Step | Hyp | Ref
| Expression |
1 | | sconntop 33190 |
. . . . . . . . 9
⊢ (𝐽 ∈ SConn → 𝐽 ∈ Top) |
2 | 1 | adantl 482 |
. . . . . . . 8
⊢ ((𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn) → 𝐽 ∈ Top) |
3 | | simpl 483 |
. . . . . . . 8
⊢ ((𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn) → 𝑌 ∈ 𝑋) |
4 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝐽 π1 𝑌) = (𝐽 π1 𝑌) |
5 | | eqid 2738 |
. . . . . . . . 9
⊢
(Base‘(𝐽
π1 𝑌)) =
(Base‘(𝐽
π1 𝑌)) |
6 | | simpl 483 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ 𝑌 ∈ 𝑋) → 𝐽 ∈ Top) |
7 | | sconnpi1.1 |
. . . . . . . . . . 11
⊢ 𝑋 = ∪
𝐽 |
8 | 7 | toptopon 22066 |
. . . . . . . . . 10
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
9 | 6, 8 | sylib 217 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝑌 ∈ 𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
10 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝑌 ∈ 𝑋) → 𝑌 ∈ 𝑋) |
11 | 4, 5, 9, 10 | elpi1 24208 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑌 ∈ 𝑋) → (𝑥 ∈ (Base‘(𝐽 π1 𝑌)) ↔ ∃𝑓 ∈ (II Cn 𝐽)(((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌) ∧ 𝑥 = [𝑓]( ≃ph‘𝐽)))) |
12 | 2, 3, 11 | syl2anc 584 |
. . . . . . 7
⊢ ((𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn) → (𝑥 ∈ (Base‘(𝐽 π1 𝑌)) ↔ ∃𝑓 ∈ (II Cn 𝐽)(((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌) ∧ 𝑥 = [𝑓]( ≃ph‘𝐽)))) |
13 | | phtpcer 24158 |
. . . . . . . . . . . . 13
⊢ (
≃ph‘𝐽) Er (II Cn 𝐽) |
14 | 13 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((((𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → (
≃ph‘𝐽) Er (II Cn 𝐽)) |
15 | | simpllr 773 |
. . . . . . . . . . . . . 14
⊢ ((((𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → 𝐽 ∈ SConn) |
16 | | simplr 766 |
. . . . . . . . . . . . . 14
⊢ ((((𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → 𝑓 ∈ (II Cn 𝐽)) |
17 | | simprl 768 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → (𝑓‘0) = 𝑌) |
18 | | simprr 770 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → (𝑓‘1) = 𝑌) |
19 | 17, 18 | eqtr4d 2781 |
. . . . . . . . . . . . . 14
⊢ ((((𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → (𝑓‘0) = (𝑓‘1)) |
20 | | sconnpht 33191 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ SConn ∧ 𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1)) → 𝑓( ≃ph‘𝐽)((0[,]1) × {(𝑓‘0)})) |
21 | 15, 16, 19, 20 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ ((((𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → 𝑓( ≃ph‘𝐽)((0[,]1) × {(𝑓‘0)})) |
22 | 17 | sneqd 4573 |
. . . . . . . . . . . . . 14
⊢ ((((𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → {(𝑓‘0)} = {𝑌}) |
23 | 22 | xpeq2d 5619 |
. . . . . . . . . . . . 13
⊢ ((((𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → ((0[,]1) × {(𝑓‘0)}) = ((0[,]1) ×
{𝑌})) |
24 | 21, 23 | breqtrd 5100 |
. . . . . . . . . . . 12
⊢ ((((𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → 𝑓( ≃ph‘𝐽)((0[,]1) × {𝑌})) |
25 | 14, 24 | erthi 8549 |
. . . . . . . . . . 11
⊢ ((((𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → [𝑓]( ≃ph‘𝐽) = [((0[,]1) × {𝑌})](
≃ph‘𝐽)) |
26 | 2, 8 | sylib 217 |
. . . . . . . . . . . . 13
⊢ ((𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn) → 𝐽 ∈ (TopOn‘𝑋)) |
27 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢ ((0[,]1)
× {𝑌}) = ((0[,]1)
× {𝑌}) |
28 | 4, 27 | pi1id 24214 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ∈ 𝑋) → [((0[,]1) × {𝑌})](
≃ph‘𝐽) = (0g‘(𝐽 π1 𝑌))) |
29 | 26, 3, 28 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn) → [((0[,]1) ×
{𝑌})](
≃ph‘𝐽) = (0g‘(𝐽 π1 𝑌))) |
30 | 29 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ ((((𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → [((0[,]1) × {𝑌})](
≃ph‘𝐽) = (0g‘(𝐽 π1 𝑌))) |
31 | 25, 30 | eqtrd 2778 |
. . . . . . . . . 10
⊢ ((((𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → [𝑓]( ≃ph‘𝐽) = (0g‘(𝐽 π1 𝑌))) |
32 | | velsn 4577 |
. . . . . . . . . . 11
⊢ (𝑥 ∈
{(0g‘(𝐽
π1 𝑌))}
↔ 𝑥 =
(0g‘(𝐽
π1 𝑌))) |
33 | | eqeq1 2742 |
. . . . . . . . . . 11
⊢ (𝑥 = [𝑓]( ≃ph‘𝐽) → (𝑥 = (0g‘(𝐽 π1 𝑌)) ↔ [𝑓]( ≃ph‘𝐽) = (0g‘(𝐽 π1 𝑌)))) |
34 | 32, 33 | syl5bb 283 |
. . . . . . . . . 10
⊢ (𝑥 = [𝑓]( ≃ph‘𝐽) → (𝑥 ∈ {(0g‘(𝐽 π1 𝑌))} ↔ [𝑓]( ≃ph‘𝐽) = (0g‘(𝐽 π1 𝑌)))) |
35 | 31, 34 | syl5ibrcom 246 |
. . . . . . . . 9
⊢ ((((𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → (𝑥 = [𝑓]( ≃ph‘𝐽) → 𝑥 ∈ {(0g‘(𝐽 π1 𝑌))})) |
36 | 35 | expimpd 454 |
. . . . . . . 8
⊢ (((𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) → ((((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌) ∧ 𝑥 = [𝑓]( ≃ph‘𝐽)) → 𝑥 ∈ {(0g‘(𝐽 π1 𝑌))})) |
37 | 36 | rexlimdva 3213 |
. . . . . . 7
⊢ ((𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn) → (∃𝑓 ∈ (II Cn 𝐽)(((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌) ∧ 𝑥 = [𝑓]( ≃ph‘𝐽)) → 𝑥 ∈ {(0g‘(𝐽 π1 𝑌))})) |
38 | 12, 37 | sylbid 239 |
. . . . . 6
⊢ ((𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn) → (𝑥 ∈ (Base‘(𝐽 π1 𝑌)) → 𝑥 ∈ {(0g‘(𝐽 π1 𝑌))})) |
39 | 38 | ssrdv 3927 |
. . . . 5
⊢ ((𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn) → (Base‘(𝐽 π1 𝑌)) ⊆
{(0g‘(𝐽
π1 𝑌))}) |
40 | 4 | pi1grp 24213 |
. . . . . . . 8
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ∈ 𝑋) → (𝐽 π1 𝑌) ∈ Grp) |
41 | 26, 3, 40 | syl2anc 584 |
. . . . . . 7
⊢ ((𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn) → (𝐽 π1 𝑌) ∈ Grp) |
42 | | eqid 2738 |
. . . . . . . 8
⊢
(0g‘(𝐽 π1 𝑌)) = (0g‘(𝐽 π1 𝑌)) |
43 | 5, 42 | grpidcl 18607 |
. . . . . . 7
⊢ ((𝐽 π1 𝑌) ∈ Grp →
(0g‘(𝐽
π1 𝑌)) ∈
(Base‘(𝐽
π1 𝑌))) |
44 | 41, 43 | syl 17 |
. . . . . 6
⊢ ((𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn) →
(0g‘(𝐽
π1 𝑌)) ∈
(Base‘(𝐽
π1 𝑌))) |
45 | 44 | snssd 4742 |
. . . . 5
⊢ ((𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn) →
{(0g‘(𝐽
π1 𝑌))}
⊆ (Base‘(𝐽
π1 𝑌))) |
46 | 39, 45 | eqssd 3938 |
. . . 4
⊢ ((𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn) → (Base‘(𝐽 π1 𝑌)) =
{(0g‘(𝐽
π1 𝑌))}) |
47 | | fvex 6787 |
. . . . 5
⊢
(0g‘(𝐽 π1 𝑌)) ∈ V |
48 | 47 | ensn1 8807 |
. . . 4
⊢
{(0g‘(𝐽 π1 𝑌))} ≈ 1o |
49 | 46, 48 | eqbrtrdi 5113 |
. . 3
⊢ ((𝑌 ∈ 𝑋 ∧ 𝐽 ∈ SConn) → (Base‘(𝐽 π1 𝑌)) ≈
1o) |
50 | 49 | adantll 711 |
. 2
⊢ (((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ 𝐽 ∈ SConn) → (Base‘(𝐽 π1 𝑌)) ≈
1o) |
51 | | simpll 764 |
. . 3
⊢ (((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) → 𝐽 ∈ PConn) |
52 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝐽 π1 (𝑓‘0)) = (𝐽 π1 (𝑓‘0)) |
53 | | eqid 2738 |
. . . . . . . . 9
⊢
(Base‘(𝐽
π1 (𝑓‘0))) = (Base‘(𝐽 π1 (𝑓‘0))) |
54 | | simplll 772 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → 𝐽 ∈ PConn) |
55 | | pconntop 33187 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ PConn → 𝐽 ∈ Top) |
56 | 54, 55 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → 𝐽 ∈ Top) |
57 | 56, 8 | sylib 217 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → 𝐽 ∈ (TopOn‘𝑋)) |
58 | | simprl 768 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑓 ∈ (II Cn 𝐽)) |
59 | | iiuni 24044 |
. . . . . . . . . . . 12
⊢ (0[,]1) =
∪ II |
60 | 59, 7 | cnf 22397 |
. . . . . . . . . . 11
⊢ (𝑓 ∈ (II Cn 𝐽) → 𝑓:(0[,]1)⟶𝑋) |
61 | 58, 60 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑓:(0[,]1)⟶𝑋) |
62 | | 0elunit 13201 |
. . . . . . . . . 10
⊢ 0 ∈
(0[,]1) |
63 | | ffvelrn 6959 |
. . . . . . . . . 10
⊢ ((𝑓:(0[,]1)⟶𝑋 ∧ 0 ∈ (0[,]1)) →
(𝑓‘0) ∈ 𝑋) |
64 | 61, 62, 63 | sylancl 586 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑓‘0) ∈ 𝑋) |
65 | | eqidd 2739 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑓‘0) = (𝑓‘0)) |
66 | | simprr 770 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑓‘0) = (𝑓‘1)) |
67 | 66 | eqcomd 2744 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑓‘1) = (𝑓‘0)) |
68 | 52, 53, 57, 64, 58, 65, 67 | elpi1i 24209 |
. . . . . . . 8
⊢ ((((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → [𝑓]( ≃ph‘𝐽) ∈ (Base‘(𝐽 π1 (𝑓‘0)))) |
69 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ ((0[,]1)
× {(𝑓‘0)}) =
((0[,]1) × {(𝑓‘0)}) |
70 | 69 | pcoptcl 24184 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑓‘0) ∈ 𝑋) → (((0[,]1) × {(𝑓‘0)}) ∈ (II Cn 𝐽) ∧ (((0[,]1) ×
{(𝑓‘0)})‘0) =
(𝑓‘0) ∧ (((0[,]1)
× {(𝑓‘0)})‘1) = (𝑓‘0))) |
71 | 57, 64, 70 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (((0[,]1) × {(𝑓‘0)}) ∈ (II Cn 𝐽) ∧ (((0[,]1) ×
{(𝑓‘0)})‘0) =
(𝑓‘0) ∧ (((0[,]1)
× {(𝑓‘0)})‘1) = (𝑓‘0))) |
72 | 71 | simp1d 1141 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → ((0[,]1) × {(𝑓‘0)}) ∈ (II Cn 𝐽)) |
73 | 71 | simp2d 1142 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (((0[,]1) × {(𝑓‘0)})‘0) = (𝑓‘0)) |
74 | 71 | simp3d 1143 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (((0[,]1) × {(𝑓‘0)})‘1) = (𝑓‘0)) |
75 | 52, 53, 57, 64, 72, 73, 74 | elpi1i 24209 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → [((0[,]1) × {(𝑓‘0)})](
≃ph‘𝐽) ∈ (Base‘(𝐽 π1 (𝑓‘0)))) |
76 | | simpllr 773 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑌 ∈ 𝑋) |
77 | 7, 52, 4, 53, 5 | pconnpi1 33199 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ PConn ∧ (𝑓‘0) ∈ 𝑋 ∧ 𝑌 ∈ 𝑋) → (𝐽 π1 (𝑓‘0)) ≃𝑔 (𝐽 π1 𝑌)) |
78 | 54, 64, 76, 77 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (𝐽 π1 (𝑓‘0)) ≃𝑔 (𝐽 π1 𝑌)) |
79 | 53, 5 | gicen 18893 |
. . . . . . . . . . 11
⊢ ((𝐽 π1 (𝑓‘0))
≃𝑔 (𝐽 π1 𝑌) → (Base‘(𝐽 π1 (𝑓‘0))) ≈ (Base‘(𝐽 π1 𝑌))) |
80 | 78, 79 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (Base‘(𝐽 π1 (𝑓‘0))) ≈
(Base‘(𝐽
π1 𝑌))) |
81 | | simplr 766 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (Base‘(𝐽 π1 𝑌)) ≈
1o) |
82 | | entr 8792 |
. . . . . . . . . 10
⊢
(((Base‘(𝐽
π1 (𝑓‘0))) ≈ (Base‘(𝐽 π1 𝑌)) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) →
(Base‘(𝐽
π1 (𝑓‘0))) ≈
1o) |
83 | 80, 81, 82 | syl2anc 584 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (Base‘(𝐽 π1 (𝑓‘0))) ≈
1o) |
84 | | en1eqsn 9048 |
. . . . . . . . 9
⊢
(([((0[,]1) × {(𝑓‘0)})](
≃ph‘𝐽) ∈ (Base‘(𝐽 π1 (𝑓‘0))) ∧ (Base‘(𝐽 π1 (𝑓‘0))) ≈
1o) → (Base‘(𝐽 π1 (𝑓‘0))) = {[((0[,]1) × {(𝑓‘0)})](
≃ph‘𝐽)}) |
85 | 75, 83, 84 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (Base‘(𝐽 π1 (𝑓‘0))) = {[((0[,]1) ×
{(𝑓‘0)})](
≃ph‘𝐽)}) |
86 | 68, 85 | eleqtrd 2841 |
. . . . . . 7
⊢ ((((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → [𝑓]( ≃ph‘𝐽) ∈ {[((0[,]1) ×
{(𝑓‘0)})](
≃ph‘𝐽)}) |
87 | | elsni 4578 |
. . . . . . 7
⊢ ([𝑓](
≃ph‘𝐽) ∈ {[((0[,]1) × {(𝑓‘0)})](
≃ph‘𝐽)} → [𝑓]( ≃ph‘𝐽) = [((0[,]1) × {(𝑓‘0)})](
≃ph‘𝐽)) |
88 | 86, 87 | syl 17 |
. . . . . 6
⊢ ((((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → [𝑓]( ≃ph‘𝐽) = [((0[,]1) × {(𝑓‘0)})](
≃ph‘𝐽)) |
89 | 13 | a1i 11 |
. . . . . . 7
⊢ ((((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (
≃ph‘𝐽) Er (II Cn 𝐽)) |
90 | 89, 58 | erth 8547 |
. . . . . 6
⊢ ((((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑓( ≃ph‘𝐽)((0[,]1) × {(𝑓‘0)}) ↔ [𝑓](
≃ph‘𝐽) = [((0[,]1) × {(𝑓‘0)})](
≃ph‘𝐽))) |
91 | 88, 90 | mpbird 256 |
. . . . 5
⊢ ((((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑓( ≃ph‘𝐽)((0[,]1) × {(𝑓‘0)})) |
92 | 91 | expr 457 |
. . . 4
⊢ ((((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ 𝑓 ∈ (II Cn 𝐽)) → ((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝐽)((0[,]1) × {(𝑓‘0)}))) |
93 | 92 | ralrimiva 3103 |
. . 3
⊢ (((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) →
∀𝑓 ∈ (II Cn
𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝐽)((0[,]1) × {(𝑓‘0)}))) |
94 | | issconn 33188 |
. . 3
⊢ (𝐽 ∈ SConn ↔ (𝐽 ∈ PConn ∧
∀𝑓 ∈ (II Cn
𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝐽)((0[,]1) × {(𝑓‘0)})))) |
95 | 51, 93, 94 | sylanbrc 583 |
. 2
⊢ (((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) → 𝐽 ∈ SConn) |
96 | 50, 95 | impbida 798 |
1
⊢ ((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) → (𝐽 ∈ SConn ↔ (Base‘(𝐽 π1 𝑌)) ≈
1o)) |