![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sconnpht | Structured version Visualization version GIF version |
Description: A closed path in a simply connected space is contractible to a point. (Contributed by Mario Carneiro, 11-Feb-2015.) |
Ref | Expression |
---|---|
sconnpht | ⊢ ((𝐽 ∈ SConn ∧ 𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = (𝐹‘1)) → 𝐹( ≃ph‘𝐽)((0[,]1) × {(𝐹‘0)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issconn 34672 | . . 3 ⊢ (𝐽 ∈ SConn ↔ (𝐽 ∈ PConn ∧ ∀𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝐽)((0[,]1) × {(𝑓‘0)})))) | |
2 | fveq1 6880 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑓‘0) = (𝐹‘0)) | |
3 | fveq1 6880 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑓‘1) = (𝐹‘1)) | |
4 | 2, 3 | eqeq12d 2740 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((𝑓‘0) = (𝑓‘1) ↔ (𝐹‘0) = (𝐹‘1))) |
5 | id 22 | . . . . . 6 ⊢ (𝑓 = 𝐹 → 𝑓 = 𝐹) | |
6 | 2 | sneqd 4632 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → {(𝑓‘0)} = {(𝐹‘0)}) |
7 | 6 | xpeq2d 5696 | . . . . . 6 ⊢ (𝑓 = 𝐹 → ((0[,]1) × {(𝑓‘0)}) = ((0[,]1) × {(𝐹‘0)})) |
8 | 5, 7 | breq12d 5151 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝑓( ≃ph‘𝐽)((0[,]1) × {(𝑓‘0)}) ↔ 𝐹( ≃ph‘𝐽)((0[,]1) × {(𝐹‘0)}))) |
9 | 4, 8 | imbi12d 344 | . . . 4 ⊢ (𝑓 = 𝐹 → (((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝐽)((0[,]1) × {(𝑓‘0)})) ↔ ((𝐹‘0) = (𝐹‘1) → 𝐹( ≃ph‘𝐽)((0[,]1) × {(𝐹‘0)})))) |
10 | 9 | rspccv 3601 | . . 3 ⊢ (∀𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝐽)((0[,]1) × {(𝑓‘0)})) → (𝐹 ∈ (II Cn 𝐽) → ((𝐹‘0) = (𝐹‘1) → 𝐹( ≃ph‘𝐽)((0[,]1) × {(𝐹‘0)})))) |
11 | 1, 10 | simplbiim 504 | . 2 ⊢ (𝐽 ∈ SConn → (𝐹 ∈ (II Cn 𝐽) → ((𝐹‘0) = (𝐹‘1) → 𝐹( ≃ph‘𝐽)((0[,]1) × {(𝐹‘0)})))) |
12 | 11 | 3imp 1108 | 1 ⊢ ((𝐽 ∈ SConn ∧ 𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = (𝐹‘1)) → 𝐹( ≃ph‘𝐽)((0[,]1) × {(𝐹‘0)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∀wral 3053 {csn 4620 class class class wbr 5138 × cxp 5664 ‘cfv 6533 (class class class)co 7401 0cc0 11105 1c1 11106 [,]cicc 13323 Cn ccn 23038 IIcii 24705 ≃phcphtpc 24805 PConncpconn 34665 SConncsconn 34666 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-xp 5672 df-iota 6485 df-fv 6541 df-ov 7404 df-sconn 34668 |
This theorem is referenced by: sconnpht2 34684 sconnpi1 34685 txsconn 34687 |
Copyright terms: Public domain | W3C validator |