Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sconnpi1 Structured version   Visualization version   GIF version

Theorem sconnpi1 32071
Description: A path-connected topological space is simply connected iff its fundamental group is trivial. (Contributed by Mario Carneiro, 12-Feb-2015.)
Hypothesis
Ref Expression
sconnpi1.1 𝑋 = 𝐽
Assertion
Ref Expression
sconnpi1 ((𝐽 ∈ PConn ∧ 𝑌𝑋) → (𝐽 ∈ SConn ↔ (Base‘(𝐽 π1 𝑌)) ≈ 1o))

Proof of Theorem sconnpi1
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sconntop 32060 . . . . . . . . 9 (𝐽 ∈ SConn → 𝐽 ∈ Top)
21adantl 474 . . . . . . . 8 ((𝑌𝑋𝐽 ∈ SConn) → 𝐽 ∈ Top)
3 simpl 475 . . . . . . . 8 ((𝑌𝑋𝐽 ∈ SConn) → 𝑌𝑋)
4 eqid 2778 . . . . . . . . 9 (𝐽 π1 𝑌) = (𝐽 π1 𝑌)
5 eqid 2778 . . . . . . . . 9 (Base‘(𝐽 π1 𝑌)) = (Base‘(𝐽 π1 𝑌))
6 simpl 475 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑌𝑋) → 𝐽 ∈ Top)
7 sconnpi1.1 . . . . . . . . . . 11 𝑋 = 𝐽
87toptopon 21232 . . . . . . . . . 10 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
96, 8sylib 210 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑌𝑋) → 𝐽 ∈ (TopOn‘𝑋))
10 simpr 477 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑌𝑋) → 𝑌𝑋)
114, 5, 9, 10elpi1 23355 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑌𝑋) → (𝑥 ∈ (Base‘(𝐽 π1 𝑌)) ↔ ∃𝑓 ∈ (II Cn 𝐽)(((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌) ∧ 𝑥 = [𝑓]( ≃ph𝐽))))
122, 3, 11syl2anc 576 . . . . . . 7 ((𝑌𝑋𝐽 ∈ SConn) → (𝑥 ∈ (Base‘(𝐽 π1 𝑌)) ↔ ∃𝑓 ∈ (II Cn 𝐽)(((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌) ∧ 𝑥 = [𝑓]( ≃ph𝐽))))
13 phtpcer 23305 . . . . . . . . . . . . 13 ( ≃ph𝐽) Er (II Cn 𝐽)
1413a1i 11 . . . . . . . . . . . 12 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → ( ≃ph𝐽) Er (II Cn 𝐽))
15 simpllr 763 . . . . . . . . . . . . . 14 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → 𝐽 ∈ SConn)
16 simplr 756 . . . . . . . . . . . . . 14 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → 𝑓 ∈ (II Cn 𝐽))
17 simprl 758 . . . . . . . . . . . . . . 15 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → (𝑓‘0) = 𝑌)
18 simprr 760 . . . . . . . . . . . . . . 15 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → (𝑓‘1) = 𝑌)
1917, 18eqtr4d 2817 . . . . . . . . . . . . . 14 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → (𝑓‘0) = (𝑓‘1))
20 sconnpht 32061 . . . . . . . . . . . . . 14 ((𝐽 ∈ SConn ∧ 𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1)) → 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)}))
2115, 16, 19, 20syl3anc 1351 . . . . . . . . . . . . 13 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)}))
2217sneqd 4454 . . . . . . . . . . . . . 14 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → {(𝑓‘0)} = {𝑌})
2322xpeq2d 5438 . . . . . . . . . . . . 13 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → ((0[,]1) × {(𝑓‘0)}) = ((0[,]1) × {𝑌}))
