| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sconnpht | Structured version Visualization version GIF version | ||
| Description: A closed path in a simply connected space is contractible to a point. (Contributed by Mario Carneiro, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| sconnpht | ⊢ ((𝐽 ∈ SConn ∧ 𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = (𝐹‘1)) → 𝐹( ≃ph‘𝐽)((0[,]1) × {(𝐹‘0)})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issconn 35270 | . . 3 ⊢ (𝐽 ∈ SConn ↔ (𝐽 ∈ PConn ∧ ∀𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝐽)((0[,]1) × {(𝑓‘0)})))) | |
| 2 | fveq1 6821 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑓‘0) = (𝐹‘0)) | |
| 3 | fveq1 6821 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑓‘1) = (𝐹‘1)) | |
| 4 | 2, 3 | eqeq12d 2747 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((𝑓‘0) = (𝑓‘1) ↔ (𝐹‘0) = (𝐹‘1))) |
| 5 | id 22 | . . . . . 6 ⊢ (𝑓 = 𝐹 → 𝑓 = 𝐹) | |
| 6 | 2 | sneqd 4585 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → {(𝑓‘0)} = {(𝐹‘0)}) |
| 7 | 6 | xpeq2d 5644 | . . . . . 6 ⊢ (𝑓 = 𝐹 → ((0[,]1) × {(𝑓‘0)}) = ((0[,]1) × {(𝐹‘0)})) |
| 8 | 5, 7 | breq12d 5102 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝑓( ≃ph‘𝐽)((0[,]1) × {(𝑓‘0)}) ↔ 𝐹( ≃ph‘𝐽)((0[,]1) × {(𝐹‘0)}))) |
| 9 | 4, 8 | imbi12d 344 | . . . 4 ⊢ (𝑓 = 𝐹 → (((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝐽)((0[,]1) × {(𝑓‘0)})) ↔ ((𝐹‘0) = (𝐹‘1) → 𝐹( ≃ph‘𝐽)((0[,]1) × {(𝐹‘0)})))) |
| 10 | 9 | rspccv 3569 | . . 3 ⊢ (∀𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝐽)((0[,]1) × {(𝑓‘0)})) → (𝐹 ∈ (II Cn 𝐽) → ((𝐹‘0) = (𝐹‘1) → 𝐹( ≃ph‘𝐽)((0[,]1) × {(𝐹‘0)})))) |
| 11 | 1, 10 | simplbiim 504 | . 2 ⊢ (𝐽 ∈ SConn → (𝐹 ∈ (II Cn 𝐽) → ((𝐹‘0) = (𝐹‘1) → 𝐹( ≃ph‘𝐽)((0[,]1) × {(𝐹‘0)})))) |
| 12 | 11 | 3imp 1110 | 1 ⊢ ((𝐽 ∈ SConn ∧ 𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = (𝐹‘1)) → 𝐹( ≃ph‘𝐽)((0[,]1) × {(𝐹‘0)})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 {csn 4573 class class class wbr 5089 × cxp 5612 ‘cfv 6481 (class class class)co 7346 0cc0 11006 1c1 11007 [,]cicc 13248 Cn ccn 23139 IIcii 24795 ≃phcphtpc 24895 PConncpconn 35263 SConncsconn 35264 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-xp 5620 df-iota 6437 df-fv 6489 df-ov 7349 df-sconn 35266 |
| This theorem is referenced by: sconnpht2 35282 sconnpi1 35283 txsconn 35285 |
| Copyright terms: Public domain | W3C validator |