![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sconnpht | Structured version Visualization version GIF version |
Description: A closed path in a simply connected space is contractible to a point. (Contributed by Mario Carneiro, 11-Feb-2015.) |
Ref | Expression |
---|---|
sconnpht | ⊢ ((𝐽 ∈ SConn ∧ 𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = (𝐹‘1)) → 𝐹( ≃ph‘𝐽)((0[,]1) × {(𝐹‘0)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issconn 35211 | . . 3 ⊢ (𝐽 ∈ SConn ↔ (𝐽 ∈ PConn ∧ ∀𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝐽)((0[,]1) × {(𝑓‘0)})))) | |
2 | fveq1 6906 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑓‘0) = (𝐹‘0)) | |
3 | fveq1 6906 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑓‘1) = (𝐹‘1)) | |
4 | 2, 3 | eqeq12d 2751 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((𝑓‘0) = (𝑓‘1) ↔ (𝐹‘0) = (𝐹‘1))) |
5 | id 22 | . . . . . 6 ⊢ (𝑓 = 𝐹 → 𝑓 = 𝐹) | |
6 | 2 | sneqd 4643 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → {(𝑓‘0)} = {(𝐹‘0)}) |
7 | 6 | xpeq2d 5719 | . . . . . 6 ⊢ (𝑓 = 𝐹 → ((0[,]1) × {(𝑓‘0)}) = ((0[,]1) × {(𝐹‘0)})) |
8 | 5, 7 | breq12d 5161 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝑓( ≃ph‘𝐽)((0[,]1) × {(𝑓‘0)}) ↔ 𝐹( ≃ph‘𝐽)((0[,]1) × {(𝐹‘0)}))) |
9 | 4, 8 | imbi12d 344 | . . . 4 ⊢ (𝑓 = 𝐹 → (((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝐽)((0[,]1) × {(𝑓‘0)})) ↔ ((𝐹‘0) = (𝐹‘1) → 𝐹( ≃ph‘𝐽)((0[,]1) × {(𝐹‘0)})))) |
10 | 9 | rspccv 3619 | . . 3 ⊢ (∀𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝐽)((0[,]1) × {(𝑓‘0)})) → (𝐹 ∈ (II Cn 𝐽) → ((𝐹‘0) = (𝐹‘1) → 𝐹( ≃ph‘𝐽)((0[,]1) × {(𝐹‘0)})))) |
11 | 1, 10 | simplbiim 504 | . 2 ⊢ (𝐽 ∈ SConn → (𝐹 ∈ (II Cn 𝐽) → ((𝐹‘0) = (𝐹‘1) → 𝐹( ≃ph‘𝐽)((0[,]1) × {(𝐹‘0)})))) |
12 | 11 | 3imp 1110 | 1 ⊢ ((𝐽 ∈ SConn ∧ 𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = (𝐹‘1)) → 𝐹( ≃ph‘𝐽)((0[,]1) × {(𝐹‘0)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∀wral 3059 {csn 4631 class class class wbr 5148 × cxp 5687 ‘cfv 6563 (class class class)co 7431 0cc0 11153 1c1 11154 [,]cicc 13387 Cn ccn 23248 IIcii 24915 ≃phcphtpc 25015 PConncpconn 35204 SConncsconn 35205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-xp 5695 df-iota 6516 df-fv 6571 df-ov 7434 df-sconn 35207 |
This theorem is referenced by: sconnpht2 35223 sconnpi1 35224 txsconn 35226 |
Copyright terms: Public domain | W3C validator |