2421, 23breqtrd 4956 . . . . . . . . . . . 12 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → 𝑓( ≃ph𝐽)((0[,]1) × {𝑌}))
2514, 24erthi 8142 . . . . . . . . . . 11 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → [𝑓]( ≃ph𝐽) = [((0[,]1) × {𝑌})]( ≃ph𝐽))
262, 8sylib 210 . . . . . . . . . . . . 13 ((𝑌𝑋𝐽 ∈ SConn) → 𝐽 ∈ (TopOn‘𝑋))
27 eqid 2778 . . . . . . . . . . . . . 14 ((0[,]1) × {𝑌}) = ((0[,]1) × {𝑌})
284, 27pi1id 23361 . . . . . . . . . . . . 13 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌𝑋) → [((0[,]1) × {𝑌})]( ≃ph𝐽) = (0g‘(𝐽 π1 𝑌)))
2926, 3, 28syl2anc 576 . . . . . . . . . . . 12 ((𝑌𝑋𝐽 ∈ SConn) → [((0[,]1) × {𝑌})]( ≃ph𝐽) = (0g‘(𝐽 π1 𝑌)))
3029ad2antrr 713 . . . . . . . . . . 11 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → [((0[,]1) × {𝑌})]( ≃ph𝐽) = (0g‘(𝐽 π1 𝑌)))
3125, 30eqtrd 2814 . . . . . . . . . 10 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → [𝑓]( ≃ph𝐽) = (0g‘(𝐽 π1 𝑌)))
32 velsn 4458 . . . . . . . . . . 11 (𝑥 ∈ {(0g‘(𝐽 π1 𝑌))} ↔ 𝑥 = (0g‘(𝐽 π1 𝑌)))
33 eqeq1 2782 . . . . . . . . . . 11 (𝑥 = [𝑓]( ≃ph𝐽) → (𝑥 = (0g‘(𝐽 π1 𝑌)) ↔ [𝑓]( ≃ph𝐽) = (0g‘(𝐽 π1 𝑌))))
3432, 33syl5bb 275 . . . . . . . . . 10 (𝑥 = [𝑓]( ≃ph𝐽) → (𝑥 ∈ {(0g‘(𝐽 π1 𝑌))} ↔ [𝑓]( ≃ph𝐽) = (0g‘(𝐽 π1 𝑌))))
3531, 34syl5ibrcom 239 . . . . . . . . 9 ((((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) → (𝑥 = [𝑓]( ≃ph𝐽) → 𝑥 ∈ {(0g‘(𝐽 π1 𝑌))}))
3635expimpd 446 . . . . . . . 8 (((𝑌𝑋𝐽 ∈ SConn) ∧ 𝑓 ∈ (II Cn 𝐽)) → ((((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌) ∧ 𝑥 = [𝑓]( ≃ph𝐽)) → 𝑥 ∈ {(0g‘(𝐽 π1 𝑌))}))
3736rexlimdva 3229 . . . . . . 7 ((𝑌𝑋𝐽 ∈ SConn) → (∃𝑓 ∈ (II Cn 𝐽)(((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌) ∧ 𝑥 = [𝑓]( ≃ph𝐽)) → 𝑥 ∈ {(0g‘(𝐽 π1 𝑌))}))
3812, 37sylbid 232 . . . . . 6 ((𝑌𝑋𝐽 ∈ SConn) → (𝑥 ∈ (Base‘(𝐽 π1 𝑌)) → 𝑥 ∈ {(0g‘(𝐽 π1 𝑌))}))
3938ssrdv 3866 . . . . 5 ((𝑌𝑋𝐽 ∈ SConn) → (Base‘(𝐽 π1 𝑌)) ⊆ {(0g‘(𝐽 π1 𝑌))})
404pi1grp 23360 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌𝑋) → (𝐽 π1 𝑌) ∈ Grp)
4126, 3, 40syl2anc 576 . . . . . . 7 ((𝑌𝑋𝐽 ∈ SConn) → (𝐽 π1 𝑌) ∈ Grp)
42 eqid 2778 . . . . . . . 8 (0g‘(𝐽 π1 𝑌)) = (0g‘(𝐽 π1 𝑌))
435, 42grpidcl 17922 . . . . . . 7 ((𝐽 π1 𝑌) ∈ Grp → (0g‘(𝐽 π1 𝑌)) ∈ (Base‘(𝐽 π1 𝑌)))
4441, 43syl 17 . . . . . 6 ((𝑌𝑋𝐽 ∈ SConn) → (0g‘(𝐽 π1 𝑌)) ∈ (Base‘(𝐽 π1 𝑌)))
4544snssd 4617 . . . . 5 ((𝑌𝑋𝐽 ∈ SConn) → {(0g‘(𝐽 π1 𝑌))} ⊆ (Base‘(𝐽 π1 𝑌)))
4639, 45eqssd 3877 . . . 4 ((𝑌𝑋𝐽 ∈ SConn) → (Base‘(𝐽 π1 𝑌)) = {(0g‘(𝐽 π1 𝑌))})
47 fvex 6514 . . . . 5 (0g‘(𝐽 π1 𝑌)) ∈ V
4847ensn1 8372 . . . 4 {(0g‘(𝐽 π1 𝑌))} ≈ 1o
4946, 48syl6eqbr 4969 . . 3 ((𝑌𝑋𝐽 ∈ SConn) → (Base‘(𝐽 π1 𝑌)) ≈ 1o)
5049adantll 701 . 2 (((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ 𝐽 ∈ SConn) → (Base‘(𝐽 π1 𝑌)) ≈ 1o)
51 simpll 754 . . 3 (((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) → 𝐽 ∈ PConn)
52 eqid 2778 . . . . . . . . 9 (𝐽 π1 (𝑓‘0)) = (𝐽 π1 (𝑓‘0))
53 eqid 2778 . . . . . . . . 9 (Base‘(𝐽 π1 (𝑓‘0))) = (Base‘(𝐽 π1 (𝑓‘0)))
54 simplll 762 . . . . . . . . . . 11 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → 𝐽 ∈ PConn)
55 pconntop 32057 . . . . . . . . . . 11 (𝐽 ∈ PConn → 𝐽 ∈ Top)
5654, 55syl 17 . . . . . . . . . 10 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → 𝐽 ∈ Top)
5756, 8sylib 210 . . . . . . . . 9 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → 𝐽 ∈ (TopOn‘𝑋))
58 simprl 758 . . . . . . . . . . 11 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑓 ∈ (II Cn 𝐽))
59 iiuni 23195 . . . . . . . . . . . 12 (0[,]1) = II
6059, 7cnf 21561 . . . . . . . . . . 11 (𝑓 ∈ (II Cn 𝐽) → 𝑓:(0[,]1)⟶𝑋)
6158, 60syl 17 . . . . . . . . . 10 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑓:(0[,]1)⟶𝑋)
62 0elunit 12674 . . . . . . . . . 10 0 ∈ (0[,]1)
63 ffvelrn 6676 . . . . . . . . . 10 ((𝑓:(0[,]1)⟶𝑋 ∧ 0 ∈ (0[,]1)) → (𝑓‘0) ∈ 𝑋)
6461, 62, 63sylancl 577 . . . . . . . . 9 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑓‘0) ∈ 𝑋)
65 eqidd 2779 . . . . . . . . 9 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑓‘0) = (𝑓‘0))
66 simprr 760 . . . . . . . . . 10 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑓‘0) = (𝑓‘1))
6766eqcomd 2784 . . . . . . . . 9 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑓‘1) = (𝑓‘0))
6852, 53, 57, 64, 58, 65, 67elpi1i 23356 . . . . . . . 8 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → [𝑓]( ≃ph𝐽) ∈ (Base‘(𝐽 π1 (𝑓‘0))))
69 eqid 2778 . . . . . . . . . . . . 13 ((0[,]1) × {(𝑓‘0)}) = ((0[,]1) × {(𝑓‘0)})
7069pcoptcl 23331 . . . . . . . . . . . 12 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑓‘0) ∈ 𝑋) → (((0[,]1) × {(𝑓‘0)}) ∈ (II Cn 𝐽) ∧ (((0[,]1) × {(𝑓‘0)})‘0) = (𝑓‘0) ∧ (((0[,]1) × {(𝑓‘0)})‘1) = (𝑓‘0)))
7157, 64, 70syl2anc 576 . . . . . . . . . . 11 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (((0[,]1) × {(𝑓‘0)}) ∈ (II Cn 𝐽) ∧ (((0[,]1) × {(𝑓‘0)})‘0) = (𝑓‘0) ∧ (((0[,]1) × {(𝑓‘0)})‘1) = (𝑓‘0)))
7271simp1d 1122 . . . . . . . . . 10 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → ((0[,]1) × {(𝑓‘0)}) ∈ (II Cn 𝐽))
7371simp2d 1123 . . . . . . . . . 10 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (((0[,]1) × {(𝑓‘0)})‘0) = (𝑓‘0))
7471simp3d 1124 . . . . . . . . . 10 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (((0[,]1) × {(𝑓‘0)})‘1) = (𝑓‘0))
7552, 53, 57, 64, 72, 73, 74elpi1i 23356 . . . . . . . . 9 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → [((0[,]1) × {(𝑓‘0)})]( ≃ph𝐽) ∈ (Base‘(𝐽 π1 (𝑓‘0))))
76 simpllr 763 . . . . . . . . . . . 12 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑌𝑋)
777, 52, 4, 53, 5pconnpi1 32069 . . . . . . . . . . . 12 ((𝐽 ∈ PConn ∧ (𝑓‘0) ∈ 𝑋𝑌𝑋) → (𝐽 π1 (𝑓‘0)) ≃𝑔 (𝐽 π1 𝑌))
7854, 64, 76, 77syl3anc 1351 . . . . . . . . . . 11 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (𝐽 π1 (𝑓‘0)) ≃𝑔 (𝐽 π1 𝑌))
7953, 5gicen 18191 . . . . . . . . . . 11 ((𝐽 π1 (𝑓‘0)) ≃𝑔 (𝐽 π1 𝑌) → (Base‘(𝐽 π1 (𝑓‘0))) ≈ (Base‘(𝐽 π1 𝑌)))
8078, 79syl 17 . . . . . . . . . 10 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (Base‘(𝐽 π1 (𝑓‘0))) ≈ (Base‘(𝐽 π1 𝑌)))
81 simplr 756 . . . . . . . . . 10 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (Base‘(𝐽 π1 𝑌)) ≈ 1o)
82 entr 8360 . . . . . . . . . 10 (((Base‘(𝐽 π1 (𝑓‘0))) ≈ (Base‘(𝐽 π1 𝑌)) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) → (Base‘(𝐽 π1 (𝑓‘0))) ≈ 1o)
8380, 81, 82syl2anc 576 . . . . . . . . 9 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (Base‘(𝐽 π1 (𝑓‘0))) ≈ 1o)
84 en1eqsn 8545 . . . . . . . . 9 (([((0[,]1) × {(𝑓‘0)})]( ≃ph𝐽) ∈ (Base‘(𝐽 π1 (𝑓‘0))) ∧ (Base‘(𝐽 π1 (𝑓‘0))) ≈ 1o) → (Base‘(𝐽 π1 (𝑓‘0))) = {[((0[,]1) × {(𝑓‘0)})]( ≃ph𝐽)})
8575, 83, 84syl2anc 576 . . . . . . . 8 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (Base‘(𝐽 π1 (𝑓‘0))) = {[((0[,]1) × {(𝑓‘0)})]( ≃ph𝐽)})
8668, 85eleqtrd 2868 . . . . . . 7 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → [𝑓]( ≃ph𝐽) ∈ {[((0[,]1) × {(𝑓‘0)})]( ≃ph𝐽)})
87 elsni 4459 . . . . . . 7 ([𝑓]( ≃ph𝐽) ∈ {[((0[,]1) × {(𝑓‘0)})]( ≃ph𝐽)} → [𝑓]( ≃ph𝐽) = [((0[,]1) × {(𝑓‘0)})]( ≃ph𝐽))
8886, 87syl 17 . . . . . 6 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → [𝑓]( ≃ph𝐽) = [((0[,]1) × {(𝑓‘0)})]( ≃ph𝐽))
8913a1i 11 . . . . . . 7 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → ( ≃ph𝐽) Er (II Cn 𝐽))
9089, 58erth 8140 . . . . . 6 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)}) ↔ [𝑓]( ≃ph𝐽) = [((0[,]1) × {(𝑓‘0)})]( ≃ph𝐽)))
9188, 90mpbird 249 . . . . 5 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)}))
9291expr 449 . . . 4 ((((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) ∧ 𝑓 ∈ (II Cn 𝐽)) → ((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)})))
9392ralrimiva 3132 . . 3 (((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) → ∀𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)})))
94 issconn 32058 . . 3 (𝐽 ∈ SConn ↔ (𝐽 ∈ PConn ∧ ∀𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)}))))
9551, 93, 94sylanbrc 575 . 2 (((𝐽 ∈ PConn ∧ 𝑌𝑋) ∧ (Base‘(𝐽 π1 𝑌)) ≈ 1o) → 𝐽 ∈ SConn)
9650, 95impbida 788 1 ((𝐽 ∈ PConn ∧ 𝑌𝑋) → (𝐽 ∈ SConn ↔ (Base‘(𝐽 π1 𝑌)) ≈ 1o))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2050  wral 3088  wrex 3089  {csn 4442   cuni 4713   class class class wbr 4930   × cxp 5406  wf 6186  cfv 6190  (class class class)co 6978  1oc1o 7900   Er wer 8088  [cec 8089  cen 8305  0cc0 10337  1c1 10338  [,]cicc 12560  Basecbs 16342  0gc0g 16572  Grpcgrp 17894  𝑔 cgic 18172  Topctop 21208  TopOnctopon 21225   Cn ccn 21539  IIcii 23189  phcphtpc 23279   π1 cpi1 23313  PConncpconn 32051  SConncsconn 32052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5050  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281  ax-cnex 10393  ax-resscn 10394  ax-1cn 10395  ax-icn 10396  ax-addcl 10397  ax-addrcl 10398  ax-mulcl 10399  ax-mulrcl 10400  ax-mulcom 10401  ax-addass 10402  ax-mulass 10403  ax-distr 10404  ax-i2m1 10405  ax-1ne0 10406  ax-1rid 10407  ax-rnegex 10408  ax-rrecex 10409  ax-cnre 10410  ax-pre-lttri 10411  ax-pre-lttrn 10412  ax-pre-ltadd 10413  ax-pre-mulgt0 10414  ax-pre-sup 10415  ax-addf 10416  ax-mulf 10417
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-tp 4447  df-op 4449  df-uni 4714  df-int 4751  df-iun 4795  df-iin 4796  df-br 4931  df-opab 4993  df-mpt 5010  df-tr 5032  df-id 5313  df-eprel 5318  df-po 5327  df-so 5328  df-fr 5367  df-se 5368  df-we 5369  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-pred 5988  df-ord 6034  df-on 6035  df-lim 6036  df-suc 6037  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197  df-fv 6198  df-isom 6199  df-riota 6939  df-ov 6981  df-oprab 6982  df-mpo 6983  df-of 7229  df-om 7399  df-1st 7503  df-2nd 7504  df-supp 7636  df-wrecs 7752  df-recs 7814  df-rdg 7852  df-1o 7907  df-2o 7908  df-oadd 7911  df-er 8091  df-ec 8093  df-qs 8097  df-map 8210  df-ixp 8262  df-en 8309  df-dom 8310  df-sdom 8311  df-fin 8312  df-fsupp 8631  df-fi 8672  df-sup 8703  df-inf 8704  df-oi 8771  df-card 9164  df-cda 9390  df-pnf 10478  df-mnf 10479  df-xr 10480  df-ltxr 10481  df-le 10482  df-sub 10674  df-neg 10675  df-div 11101  df-nn 11442  df-2 11506  df-3 11507  df-4 11508  df-5 11509  df-6 11510  df-7 11511  df-8 11512  df-9 11513  df-n0 11711  df-z 11797  df-dec 11915  df-uz 12062  df-q 12166  df-rp 12208  df-xneg 12327  df-xadd 12328  df-xmul 12329  df-ioo 12561  df-icc 12564  df-fz 12712  df-fzo 12853  df-seq 13188  df-exp 13248  df-hash 13509  df-cj 14322  df-re 14323  df-im 14324  df-sqrt 14458  df-abs 14459  df-struct 16344  df-ndx 16345  df-slot 16346  df-base 16348  df-sets 16349  df-ress 16350  df-plusg 16437  df-mulr 16438  df-starv 16439  df-sca 16440  df-vsca 16441  df-ip 16442  df-tset 16443  df-ple 16444  df-ds 16446  df-unif 16447  df-hom 16448  df-cco 16449  df-rest 16555  df-topn 16556  df-0g 16574  df-gsum 16575  df-topgen 16576  df-pt 16577  df-prds 16580  df-xrs 16634  df-qtop 16639  df-imas 16640  df-qus 16641  df-xps 16642  df-mre 16718  df-mrc 16719  df-acs 16721  df-mgm 17713  df-sgrp 17755  df-mnd 17766  df-submnd 17807  df-grp 17897  df-mulg 18015  df-ghm 18130  df-gim 18173  df-gic 18174  df-cntz 18221  df-cmn 18671  df-psmet 20242  df-xmet 20243  df-met 20244  df-bl 20245  df-mopn 20246  df-cnfld 20251  df-top 21209  df-topon 21226  df-topsp 21248  df-bases 21261  df-cld 21334  df-cn 21542  df-cnp 21543  df-tx 21877  df-hmeo 22070  df-xms 22636  df-ms 22637  df-tms 22638  df-ii 23191  df-htpy 23280  df-phtpy 23281  df-phtpc 23302  df-pco 23315  df-om1 23316  df-pi1 23318  df-pconn 32053  df-sconn 32054
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator