Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sconnpi1 Structured version   Visualization version   GIF version

Theorem sconnpi1 35245
Description: A path-connected topological space is simply connected iff its fundamental group is trivial. (Contributed by Mario Carneiro, 12-Feb-2015.)
Hypothesis
Ref Expression
sconnpi1.1 𝑋 = 𝐽
Assertion
Ref Expression
sconnpi1 ((𝐽 ∈ PConn ∧ 𝑌𝑋) → (𝐽 ∈ SConn ↔ (Base‘(𝐽 π1 𝑌)) ≈ 1o))

Proof of Theorem sconnpi1
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sconntop 35234 . . . . . . . . 9 (𝐽 ∈ SConn → 𝐽 ∈ Top)
21adantl 481 . . . . . . . 8 ((𝑌𝑋𝐽 ∈ SConn) → 𝐽 ∈ Top)
3 simpl 482 . . . . . . . 8 ((𝑌𝑋𝐽 ∈ SConn) → 𝑌𝑋)
4 eqid 2736 . . . . . . . . 9 (𝐽 π1 𝑌) = (𝐽 π1 𝑌)
5 eqid 2736 . . . . . . . . 9 (Base‘(𝐽 π1 𝑌)) = (Base‘(𝐽 π1 𝑌))
6 simpl 482 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑌𝑋) → 𝐽 ∈ Top)
7 sconnpi1.1 . . . . . . . . . . 11 𝑋 = 𝐽
87toptopon 22924 . . . . . . . . . 10 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
96, 8sylib 218 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑌𝑋) → 𝐽 ∈ (TopOn‘𝑋))
10 simpr 484 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑌𝑋) → 𝑌𝑋)
114, 5, 9, 10elpi1 25079 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑌𝑋) → (𝑥 ∈ (Base‘(𝐽 π1 𝑌)) ↔ ∃𝑓 ∈ (II Cn 𝐽)(((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌) ∧ 𝑥 = [𝑓]( ≃ph𝐽))))
122, 3, 11syl2anc 584 . . . . . . 7 ((𝑌𝑋𝐽 ∈ SConn) → (𝑥 ∈ (Base‘(𝐽 π1 𝑌)) ↔ ∃𝑓 ∈ (II Cn 𝐽)(((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌) ∧ 𝑥 = [𝑓]( ≃ph𝐽))))
13 phtpcer 25028 . . . . . . . . . . . . 13 ( ≃ph𝐽) Er (II Cn 𝐽)
1413a1i 11 . . . . . . . . . . . 12 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → ( ≃ph𝐽) Er (II Cn 𝐽))
15 simpllr 775 . . . . . . . . . . . . . 14 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → 𝐽 ∈ SConn)
16 simplr 768 . . . . . . . . . . . . . 14 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → 𝑓 ∈ (II Cn 𝐽))
17 simprl 770 . . . . . . . . . . . . . . 15 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → (𝑓‘0) = 𝑌)
18 simprr 772 . . . . . . . . . . . . . . 15 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → (𝑓‘1) = 𝑌)
1917, 18eqtr4d 2779 . . . . . . . . . . . . . 14 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → (𝑓‘0) = (𝑓‘1))
20 sconnpht 35235 . . . . . . . . . . . . . 14 ((𝐽 ∈ SConn ∧ 𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1)) → 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)}))
2115, 16, 19, 20syl3anc 1372 . . . . . . . . . . . . 13 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)}))
2217sneqd 4637 . . . . . . . . . . . . . 14 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → {(𝑓‘0)} = {𝑌})
2322xpeq2d 5714 . . . . . . . . . . . . 13 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → ((0[,]1) × {(𝑓‘0)}) = ((0[,]1) × {𝑌}))
2421, 23breqtrd 5168 . . . . . . . . . . . 12 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → 𝑓( ≃ph𝐽)((0[,]1) × {𝑌}))
2514, 24erthi 8799 . . . . . . . . . . 11 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → [𝑓]( ≃ph𝐽) = [((0[,]1) × {𝑌})]( ≃ph𝐽))
262, 8sylib 218 . . . . . . . . . . . . 13 ((𝑌𝑋𝐽 ∈ SConn) → 𝐽 ∈ (TopOn‘𝑋))
27 eqid 2736 . . . . . . . . . . . . . 14 ((0[,]1) × {𝑌}) = ((0[,]1) × {𝑌})
284, 27pi1id 25085 . . . . . . . . . . . . 13 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌𝑋) → [((0[,]1) × {𝑌})]( ≃ph𝐽) = (0g‘(𝐽 π1 𝑌)))
2926, 3, 28syl2anc 584 . . . . . . . . . . . 12 ((𝑌𝑋𝐽 ∈ SConn) → [((0[,]1) × {𝑌})]( ≃ph𝐽) = (0g‘(𝐽 π1 𝑌)))
3029ad2antrr 726 . . . . . . . . . . 11 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → [((0[,]1) × {𝑌})]( ≃ph𝐽) = (0g‘(𝐽 π1 𝑌)))
3125, 30eqtrd 2776 . . . . . . . . . 10 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → [𝑓]( ≃ph𝐽) = (0g‘(𝐽 π1 𝑌)))
32 velsn 4641 . . . . . . . . . . 11 (𝑥 ∈ {(0g‘(𝐽 π1 𝑌))} ↔ 𝑥 = (0g‘(𝐽 π1 𝑌)))
33 eqeq1 2740 . . . . . . . . . . 11 (𝑥 = [𝑓]( ≃ph𝐽) → (𝑥 = (0g‘(𝐽 π1 𝑌)) ↔ [𝑓]( ≃ph𝐽) = (0g‘(𝐽 π1 𝑌))))
3432, 33bitrid 283 . . . . . . . . . 10 (𝑥 = [𝑓]( ≃ph𝐽) → (𝑥 ∈ {(0g‘(𝐽 π1 𝑌))} ↔ [𝑓]( ≃ph𝐽) = (0g‘(𝐽 π1 𝑌))))
3531, 34syl5ibrcom 247 . . . . . . . . 9 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → (𝑥 = [𝑓]( ≃ph𝐽) → 𝑥 ∈ {(0g‘(𝐽 π1 𝑌))}))
3635expimpd 453 . . . . . . . 8 (((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) → ((((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌) ∧ 𝑥 = [𝑓]( ≃ph𝐽)) → 𝑥 ∈ {(0g‘(𝐽 π1 𝑌))}))
3736rexlimdva 3154 . . . . . . 7 ((𝑌𝑋𝐽 ∈ SConn) → (∃𝑓 ∈ (II Cn 𝐽)(((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌) ∧ 𝑥 = [𝑓]( ≃ph𝐽)) → 𝑥 ∈ {(0g‘(𝐽 π1 𝑌))}))
3812, 37sylbid 240 . . . . . 6 ((𝑌𝑋𝐽 ∈ SConn) → (𝑥 ∈ (Base‘(𝐽 π1 𝑌)) → 𝑥 ∈ {(0g‘(𝐽 π1 𝑌))}))
3938ssrdv 3988 . . . . 5 ((𝑌𝑋𝐽 ∈ SConn) → (Base‘(𝐽 π1 𝑌)) ⊆ {(0g‘(𝐽 π1 𝑌))})
404pi1grp 25084 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌𝑋) → (𝐽 π1 𝑌) ∈ Grp)
4126, 3, 40syl2anc 584 . . . . . . 7 ((𝑌𝑋𝐽 ∈ SConn) → (𝐽 π1 𝑌) ∈ Grp)
42 eqid 2736 . . . . . . . 8 (0g‘(𝐽 π1 𝑌)) = (0g‘(𝐽 π1 𝑌))
435, 42grpidcl 18984 . . . . . . 7 ((𝐽 π1 𝑌) ∈ Grp → (0g‘(𝐽 π1 𝑌)) ∈ (Base‘(𝐽 π1 𝑌)))
4441, 43syl 17 . . . . . 6 ((𝑌𝑋𝐽 ∈ SConn) → (0g‘(𝐽 π1 𝑌)) ∈ (Base‘(𝐽 π1 𝑌)))
4544snssd 4808 . . . . 5 ((𝑌𝑋𝐽 ∈ SConn) → {(0g‘(𝐽 π1 𝑌))} ⊆ (Base‘(𝐽 π1 𝑌)))
4639, 45eqssd 4000 . . . 4 ((𝑌𝑋𝐽 ∈ SConn) → (Base‘(𝐽 π1 𝑌)) = {(0g‘(𝐽 π1 𝑌))})
47 fvex 6918 . . . . 5 (0g‘(𝐽 π1 𝑌)) ∈ V
4847ensn1 9062 . . . 4 {(0g‘(𝐽 π1 𝑌))} ≈ 1o
4946, 48eqbrtrdi 5181 . . 3 ((𝑌𝑋𝐽 ∈ SConn) → (Base‘(𝐽 π1 𝑌)) ≈ 1o)
5049adantll 714 . 2 (((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ 𝐽 ∈ SConn) → (Base‘(𝐽 π1 𝑌)) ≈ 1o)
51 simpll 766 . . 3 (((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) → 𝐽 ∈ PConn)
52 eqid 2736 . . . . . . . . 9 (𝐽 π1 (𝑓‘0)) = (𝐽 π1 (𝑓‘0))
53 eqid 2736 . . . . . . . . 9 (Base‘(𝐽 π1 (𝑓‘0))) = (Base‘(𝐽 π1 (𝑓‘0)))
54 simplll 774 . . . . . . . . . . 11 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → 𝐽 ∈ PConn)
55 pconntop 35231 . . . . . . . . . . 11 (𝐽 ∈ PConn → 𝐽 ∈ Top)
5654, 55syl 17 . . . . . . . . . 10 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → 𝐽 ∈ Top)
5756, 8sylib 218 . . . . . . . . 9 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → 𝐽 ∈ (TopOn‘𝑋))
58 simprl 770 . . . . . . . . . . 11 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑓 ∈ (II Cn 𝐽))
59 iiuni 24908 . . . . . . . . . . . 12 (0[,]1) = II
6059, 7cnf 23255 . . . . . . . . . . 11 (𝑓 ∈ (II Cn 𝐽) → 𝑓:(0[,]1)⟶𝑋)
6158, 60syl 17 . . . . . . . . . 10 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑓:(0[,]1)⟶𝑋)
62 0elunit 13510 . . . . . . . . . 10 0 ∈ (0[,]1)
63 ffvelcdm 7100 . . . . . . . . . 10 ((𝑓:(0[,]1)⟶𝑋 ∧ 0 ∈ (0[,]1)) → (𝑓‘0) ∈ 𝑋)
6461, 62, 63sylancl 586 . . . . . . . . 9 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑓‘0) ∈ 𝑋)
65 eqidd 2737 . . . . . . . . 9 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑓‘0) = (𝑓‘0))
66 simprr 772 . . . . . . . . . 10 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑓‘0) = (𝑓‘1))
6766eqcomd 2742 . . . . . . . . 9 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑓‘1) = (𝑓‘0))
6852, 53, 57, 64, 58, 65, 67elpi1i 25080 . . . . . . . 8 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → [𝑓]( ≃ph𝐽) ∈ (Base‘(𝐽 π1 (𝑓‘0))))
69 eqid 2736 . . . . . . . . . . . . 13 ((0[,]1) × {(𝑓‘0)}) = ((0[,]1) × {(𝑓‘0)})
7069pcoptcl 25055 . . . . . . . . . . . 12 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑓‘0) ∈ 𝑋) → (((0[,]1) × {(𝑓‘0)}) ∈ (II Cn 𝐽) ∧ (((0[,]1) × {(𝑓‘0)})‘0) = (𝑓‘0) ∧ (((0[,]1) × {(𝑓‘0)})‘1) = (𝑓‘0)))
7157, 64, 70syl2anc 584 . . . . . . . . . . 11 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (((0[,]1) × {(𝑓‘0)}) ∈ (II Cn 𝐽) ∧ (((0[,]1) × {(𝑓‘0)})‘0) = (𝑓‘0) ∧ (((0[,]1) × {(𝑓‘0)})‘1) = (𝑓‘0)))
7271simp1d 1142 . . . . . . . . . 10 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → ((0[,]1) × {(𝑓‘0)}) ∈ (II Cn 𝐽))
7371simp2d 1143 . . . . . . . . . 10 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (((0[,]1) × {(𝑓‘0)})‘0) = (𝑓‘0))
7471simp3d 1144 . . . . . . . . . 10 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (((0[,]1) × {(𝑓‘0)})‘1) = (𝑓‘0))
7552, 53, 57, 64, 72, 73, 74elpi1i 25080 . . . . . . . . 9 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → [((0[,]1) × {(𝑓‘0)})]( ≃ph𝐽) ∈ (Base‘(𝐽 π1 (𝑓‘0))))
76 simpllr 775 . . . . . . . . . . . 12 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑌𝑋)
777, 52, 4, 53, 5pconnpi1 35243 . . . . . . . . . . . 12 ((𝐽 ∈ PConn ∧ (𝑓‘0) ∈ 𝑋𝑌𝑋) → (𝐽 π1 (𝑓‘0)) ≃𝑔 (𝐽 π1 𝑌))
7854, 64, 76, 77syl3anc 1372 . . . . . . . . . . 11 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (𝐽 π1 (𝑓‘0)) ≃𝑔 (𝐽 π1 𝑌))
7953, 5gicen 19297 . . . . . . . . . . 11 ((𝐽 π1 (𝑓‘0)) ≃𝑔 (𝐽 π1 𝑌) → (Base‘(𝐽 π1 (𝑓‘0))) ≈ (Base‘(𝐽 π1 𝑌)))
8078, 79syl 17 . . . . . . . . . 10 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (Base‘(𝐽 π1 (𝑓‘0))) ≈ (Base‘(𝐽 π1 𝑌)))
81 simplr 768 . . . . . . . . . 10 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (Base‘(𝐽 π1 𝑌)) ≈ 1o)
82 entr 9047 . . . . . . . . . 10 (((Base‘(𝐽 π1 (𝑓‘0))) ≈ (Base‘(𝐽 π1 𝑌)) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) → (Base‘(𝐽 π1 (𝑓‘0))) ≈ 1o)
8380, 81, 82syl2anc 584 . . . . . . . . 9 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (Base‘(𝐽 π1 (𝑓‘0))) ≈ 1o)
84 en1eqsn 9309 . . . . . . . . 9 (([((0[,]1) × {(𝑓‘0)})]( ≃ph𝐽) ∈ (Base‘(𝐽 π1 (𝑓‘0))) ∧ (Base‘(𝐽 π1 (𝑓‘0))) ≈ 1o) → (Base‘(𝐽 π1 (𝑓‘0))) = {[((0[,]1) × {(𝑓‘0)})]( ≃ph𝐽)})
8575, 83, 84syl2anc 584 . . . . . . . 8 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (Base‘(𝐽 π1 (𝑓‘0))) = {[((0[,]1) × {(𝑓‘0)})]( ≃ph𝐽)})
8668, 85eleqtrd 2842 . . . . . . 7 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → [𝑓]( ≃ph𝐽) ∈ {[((0[,]1) × {(𝑓‘0)})]( ≃ph𝐽)})
87 elsni 4642 . . . . . . 7 ([𝑓]( ≃ph𝐽) ∈ {[((0[,]1) × {(𝑓‘0)})]( ≃ph𝐽)} → [𝑓]( ≃ph𝐽) = [((0[,]1) × {(𝑓‘0)})]( ≃ph𝐽))
8886, 87syl 17 . . . . . 6 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → [𝑓]( ≃ph𝐽) = [((0[,]1) × {(𝑓‘0)})]( ≃ph𝐽))
8913a1i 11 . . . . . . 7 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → ( ≃ph𝐽) Er (II Cn 𝐽))
9089, 58erth 8797 . . . . . 6 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)}) ↔ [𝑓]( ≃ph𝐽) = [((0[,]1) × {(𝑓‘0)})]( ≃ph𝐽)))
9188, 90mpbird 257 . . . . 5 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)}))
9291expr 456 . . . 4 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ 𝑓 ∈ (II Cn 𝐽)) → ((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)})))
9392ralrimiva 3145 . . 3 (((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) → ∀𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)})))
94 issconn 35232 . . 3 (𝐽 ∈ SConn ↔ (𝐽 ∈ PConn ∧ ∀𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)}))))
9551, 93, 94sylanbrc 583 . 2 (((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) → 𝐽 ∈ SConn)
9650, 95impbida 800 1 ((𝐽 ∈ PConn ∧ 𝑌𝑋) → (𝐽 ∈ SConn ↔ (Base‘(𝐽 π1 𝑌)) ≈ 1o))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3060  wrex 3069  {csn 4625   cuni 4906   class class class wbr 5142   × cxp 5682  wf 6556  cfv 6560  (class class class)co 7432  1oc1o 8500   Er wer 8743  [cec 8744  cen 8983  0cc0 11156  1c1 11157  [,]cicc 13391  Basecbs 17248  0gc0g 17485  Grpcgrp 18952  𝑔 cgic 19277  Topctop 22900  TopOnctopon 22917   Cn ccn 23233  IIcii 24902  phcphtpc 25002   π1 cpi1 25037  PConncpconn 35225  SConncsconn 35226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234  ax-addf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-ec 8748  df-qs 8752  df-map 8869  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-fi 9452  df-sup 9483  df-inf 9484  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-q 12992  df-rp 13036  df-xneg 13155  df-xadd 13156  df-xmul 13157  df-ioo 13392  df-icc 13395  df-fz 13549  df-fzo 13696  df-seq 14044  df-exp 14104  df-hash 14371  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-qus 17555  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-submnd 18798  df-grp 18955  df-mulg 19087  df-ghm 19232  df-gim 19278  df-gic 19279  df-cntz 19336  df-cmn 19801  df-psmet 21357  df-xmet 21358  df-met 21359  df-bl 21360  df-mopn 21361  df-cnfld 21366  df-top 22901  df-topon 22918  df-topsp 22940  df-bases 22954  df-cld 23028  df-cn 23236  df-cnp 23237  df-tx 23571  df-hmeo 23764  df-xms 24331  df-ms 24332  df-tms 24333  df-ii 24904  df-htpy 25003  df-phtpy 25004  df-phtpc 25025  df-pco 25039  df-om1 25040  df-pi1 25042  df-pconn 35227  df-sconn 35228
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator