| Step | Hyp | Ref
| Expression |
| 1 | | sconntop 35255 |
. . . . . . . . 9
⊢ (𝐽 ∈ SConn → 𝐽 ∈ Top) |
| 2 | 1 | adantl 481 |
. . . . . . . 8
⊢ ((𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn) → 𝐽 ∈ Top) |
| 3 | | simpl 482 |
. . . . . . . 8
⊢ ((𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn) → 𝑌 ∈ 𝑋) |
| 4 | | eqid 2736 |
. . . . . . . . 9
⊢ (𝐽 π1 𝑌) = (𝐽 π1 𝑌) |
| 5 | | eqid 2736 |
. . . . . . . . 9
⊢
(Base‘(𝐽
π1 𝑌)) =
(Base‘(𝐽
π1 𝑌)) |
| 6 | | simpl 482 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ 𝑌 ∈ 𝑋) → 𝐽 ∈ Top) |
| 7 | | sconnpi1.1 |
. . . . . . . . . . 11
⊢ 𝑋 = ∪
𝐽 |
| 8 | 7 | toptopon 22860 |
. . . . . . . . . 10
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
| 9 | 6, 8 | sylib 218 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝑌 ∈ 𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
| 10 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝑌 ∈ 𝑋) → 𝑌 ∈ 𝑋) |
| 11 | 4, 5, 9, 10 | elpi1 25001 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑌 ∈ 𝑋) → (𝑥 ∈ (Base‘(𝐽 π1 𝑌)) ↔ ∃𝑓 ∈ (II Cn 𝐽)(((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌) ∧ 𝑥 = [𝑓]( ≃ph‘𝐽)))) |
| 12 | 2, 3, 11 | syl2anc 584 |
. . . . . . 7
⊢ ((𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn) → (𝑥 ∈ (Base‘(𝐽 π1 𝑌)) ↔ ∃𝑓 ∈ (II Cn 𝐽)(((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌) ∧ 𝑥 = [𝑓]( ≃ph‘𝐽)))) |
| 13 | | phtpcer 24950 |
. . . . . . . . . . . . 13
⊢ (
≃ph‘𝐽) Er (II Cn 𝐽) |
| 14 | 13 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((((𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → (
≃ph‘𝐽) Er (II Cn 𝐽)) |
| 15 | | simpllr 775 |
. . . . . . . . . . . . . 14
⊢ ((((𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → 𝐽 ∈ SConn) |
| 16 | | simplr 768 |
. . . . . . . . . . . . . 14
⊢ ((((𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → 𝑓 ∈ (II Cn 𝐽)) |
| 17 | | simprl 770 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → (𝑓‘0) = 𝑌) |
| 18 | | simprr 772 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → (𝑓‘1) = 𝑌) |
| 19 | 17, 18 | eqtr4d 2774 |
. . . . . . . . . . . . . 14
⊢ ((((𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → (𝑓‘0) = (𝑓‘1)) |
| 20 | | sconnpht 35256 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ SConn ∧ 𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1)) → 𝑓( ≃ph‘𝐽)((0[,]1) × {(𝑓‘0)})) |
| 21 | 15, 16, 19, 20 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢ ((((𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → 𝑓( ≃ph‘𝐽)((0[,]1) × {(𝑓‘0)})) |
| 22 | 17 | sneqd 4618 |
. . . . . . . . . . . . . 14
⊢ ((((𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → {(𝑓‘0)} = {𝑌}) |
| 23 | 22 | xpeq2d 5689 |
. . . . . . . . . . . . 13
⊢ ((((𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → ((0[,]1) × {(𝑓‘0)}) = ((0[,]1) ×
{𝑌})) |
| 24 | 21, 23 | breqtrd 5150 |
. . . . . . . . . . . 12
⊢ ((((𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → 𝑓( ≃ph‘𝐽)((0[,]1) × {𝑌})) |
| 25 | 14, 24 | erthi 8777 |
. . . . . . . . . . 11
⊢ ((((𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → [𝑓]( ≃ph‘𝐽) = [((0[,]1) × {𝑌})](
≃ph‘𝐽)) |
| 26 | 2, 8 | sylib 218 |
. . . . . . . . . . . . 13
⊢ ((𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn) → 𝐽 ∈ (TopOn‘𝑋)) |
| 27 | | eqid 2736 |
. . . . . . . . . . . . . 14
⊢ ((0[,]1)
× {𝑌}) = ((0[,]1)
× {𝑌}) |
| 28 | 4, 27 | pi1id 25007 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ∈ 𝑋) → [((0[,]1) × {𝑌})](
≃ph‘𝐽) = (0g‘(𝐽 π1 𝑌))) |
| 29 | 26, 3, 28 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn) → [((0[,]1) ×
{𝑌})](
≃ph‘𝐽) = (0g‘(𝐽 π1 𝑌))) |
| 30 | 29 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ ((((𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → [((0[,]1) × {𝑌})](
≃ph‘𝐽) = (0g‘(𝐽 π1 𝑌))) |
| 31 | 25, 30 | eqtrd 2771 |
. . . . . . . . . 10
⊢ ((((𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → [𝑓]( ≃ph‘𝐽) = (0g‘(𝐽 π1 𝑌))) |
| 32 | | velsn 4622 |
. . . . . . . . . . 11
⊢ (𝑥 ∈
{(0g‘(𝐽
π1 𝑌))}
↔ 𝑥 =
(0g‘(𝐽
π1 𝑌))) |
| 33 | | eqeq1 2740 |
. . . . . . . . . . 11
⊢ (𝑥 = [𝑓]( ≃ph‘𝐽) → (𝑥 = (0g‘(𝐽 π1 𝑌)) ↔ [𝑓]( ≃ph‘𝐽) = (0g‘(𝐽 π1 𝑌)))) |
| 34 | 32, 33 | bitrid 283 |
. . . . . . . . . 10
⊢ (𝑥 = [𝑓]( ≃ph‘𝐽) → (𝑥 ∈ {(0g‘(𝐽 π1 𝑌))} ↔ [𝑓]( ≃ph‘𝐽) = (0g‘(𝐽 π1 𝑌)))) |
| 35 | 31, 34 | syl5ibrcom 247 |
. . . . . . . . 9
⊢ ((((𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → (𝑥 = [𝑓]( ≃ph‘𝐽) → 𝑥 ∈ {(0g‘(𝐽 π1 𝑌))})) |
| 36 | 35 | expimpd 453 |
. . . . . . . 8
⊢ (((𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) → ((((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌) ∧ 𝑥 = [𝑓]( ≃ph‘𝐽)) → 𝑥 ∈ {(0g‘(𝐽 π1 𝑌))})) |
| 37 | 36 | rexlimdva 3142 |
. . . . . . 7
⊢ ((𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn) → (∃𝑓 ∈ (II Cn 𝐽)(((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌) ∧ 𝑥 = [𝑓]( ≃ph‘𝐽)) → 𝑥 ∈ {(0g‘(𝐽 π1 𝑌))})) |
| 38 | 12, 37 | sylbid 240 |
. . . . . 6
⊢ ((𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn) → (𝑥 ∈ (Base‘(𝐽 π1 𝑌)) → 𝑥 ∈ {(0g‘(𝐽 π1 𝑌))})) |
| 39 | 38 | ssrdv 3969 |
. . . . 5
⊢ ((𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn) → (Base‘(𝐽 π1 𝑌)) ⊆
{(0g‘(𝐽
π1 𝑌))}) |
| 40 | 4 | pi1grp 25006 |
. . . . . . . 8
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ∈ 𝑋) → (𝐽 π1 𝑌) ∈ Grp) |
| 41 | 26, 3, 40 | syl2anc 584 |
. . . . . . 7
⊢ ((𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn) → (𝐽 π1 𝑌) ∈ Grp) |
| 42 | | eqid 2736 |
. . . . . . . 8
⊢
(0g‘(𝐽 π1 𝑌)) = (0g‘(𝐽 π1 𝑌)) |
| 43 | 5, 42 | grpidcl 18953 |
. . . . . . 7
⊢ ((𝐽 π1 𝑌) ∈ Grp →
(0g‘(𝐽
π1 𝑌)) ∈
(Base‘(𝐽
π1 𝑌))) |
| 44 | 41, 43 | syl 17 |
. . . . . 6
⊢ ((𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn) →
(0g‘(𝐽
π1 𝑌)) ∈
(Base‘(𝐽
π1 𝑌))) |
| 45 | 44 | snssd 4790 |
. . . . 5
⊢ ((𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn) →
{(0g‘(𝐽
π1 𝑌))}
⊆ (Base‘(𝐽
π1 𝑌))) |
| 46 | 39, 45 | eqssd 3981 |
. . . 4
⊢ ((𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn) → (Base‘(𝐽 π1 𝑌)) =
{(0g‘(𝐽
π1 𝑌))}) |
| 47 | | fvex 6894 |
. . . . 5
⊢
(0g‘(𝐽 π1 𝑌)) ∈ V |
| 48 | 47 | ensn1 9040 |
. . . 4
⊢
{(0g‘(𝐽 π1 𝑌))} ≈ 1o |
| 49 | 46, 48 | eqbrtrdi 5163 |
. . 3
⊢ ((𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn) → (Base‘(𝐽 π1 𝑌)) ≈
1o) |
| 50 | 49 | adantll 714 |
. 2
⊢ (((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ 𝐽 ∈ SConn) → (Base‘(𝐽 π1 𝑌)) ≈
1o) |
| 51 | | simpll 766 |
. . 3
⊢ (((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) → 𝐽 ∈ PConn) |
| 52 | | eqid 2736 |
. . . . . . . . 9
⊢ (𝐽 π1 (𝑓‘0)) = (𝐽 π1 (𝑓‘0)) |
| 53 | | eqid 2736 |
. . . . . . . . 9
⊢
(Base‘(𝐽
π1 (𝑓‘0))) = (Base‘(𝐽 π1 (𝑓‘0))) |
| 54 | | simplll 774 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → 𝐽 ∈ PConn) |
| 55 | | pconntop 35252 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ PConn → 𝐽 ∈ Top) |
| 56 | 54, 55 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → 𝐽 ∈ Top) |
| 57 | 56, 8 | sylib 218 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → 𝐽 ∈ (TopOn‘𝑋)) |
| 58 | | simprl 770 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑓 ∈ (II Cn 𝐽)) |
| 59 | | iiuni 24830 |
. . . . . . . . . . . 12
⊢ (0[,]1) =
∪ II |
| 60 | 59, 7 | cnf 23189 |
. . . . . . . . . . 11
⊢ (𝑓 ∈ (II Cn 𝐽) → 𝑓:(0[,]1)⟶𝑋) |
| 61 | 58, 60 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑓:(0[,]1)⟶𝑋) |
| 62 | | 0elunit 13491 |
. . . . . . . . . 10
⊢ 0 ∈
(0[,]1) |
| 63 | | ffvelcdm 7076 |
. . . . . . . . . 10
⊢ ((𝑓:(0[,]1)⟶𝑋 ∧ 0 ∈ (0[,]1)) →
(𝑓‘0) ∈ 𝑋) |
| 64 | 61, 62, 63 | sylancl 586 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑓‘0) ∈ 𝑋) |
| 65 | | eqidd 2737 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑓‘0) = (𝑓‘0)) |
| 66 | | simprr 772 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑓‘0) = (𝑓‘1)) |
| 67 | 66 | eqcomd 2742 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑓‘1) = (𝑓‘0)) |
| 68 | 52, 53, 57, 64, 58, 65, 67 | elpi1i 25002 |
. . . . . . . 8
⊢ ((((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → [𝑓]( ≃ph‘𝐽) ∈ (Base‘(𝐽 π1 (𝑓‘0)))) |
| 69 | | eqid 2736 |
. . . . . . . . . . . . 13
⊢ ((0[,]1)
× {(𝑓‘0)}) =
((0[,]1) × {(𝑓‘0)}) |
| 70 | 69 | pcoptcl 24977 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑓‘0) ∈ 𝑋) → (((0[,]1) × {(𝑓‘0)}) ∈ (II Cn 𝐽) ∧ (((0[,]1) ×
{(𝑓‘0)})‘0) =
(𝑓‘0) ∧ (((0[,]1)
× {(𝑓‘0)})‘1) = (𝑓‘0))) |
| 71 | 57, 64, 70 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (((0[,]1) × {(𝑓‘0)}) ∈ (II Cn 𝐽) ∧ (((0[,]1) ×
{(𝑓‘0)})‘0) =
(𝑓‘0) ∧ (((0[,]1)
× {(𝑓‘0)})‘1) = (𝑓‘0))) |
| 72 | 71 | simp1d 1142 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → ((0[,]1) × {(𝑓‘0)}) ∈ (II Cn 𝐽)) |
| 73 | 71 | simp2d 1143 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (((0[,]1) × {(𝑓‘0)})‘0) = (𝑓‘0)) |
| 74 | 71 | simp3d 1144 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (((0[,]1) × {(𝑓‘0)})‘1) = (𝑓‘0)) |
| 75 | 52, 53, 57, 64, 72, 73, 74 | elpi1i 25002 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → [((0[,]1) × {(𝑓‘0)})](
≃ph‘𝐽) ∈ (Base‘(𝐽 π1 (𝑓‘0)))) |
| 76 | | simpllr 775 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑌 ∈ 𝑋) |
| 77 | 7, 52, 4, 53, 5 | pconnpi1 35264 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ PConn ∧ (𝑓‘0) ∈ 𝑋 ∧ 𝑌 ∈ 𝑋) → (𝐽 π1 (𝑓‘0)) ≃𝑔 (𝐽 π1 𝑌)) |
| 78 | 54, 64, 76, 77 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (𝐽 π1 (𝑓‘0)) ≃𝑔 (𝐽 π1 𝑌)) |
| 79 | 53, 5 | gicen 19266 |
. . . . . . . . . . 11
⊢ ((𝐽 π1 (𝑓‘0))
≃𝑔 (𝐽 π1 𝑌) → (Base‘(𝐽 π1 (𝑓‘0))) ≈ (Base‘(𝐽 π1 𝑌))) |
| 80 | 78, 79 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (Base‘(𝐽 π1 (𝑓‘0))) ≈
(Base‘(𝐽
π1 𝑌))) |
| 81 | | simplr 768 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (Base‘(𝐽 π1 𝑌)) ≈
1o) |
| 82 | | entr 9025 |
. . . . . . . . . 10
⊢
(((Base‘(𝐽
π1 (𝑓‘0))) ≈ (Base‘(𝐽 π1 𝑌)) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) →
(Base‘(𝐽
π1 (𝑓‘0))) ≈
1o) |
| 83 | 80, 81, 82 | syl2anc 584 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (Base‘(𝐽 π1 (𝑓‘0))) ≈
1o) |
| 84 | | en1eqsn 9285 |
. . . . . . . . 9
⊢
(([((0[,]1) × {(𝑓‘0)})](
≃ph‘𝐽) ∈ (Base‘(𝐽 π1 (𝑓‘0))) ∧ (Base‘(𝐽 π1 (𝑓‘0))) ≈
1o) → (Base‘(𝐽 π1 (𝑓‘0))) = {[((0[,]1) × {(𝑓‘0)})](
≃ph‘𝐽)}) |
| 85 | 75, 83, 84 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (Base‘(𝐽 π1 (𝑓‘0))) = {[((0[,]1) ×
{(𝑓‘0)})](
≃ph‘𝐽)}) |
| 86 | 68, 85 | eleqtrd 2837 |
. . . . . . 7
⊢ ((((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → [𝑓]( ≃ph‘𝐽) ∈ {[((0[,]1) ×
{(𝑓‘0)})](
≃ph‘𝐽)}) |
| 87 | | elsni 4623 |
. . . . . . 7
⊢ ([𝑓](
≃ph‘𝐽) ∈ {[((0[,]1) × {(𝑓‘0)})](
≃ph‘𝐽)} → [𝑓]( ≃ph‘𝐽) = [((0[,]1) × {(𝑓‘0)})](
≃ph‘𝐽)) |
| 88 | 86, 87 | syl 17 |
. . . . . 6
⊢ ((((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → [𝑓]( ≃ph‘𝐽) = [((0[,]1) × {(𝑓‘0)})](
≃ph‘𝐽)) |
| 89 | 13 | a1i 11 |
. . . . . . 7
⊢ ((((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (
≃ph‘𝐽) Er (II Cn 𝐽)) |
| 90 | 89, 58 | erth 8775 |
. . . . . 6
⊢ ((((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑓( ≃ph‘𝐽)((0[,]1) × {(𝑓‘0)}) ↔ [𝑓](
≃ph‘𝐽) = [((0[,]1) × {(𝑓‘0)})](
≃ph‘𝐽))) |
| 91 | 88, 90 | mpbird 257 |
. . . . 5
⊢ ((((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑓( ≃ph‘𝐽)((0[,]1) × {(𝑓‘0)})) |
| 92 | 91 | expr 456 |
. . . 4
⊢ ((((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ 𝑓 ∈ (II Cn 𝐽)) → ((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝐽)((0[,]1) × {(𝑓‘0)}))) |
| 93 | 92 | ralrimiva 3133 |
. . 3
⊢ (((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) →
∀𝑓 ∈ (II Cn
𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝐽)((0[,]1) × {(𝑓‘0)}))) |
| 94 | | issconn 35253 |
. . 3
⊢ (𝐽 ∈ SConn ↔ (𝐽 ∈ PConn ∧
∀𝑓 ∈ (II Cn
𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝐽)((0[,]1) × {(𝑓‘0)})))) |
| 95 | 51, 93, 94 | sylanbrc 583 |
. 2
⊢ (((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) → 𝐽 ∈ SConn) |
| 96 | 50, 95 | impbida 800 |
1
⊢ ((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) → (𝐽 ∈ SConn ↔ (Base‘(𝐽 π1 𝑌)) ≈
1o)) |