724 . . . . . . . . . . 11 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → [((0[,]1) × {𝑌})]( ≃ph𝐽) = (0g‘(𝐽 π1 𝑌)))
3125, 30eqtrd 2859 . . . . . . . . . 10 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → [𝑓]( ≃ph𝐽) = (0g‘(𝐽 π1 𝑌)))
32 velsn 4586 . . . . . . . . . . 11 (𝑥 ∈ {(0g‘(𝐽 π1 𝑌))} ↔ 𝑥 = (0g‘(𝐽 π1 𝑌)))
33 eqeq1 2828 . . . . . . . . . . 11 (𝑥 = [𝑓]( ≃ph𝐽) → (𝑥 = (0g‘(𝐽 π1 𝑌)) ↔ [𝑓]( ≃ph𝐽) = (0g‘(𝐽 π1 𝑌))))
3432, 33syl5bb 285 . . . . . . . . . 10 (𝑥 = [𝑓]( ≃ph𝐽) → (𝑥 ∈ {(0g‘(𝐽 π1 𝑌))} ↔ [𝑓]( ≃ph𝐽) = (0g‘(𝐽 π1 𝑌))))
3531, 34syl5ibrcom 249 . . . . . . . . 9 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → (𝑥 = [𝑓]( ≃ph𝐽) → 𝑥 ∈ {(0g‘(𝐽 π1 𝑌))}))
3635expimpd 456 . . . . . . . 8 (((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) → ((((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌) ∧ 𝑥 = [𝑓]( ≃ph𝐽)) → 𝑥 ∈ {(0g‘(𝐽 π1 𝑌))}))
3736rexlimdva 3287 . . . . . . 7 ((𝑌𝑋𝐽 ∈ SConn) → (∃𝑓 ∈ (II Cn 𝐽)(((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌) ∧ 𝑥 = [𝑓]( ≃ph𝐽)) → 𝑥 ∈ {(0g‘(𝐽 π1 𝑌))}))
3812, 37sylbid 242 . . . . . 6 ((𝑌𝑋𝐽 ∈ SConn) → (𝑥 ∈ (Base‘(𝐽 π1 𝑌)) → 𝑥 ∈ {(0g‘(𝐽 π1 𝑌))}))
3938ssrdv 3976 . . . . 5 ((𝑌𝑋𝐽 ∈ SConn) → (Base‘(𝐽 π1 𝑌)) ⊆ {(0g‘(𝐽 π1 𝑌))})
404pi1grp 23657 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌𝑋) → (𝐽 π1 𝑌) ∈ Grp)
4126, 3, 40syl2anc 586 . . . . . . 7 ((𝑌𝑋𝐽 ∈ SConn) → (𝐽 π1 𝑌) ∈ Grp)
42 eqid 2824 . . . . . . . 8 (0g‘(𝐽 π1 𝑌)) = (0g‘(𝐽 π1 𝑌))
435, 42grpidcl 18134 . . . . . . 7 ((𝐽 π1 𝑌) ∈ Grp → (0g‘(𝐽 π1 𝑌)) ∈ (Base‘(𝐽 π1 𝑌)))
4441, 43syl 17 . . . . . 6 ((𝑌𝑋𝐽 ∈ SConn) → (0g‘(𝐽 π1 𝑌)) ∈ (Base‘(𝐽 π1 𝑌)))
4544snssd 4745 . . . . 5 ((𝑌𝑋𝐽 ∈ SConn) → {(0g‘(𝐽 π1 𝑌))} ⊆ (Base‘(𝐽 π1 𝑌)))
4639, 45eqssd 3987 . . . 4 ((𝑌𝑋𝐽 ∈ SConn) → (Base‘(𝐽 π1 𝑌)) = {(0g‘(𝐽 π1 𝑌))})
47 fvex 6686 . . . . 5 (0g‘(𝐽 π1 𝑌)) ∈ V
4847ensn1 8576 . . . 4 {(0g‘(𝐽 π1 𝑌))} ≈ 1o
4946, 48eqbrtrdi 5108 . . 3 ((𝑌𝑋𝐽 ∈ SConn) → (Base‘(𝐽 π1 𝑌)) ≈ 1o)
5049adantll 712 . 2 (((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ 𝐽 ∈ SConn) → (Base‘(𝐽 π1 𝑌)) ≈ 1o)
51 simpll 765 . . 3 (((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) → 𝐽 ∈ PConn)
52 eqid 2824 . . . . . . . . 9 (𝐽 π1 (𝑓‘0)) = (𝐽 π1 (𝑓‘0))
53 eqid 2824 . . . . . . . . 9 (Base‘(𝐽 π1 (𝑓‘0))) = (Base‘(𝐽 π1 (𝑓‘0)))
54 simplll 773 . . . . . . . . . . 11 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → 𝐽 ∈ PConn)
55 pconntop 32476 . . . . . . . . . . 11 (𝐽 ∈ PConn → 𝐽 ∈ Top)
5654, 55syl 17 . . . . . . . . . 10 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → 𝐽 ∈ Top)
5756, 8sylib 220 . . . . . . . . 9 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → 𝐽 ∈ (TopOn‘𝑋))
58 simprl 769 . . . . . . . . . . 11 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑓 ∈ (II Cn 𝐽))
59 iiuni 23492 . . . . . . . . . . . 12 (0[,]1) = II
6059, 7cnf 21857 . . . . . . . . . . 11 (𝑓 ∈ (II Cn 𝐽) → 𝑓:(0[,]1)⟶𝑋)
6158, 60syl 17 . . . . . . . . . 10 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑓:(0[,]1)⟶𝑋)
62 0elunit 12858 . . . . . . . . . 10 0 ∈ (0[,]1)
63 ffvelrn 6852 . . . . . . . . . 10 ((𝑓:(0[,]1)⟶𝑋 ∧ 0 ∈ (0[,]1)) → (𝑓‘0) ∈ 𝑋)
6461, 62, 63sylancl 588 . . . . . . . . 9 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑓‘0) ∈ 𝑋)
65 eqidd 2825 . . . . . . . . 9 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑓‘0) = (𝑓‘0))
66 simprr 771 . . . . . . . . . 10 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑓‘0) = (𝑓‘1))
6766eqcomd 2830 . . . . . . . . 9 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑓‘1) = (𝑓‘0))
6852, 53, 57, 64, 58, 65, 67elpi1i 23653 . . . . . . . 8 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → [𝑓]( ≃ph𝐽) ∈ (Base‘(𝐽 π1 (𝑓‘0))))
69 eqid 2824 . . . . . . . . . . . . 13 ((0[,]1) × {(𝑓‘0)}) = ((0[,]1) × {(𝑓‘0)})
7069pcoptcl 23628 . . . . . . . . . . . 12 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑓‘0) ∈ 𝑋) → (((0[,]1) × {(𝑓‘0)}) ∈ (II Cn 𝐽) ∧ (((0[,]1) × {(𝑓‘0)})‘0) = (𝑓‘0) ∧ (((0[,]1) × {(𝑓‘0)})‘1) = (𝑓‘0)))
7157, 64, 70syl2anc 586 . . . . . . . . . . 11 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (((0[,]1) × {(𝑓‘0)}) ∈ (II Cn 𝐽) ∧ (((0[,]1) × {(𝑓‘0)})‘0) = (𝑓‘0) ∧ (((0[,]1) × {(𝑓‘0)})‘1) = (𝑓‘0)))
7271simp1d 1138 . . . . . . . . . 10 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → ((0[,]1) × {(𝑓‘0)}) ∈ (II Cn 𝐽))
7371simp2d 1139 . . . . . . . . . 10 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (((0[,]1) × {(𝑓‘0)})‘0) = (𝑓‘0))
7471simp3d 1140 . . . . . . . . . 10 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (((0[,]1) × {(𝑓‘0)})‘1) = (𝑓‘0))
7552, 53, 57, 64, 72, 73, 74elpi1i 23653 . . . . . . . . 9 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → [((0[,]1) × {(𝑓‘0)})]( ≃ph𝐽) ∈ (Base‘(𝐽 π1 (𝑓‘0))))
76 simpllr 774 . . . . . . . . . . . 12 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑌𝑋)
777, 52, 4, 53, 5pconnpi1 32488 . . . . . . . . . . . 12 ((𝐽 ∈ PConn ∧ (𝑓‘0) ∈ 𝑋𝑌𝑋) → (𝐽 π1 (𝑓‘0)) ≃𝑔 (𝐽 π1 𝑌))
7854, 64, 76, 77syl3anc 1367 . . . . . . . . . . 11 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (𝐽 π1 (𝑓‘0)) ≃𝑔 (𝐽 π1 𝑌))
7953, 5gicen 18420 . . . . . . . . . . 11 ((𝐽 π1 (𝑓‘0)) ≃𝑔 (𝐽 π1 𝑌) → (Base‘(𝐽 π1 (𝑓‘0))) ≈ (Base‘(𝐽 π1 𝑌)))
8078, 79syl 17 . . . . . . . . . 10 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (Base‘(𝐽 π1 (𝑓‘0))) ≈ (Base‘(𝐽 π1 𝑌)))
81 simplr 767 . . . . . . . . . 10 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (Base‘(𝐽 π1 𝑌)) ≈ 1o)
82 entr 8564 . . . . . . . . . 10 (((Base‘(𝐽 π1 (𝑓‘0))) ≈ (Base‘(𝐽 π1 𝑌)) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) → (Base‘(𝐽 π1 (𝑓‘0))) ≈ 1o)
8380, 81, 82syl2anc 586 . . . . . . . . 9 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (Base‘(𝐽 π1 (𝑓‘0))) ≈ 1o)
84 en1eqsn 8751 . . . . . . . . 9 (([((0[,]1) × {(𝑓‘0)})]( ≃ph𝐽) ∈ (Base‘(𝐽 π1 (𝑓‘0))) ∧ (Base‘(𝐽 π1 (𝑓‘0))) ≈ 1o) → (Base‘(𝐽 π1 (𝑓‘0))) = {[((0[,]1) × {(𝑓‘0)})]( ≃ph𝐽)})
8575, 83, 84syl2anc 586 . . . . . . . 8 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (Base‘(𝐽 π1 (𝑓‘0))) = {[((0[,]1) × {(𝑓‘0)})]( ≃ph𝐽)})
8668, 85eleqtrd 2918 . . . . . . 7 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → [𝑓]( ≃ph𝐽) ∈ {[((0[,]1) × {(𝑓‘0)})]( ≃ph𝐽)})
87 elsni 4587 . . . . . . 7 ([𝑓]( ≃ph𝐽) ∈ {[((0[,]1) × {(𝑓‘0)})]( ≃ph𝐽)} → [𝑓]( ≃ph𝐽) = [((0[,]1) × {(𝑓‘0)})]( ≃ph𝐽))
8886, 87syl 17 . . . . . 6 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → [𝑓]( ≃ph𝐽) = [((0[,]1) × {(𝑓‘0)})]( ≃ph𝐽))
8913a1i 11 . . . . . . 7 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → ( ≃ph𝐽) Er (II Cn 𝐽))
9089, 58erth 8341 . . . . . 6 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)}) ↔ [𝑓]( ≃ph𝐽) = [((0[,]1) × {(𝑓‘0)})]( ≃ph𝐽)))
9188, 90mpbird 259 . . . . 5 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)}))
9291expr 459 . . . 4 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ 𝑓 ∈ (II Cn 𝐽)) → ((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)})))
9392ralrimiva 3185 . . 3 (((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) → ∀𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)})))
94 issconn 32477 . . 3 (𝐽 ∈ SConn ↔ (𝐽 ∈ PConn ∧ ∀𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)}))))
9551, 93, 94sylanbrc 585 . 2 (((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) → 𝐽 ∈ SConn)
9650, 95impbida 799 1 ((𝐽 ∈ PConn ∧ 𝑌𝑋) → (𝐽 ∈ SConn ↔ (Base‘(𝐽 π1 𝑌)) ≈ 1o))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wral 3141  wrex 3142  {csn 4570   cuni 4841   class class class wbr 5069   × cxp 5556  wf 6354  cfv 6358  (class class class)co 7159  1oc1o 8098   Er wer 8289  [cec 8290  cen 8509  0cc0 10540  1c1 10541  [,]cicc 12744  Basecbs 16486  0gc0g 16716  Grpcgrp 18106  𝑔 cgic 18401  Topctop 21504  TopOnctopon 21521   Cn ccn 21835  IIcii 23486  phcphtpc 23576   π1 cpi1 23610  PConncpconn 32470  SConncsconn 32471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618  ax-addf 10619  ax-mulf 10620
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-iin 4925  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-om 7584  df-1st 7692  df-2nd 7693  df-supp 7834  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-ec 8294  df-qs 8298  df-map 8411  df-ixp 8465  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-fsupp 8837  df-fi 8878  df-sup 8909  df-inf 8910  df-oi 8977  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-icc 12748  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-starv 16583  df-sca 16584  df-vsca 16585  df-ip 16586  df-tset 16587  df-ple 16588  df-ds 16590  df-unif 16591  df-hom 16592  df-cco 16593  df-rest 16699  df-topn 16700  df-0g 16718  df-gsum 16719  df-topgen 16720  df-pt 16721  df-prds 16724  df-xrs 16778  df-qtop 16783  df-imas 16784  df-qus 16785  df-xps 16786  df-mre 16860  df-mrc 16861  df-acs 16863  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-submnd 17960  df-grp 18109  df-mulg 18228  df-ghm 18359  df-gim 18402  df-gic 18403  df-cntz 18450  df-cmn 18911  df-psmet 20540  df-xmet 20541  df-met 20542  df-bl 20543  df-mopn 20544  df-cnfld 20549  df-top 21505  df-topon 21522  df-topsp 21544  df-bases 21557  df-cld 21630  df-cn 21838  df-cnp 21839  df-tx 22173  df-hmeo 22366  df-xms 22933  df-ms 22934  df-tms 22935  df-ii 23488  df-htpy 23577  df-phtpy 23578  df-phtpc 23599  df-pco 23612  df-om1 23613  df-pi1 23615  df-pconn 32472  df-sconn 32473
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator