Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sconnpi1 Structured version   Visualization version   GIF version

Theorem sconnpi1 33500
Description: A path-connected topological space is simply connected iff its fundamental group is trivial. (Contributed by Mario Carneiro, 12-Feb-2015.)
Hypothesis
Ref Expression
sconnpi1.1 𝑋 = 𝐽
Assertion
Ref Expression
sconnpi1 ((𝐽 ∈ PConn ∧ 𝑌𝑋) → (𝐽 ∈ SConn ↔ (Base‘(𝐽 π1 𝑌)) ≈ 1o))

Proof of Theorem sconnpi1
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sconntop 33489 . . . . . . . . 9 (𝐽 ∈ SConn → 𝐽 ∈ Top)
21adantl 482 . . . . . . . 8 ((𝑌𝑋𝐽 ∈ SConn) → 𝐽 ∈ Top)
3 simpl 483 . . . . . . . 8 ((𝑌𝑋𝐽 ∈ SConn) → 𝑌𝑋)
4 eqid 2736 . . . . . . . . 9 (𝐽 π1 𝑌) = (𝐽 π1 𝑌)
5 eqid 2736 . . . . . . . . 9 (Base‘(𝐽 π1 𝑌)) = (Base‘(𝐽 π1 𝑌))
6 simpl 483 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑌𝑋) → 𝐽 ∈ Top)
7 sconnpi1.1 . . . . . . . . . . 11 𝑋 = 𝐽
87toptopon 22172 . . . . . . . . . 10 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
96, 8sylib 217 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑌𝑋) → 𝐽 ∈ (TopOn‘𝑋))
10 simpr 485 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑌𝑋) → 𝑌𝑋)
114, 5, 9, 10elpi1 24314 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑌𝑋) → (𝑥 ∈ (Base‘(𝐽 π1 𝑌)) ↔ ∃𝑓 ∈ (II Cn 𝐽)(((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌) ∧ 𝑥 = [𝑓]( ≃ph𝐽))))
122, 3, 11syl2anc 584 . . . . . . 7 ((𝑌𝑋𝐽 ∈ SConn) → (𝑥 ∈ (Base‘(𝐽 π1 𝑌)) ↔ ∃𝑓 ∈ (II Cn 𝐽)(((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌) ∧ 𝑥 = [𝑓]( ≃ph𝐽))))
13 phtpcer 24264 . . . . . . . . . . . . 13 ( ≃ph𝐽) Er (II Cn 𝐽)
1413a1i 11 . . . . . . . . . . . 12 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → ( ≃ph𝐽) Er (II Cn 𝐽))
15 simpllr 773 . . . . . . . . . . . . . 14 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → 𝐽 ∈ SConn)
16 simplr 766 . . . . . . . . . . . . . 14 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → 𝑓 ∈ (II Cn 𝐽))
17 simprl 768 . . . . . . . . . . . . . . 15 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → (𝑓‘0) = 𝑌)
18 simprr 770 . . . . . . . . . . . . . . 15 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → (𝑓‘1) = 𝑌)
1917, 18eqtr4d 2779 . . . . . . . . . . . . . 14 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → (𝑓‘0) = (𝑓‘1))
20 sconnpht 33490 . . . . . . . . . . . . . 14 ((𝐽 ∈ SConn ∧ 𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1)) → 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)}))
2115, 16, 19, 20syl3anc 1370 . . . . . . . . . . . . 13 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)}))
2217sneqd 4585 . . . . . . . . . . . . . 14 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → {(𝑓‘0)} = {𝑌})
2322xpeq2d 5650 . . . . . . . . . . . . 13 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → ((0[,]1) × {(𝑓‘0)}) = ((0[,]1) × {𝑌}))
2421, 23breqtrd 5118 . . . . . . . . . . . 12 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → 𝑓( ≃ph𝐽)((0[,]1) × {𝑌}))
2514, 24erthi 8620 . . . . . . . . . . 11 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → [𝑓]( ≃ph𝐽) = [((0[,]1) × {𝑌})]( ≃ph𝐽))
262, 8sylib 217 . . . . . . . . . . . . 13 ((𝑌𝑋𝐽 ∈ SConn) → 𝐽 ∈ (TopOn‘𝑋))
27 eqid 2736 . . . . . . . . . . . . . 14 ((0[,]1) × {𝑌}) = ((0[,]1) × {𝑌})
284, 27pi1id 24320 . . . . . . . . . . . . 13 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌𝑋) → [((0[,]1) × {𝑌})]( ≃ph𝐽) = (0g‘(𝐽 π1 𝑌)))
2926, 3, 28syl2anc 584 . . . . . . . . . . . 12 ((𝑌𝑋𝐽 ∈ SConn) → [((0[,]1) × {𝑌})]( ≃ph𝐽) = (0g‘(𝐽 π1 𝑌)))
3029ad2antrr 723 . . . . . . . . . . 11 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → [((0[,]1) × {𝑌})]( ≃ph𝐽) = (0g‘(𝐽 π1 𝑌)))
3125, 30eqtrd 2776 . . . . . . . . . 10 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → [𝑓]( ≃ph𝐽) = (0g‘(𝐽 π1 𝑌)))
32 velsn 4589 . . . . . . . . . . 11 (𝑥 ∈ {(0g‘(𝐽 π1 𝑌))} ↔ 𝑥 = (0g‘(𝐽 π1 𝑌)))
33 eqeq1 2740 . . . . . . . . . . 11 (𝑥 = [𝑓]( ≃ph𝐽) → (𝑥 = (0g‘(𝐽 π1 𝑌)) ↔ [𝑓]( ≃ph𝐽) = (0g‘(𝐽 π1 𝑌))))
3432, 33bitrid 282 . . . . . . . . . 10 (𝑥 = [𝑓]( ≃ph𝐽) → (𝑥 ∈ {(0g‘(𝐽 π1 𝑌))} ↔ [𝑓]( ≃ph𝐽) = (0g‘(𝐽 π1 𝑌))))
3531, 34syl5ibrcom 246 . . . . . . . . 9 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → (𝑥 = [𝑓]( ≃ph𝐽) → 𝑥 ∈ {(0g‘(𝐽 π1 𝑌))}))
3635expimpd 454 . . . . . . . 8 (((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) → ((((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌) ∧ 𝑥 = [𝑓]( ≃ph𝐽)) → 𝑥 ∈ {(0g‘(𝐽 π1 𝑌))}))
3736rexlimdva 3148 . . . . . . 7 ((𝑌𝑋𝐽 ∈ SConn) → (∃𝑓 ∈ (II Cn 𝐽)(((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌) ∧ 𝑥 = [𝑓]( ≃ph𝐽)) → 𝑥 ∈ {(0g‘(𝐽 π1 𝑌))}))
3812, 37sylbid 239 . . . . . 6 ((𝑌𝑋𝐽 ∈ SConn) → (𝑥 ∈ (Base‘(𝐽 π1 𝑌)) → 𝑥 ∈ {(0g‘(𝐽 π1 𝑌))}))
3938ssrdv 3938 . . . . 5 ((𝑌𝑋𝐽 ∈ SConn) → (Base‘(𝐽 π1 𝑌)) ⊆ {(0g‘(𝐽 π1 𝑌))})
404pi1grp 24319 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌𝑋) → (𝐽 π1 𝑌) ∈ Grp)
4126, 3, 40syl2anc 584 . . . . . . 7 ((𝑌𝑋𝐽 ∈ SConn) → (𝐽 π1 𝑌) ∈ Grp)
42 eqid 2736 . . . . . . . 8 (0g‘(𝐽 π1 𝑌)) = (0g‘(𝐽 π1 𝑌))
435, 42grpidcl 18703 . . . . . . 7 ((𝐽 π1 𝑌) ∈ Grp → (0g‘(𝐽 π1 𝑌)) ∈ (Base‘(𝐽 π1 𝑌)))
4441, 43syl 17 . . . . . 6 ((𝑌𝑋𝐽 ∈ SConn) → (0g‘(𝐽 π1 𝑌)) ∈ (Base‘(𝐽 π1 𝑌)))
4544snssd 4756 . . . . 5 ((𝑌𝑋𝐽 ∈ SConn) → {(0g‘(𝐽 π1 𝑌))} ⊆ (Base‘(𝐽 π1 𝑌)))
4639, 45eqssd 3949 . . . 4 ((𝑌𝑋𝐽 ∈ SConn) → (Base‘(𝐽 π1 𝑌)) = {(0g‘(𝐽 π1 𝑌))})
47 fvex 6838 . . . . 5 (0g‘(𝐽 π1 𝑌)) ∈ V
4847ensn1 8882 . . . 4 {(0g‘(𝐽 π1 𝑌))} ≈ 1o
4946, 48eqbrtrdi 5131 . . 3 ((𝑌𝑋𝐽 ∈ SConn) → (Base‘(𝐽 π1 𝑌)) ≈ 1o)
5049adantll 711 . 2 (((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ 𝐽 ∈ SConn) → (Base‘(𝐽 π1 𝑌)) ≈ 1o)
51 simpll 764 . . 3 (((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) → 𝐽 ∈ PConn)
52 eqid 2736 . . . . . . . . 9 (𝐽 π1 (𝑓‘0)) = (𝐽 π1 (𝑓‘0))
53 eqid 2736 . . . . . . . . 9 (Base‘(𝐽 π1 (𝑓‘0))) = (Base‘(𝐽 π1 (𝑓‘0)))
54 simplll 772 . . . . . . . . . . 11 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → 𝐽 ∈ PConn)
55 pconntop 33486 . . . . . . . . . . 11 (𝐽 ∈ PConn → 𝐽 ∈ Top)
5654, 55syl 17 . . . . . . . . . 10 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → 𝐽 ∈ Top)
5756, 8sylib 217 . . . . . . . . 9 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → 𝐽 ∈ (TopOn‘𝑋))
58 simprl 768 . . . . . . . . . . 11 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑓 ∈ (II Cn 𝐽))
59 iiuni 24150 . . . . . . . . . . . 12 (0[,]1) = II
6059, 7cnf 22503 . . . . . . . . . . 11 (𝑓 ∈ (II Cn 𝐽) → 𝑓:(0[,]1)⟶𝑋)
6158, 60syl 17 . . . . . . . . . 10 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑓:(0[,]1)⟶𝑋)
62 0elunit 13302 . . . . . . . . . 10 0 ∈ (0[,]1)
63 ffvelcdm 7015 . . . . . . . . . 10 ((𝑓:(0[,]1)⟶𝑋 ∧ 0 ∈ (0[,]1)) → (𝑓‘0) ∈ 𝑋)
6461, 62, 63sylancl 586 . . . . . . . . 9 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑓‘0) ∈ 𝑋)
65 eqidd 2737 . . . . . . . . 9 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑓‘0) = (𝑓‘0))
66 simprr 770 . . . . . . . . . 10 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑓‘0) = (𝑓‘1))
6766eqcomd 2742 . . . . . . . . 9 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑓‘1) = (𝑓‘0))
6852, 53, 57, 64, 58, 65, 67elpi1i 24315 . . . . . . . 8 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → [𝑓]( ≃ph𝐽) ∈ (Base‘(𝐽 π1 (𝑓‘0))))
69 eqid 2736 . . . . . . . . . . . . 13 ((0[,]1) × {(𝑓‘0)}) = ((0[,]1) × {(𝑓‘0)})
7069pcoptcl 24290 . . . . . . . . . . . 12 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑓‘0) ∈ 𝑋) → (((0[,]1) × {(𝑓‘0)}) ∈ (II Cn 𝐽) ∧ (((0[,]1) × {(𝑓‘0)})‘0) = (𝑓‘0) ∧ (((0[,]1) × {(𝑓‘0)})‘1) = (𝑓‘0)))
7157, 64, 70syl2anc 584 . . . . . . . . . . 11 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (((0[,]1) × {(𝑓‘0)}) ∈ (II Cn 𝐽) ∧ (((0[,]1) × {(𝑓‘0)})‘0) = (𝑓‘0) ∧ (((0[,]1) × {(𝑓‘0)})‘1) = (𝑓‘0)))
7271simp1d 1141 . . . . . . . . . 10 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → ((0[,]1) × {(𝑓‘0)}) ∈ (II Cn 𝐽))
7371simp2d 1142 . . . . . . . . . 10 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (((0[,]1) × {(𝑓‘0)})‘0) = (𝑓‘0))
7471simp3d 1143 . . . . . . . . . 10 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (((0[,]1) × {(𝑓‘0)})‘1) = (𝑓‘0))
7552, 53, 57, 64, 72, 73, 74elpi1i 24315 . . . . . . . . 9 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → [((0[,]1) × {(𝑓‘0)})]( ≃ph𝐽) ∈ (Base‘(𝐽 π1 (𝑓‘0))))
76 simpllr 773 . . . . . . . . . . . 12 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑌𝑋)
777, 52, 4, 53, 5pconnpi1 33498 . . . . . . . . . . . 12 ((𝐽 ∈ PConn ∧ (𝑓‘0) ∈ 𝑋𝑌𝑋) → (𝐽 π1 (𝑓‘0)) ≃𝑔 (𝐽 π1 𝑌))
7854, 64, 76, 77syl3anc 1370 . . . . . . . . . . 11 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (𝐽 π1 (𝑓‘0)) ≃𝑔 (𝐽 π1 𝑌))
7953, 5gicen 18989 . . . . . . . . . . 11 ((𝐽 π1 (𝑓‘0)) ≃𝑔 (𝐽 π1 𝑌) → (Base‘(𝐽 π1 (𝑓‘0))) ≈ (Base‘(𝐽 π1 𝑌)))
8078, 79syl 17 . . . . . . . . . 10 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (Base‘(𝐽 π1 (𝑓‘0))) ≈ (Base‘(𝐽 π1 𝑌)))
81 simplr 766 . . . . . . . . . 10 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (Base‘(𝐽 π1 𝑌)) ≈ 1o)
82 entr 8867 . . . . . . . . . 10 (((Base‘(𝐽 π1 (𝑓‘0))) ≈ (Base‘(𝐽 π1 𝑌)) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) → (Base‘(𝐽 π1 (𝑓‘0))) ≈ 1o)
8380, 81, 82syl2anc 584 . . . . . . . . 9 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (Base‘(𝐽 π1 (𝑓‘0))) ≈ 1o)
84 en1eqsn 9139 . . . . . . . . 9 (([((0[,]1) × {(𝑓‘0)})]( ≃ph𝐽) ∈ (Base‘(𝐽 π1 (𝑓‘0))) ∧ (Base‘(𝐽 π1 (𝑓‘0))) ≈ 1o) → (Base‘(𝐽 π1 (𝑓‘0))) = {[((0[,]1) × {(𝑓‘0)})]( ≃ph𝐽)})
8575, 83, 84syl2anc 584 . . . . . . . 8 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (Base‘(𝐽 π1 (𝑓‘0))) = {[((0[,]1) × {(𝑓‘0)})]( ≃ph𝐽)})
8668, 85eleqtrd 2839 . . . . . . 7 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → [𝑓]( ≃ph𝐽) ∈ {[((0[,]1) × {(𝑓‘0)})]( ≃ph𝐽)})
87 elsni 4590 . . . . . . 7 ([𝑓]( ≃ph𝐽) ∈ {[((0[,]1) × {(𝑓‘0)})]( ≃ph𝐽)} → [𝑓]( ≃ph𝐽) = [((0[,]1) × {(𝑓‘0)})]( ≃ph𝐽))
8886, 87syl 17 . . . . . 6 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → [𝑓]( ≃ph𝐽) = [((0[,]1) × {(𝑓‘0)})]( ≃ph𝐽))
8913a1i 11 . . . . . . 7 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → ( ≃ph𝐽) Er (II Cn 𝐽))
9089, 58erth 8618 . . . . . 6 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)}) ↔ [𝑓]( ≃ph𝐽) = [((0[,]1) × {(𝑓‘0)})]( ≃ph𝐽)))
9188, 90mpbird 256 . . . . 5 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)}))
9291expr 457 . . . 4 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ 𝑓 ∈ (II Cn 𝐽)) → ((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)})))
9392ralrimiva 3139 . . 3 (((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) → ∀𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)})))
94 issconn 33487 . . 3 (𝐽 ∈ SConn ↔ (𝐽 ∈ PConn ∧ ∀𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)}))))
9551, 93, 94sylanbrc 583 . 2 (((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) → 𝐽 ∈ SConn)
9650, 95impbida 798 1 ((𝐽 ∈ PConn ∧ 𝑌𝑋) → (𝐽 ∈ SConn ↔ (Base‘(𝐽 π1 𝑌)) ≈ 1o))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  wral 3061  wrex 3070  {csn 4573   cuni 4852   class class class wbr 5092   × cxp 5618  wf 6475  cfv 6479  (class class class)co 7337  1oc1o 8360   Er wer 8566  [cec 8567  cen 8801  0cc0 10972  1c1 10973  [,]cicc 13183  Basecbs 17009  0gc0g 17247  Grpcgrp 18673  𝑔 cgic 18970  Topctop 22148  TopOnctopon 22165   Cn ccn 22481  IIcii 24144  phcphtpc 24238   π1 cpi1 24272  PConncpconn 33480  SConncsconn 33481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049  ax-pre-sup 11050  ax-addf 11051  ax-mulf 11052
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4853  df-int 4895  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-se 5576  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-isom 6488  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-of 7595  df-om 7781  df-1st 7899  df-2nd 7900  df-supp 8048  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-1o 8367  df-2o 8368  df-er 8569  df-ec 8571  df-qs 8575  df-map 8688  df-ixp 8757  df-en 8805  df-dom 8806  df-sdom 8807  df-fin 8808  df-fsupp 9227  df-fi 9268  df-sup 9299  df-inf 9300  df-oi 9367  df-card 9796  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-div 11734  df-nn 12075  df-2 12137  df-3 12138  df-4 12139  df-5 12140  df-6 12141  df-7 12142  df-8 12143  df-9 12144  df-n0 12335  df-z 12421  df-dec 12539  df-uz 12684  df-q 12790  df-rp 12832  df-xneg 12949  df-xadd 12950  df-xmul 12951  df-ioo 13184  df-icc 13187  df-fz 13341  df-fzo 13484  df-seq 13823  df-exp 13884  df-hash 14146  df-cj 14909  df-re 14910  df-im 14911  df-sqrt 15045  df-abs 15046  df-struct 16945  df-sets 16962  df-slot 16980  df-ndx 16992  df-base 17010  df-ress 17039  df-plusg 17072  df-mulr 17073  df-starv 17074  df-sca 17075  df-vsca 17076  df-ip 17077  df-tset 17078  df-ple 17079  df-ds 17081  df-unif 17082  df-hom 17083  df-cco 17084  df-rest 17230  df-topn 17231  df-0g 17249  df-gsum 17250  df-topgen 17251  df-pt 17252  df-prds 17255  df-xrs 17310  df-qtop 17315  df-imas 17316  df-qus 17317  df-xps 17318  df-mre 17392  df-mrc 17393  df-acs 17395  df-mgm 18423  df-sgrp 18472  df-mnd 18483  df-submnd 18528  df-grp 18676  df-mulg 18797  df-ghm 18928  df-gim 18971  df-gic 18972  df-cntz 19019  df-cmn 19483  df-psmet 20695  df-xmet 20696  df-met 20697  df-bl 20698  df-mopn 20699  df-cnfld 20704  df-top 22149  df-topon 22166  df-topsp 22188  df-bases 22202  df-cld 22276  df-cn 22484  df-cnp 22485  df-tx 22819  df-hmeo 23012  df-xms 23579  df-ms 23580  df-tms 23581  df-ii 24146  df-htpy 24239  df-phtpy 24240  df-phtpc 24261  df-pco 24274  df-om1 24275  df-pi1 24277  df-pconn 33482  df-sconn 33483
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator