| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sconnpht | Structured version Visualization version GIF version | ||
| Description: A closed path in a simply connected space is contractible to a point. (Contributed by Mario Carneiro, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| sconnpht | ⊢ ((𝐽 ∈ SConn ∧ 𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = (𝐹‘1)) → 𝐹( ≃ph‘𝐽)((0[,]1) × {(𝐹‘0)})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issconn 35203 | . . 3 ⊢ (𝐽 ∈ SConn ↔ (𝐽 ∈ PConn ∧ ∀𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝐽)((0[,]1) × {(𝑓‘0)})))) | |
| 2 | fveq1 6821 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑓‘0) = (𝐹‘0)) | |
| 3 | fveq1 6821 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑓‘1) = (𝐹‘1)) | |
| 4 | 2, 3 | eqeq12d 2745 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((𝑓‘0) = (𝑓‘1) ↔ (𝐹‘0) = (𝐹‘1))) |
| 5 | id 22 | . . . . . 6 ⊢ (𝑓 = 𝐹 → 𝑓 = 𝐹) | |
| 6 | 2 | sneqd 4589 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → {(𝑓‘0)} = {(𝐹‘0)}) |
| 7 | 6 | xpeq2d 5649 | . . . . . 6 ⊢ (𝑓 = 𝐹 → ((0[,]1) × {(𝑓‘0)}) = ((0[,]1) × {(𝐹‘0)})) |
| 8 | 5, 7 | breq12d 5105 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝑓( ≃ph‘𝐽)((0[,]1) × {(𝑓‘0)}) ↔ 𝐹( ≃ph‘𝐽)((0[,]1) × {(𝐹‘0)}))) |
| 9 | 4, 8 | imbi12d 344 | . . . 4 ⊢ (𝑓 = 𝐹 → (((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝐽)((0[,]1) × {(𝑓‘0)})) ↔ ((𝐹‘0) = (𝐹‘1) → 𝐹( ≃ph‘𝐽)((0[,]1) × {(𝐹‘0)})))) |
| 10 | 9 | rspccv 3574 | . . 3 ⊢ (∀𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝐽)((0[,]1) × {(𝑓‘0)})) → (𝐹 ∈ (II Cn 𝐽) → ((𝐹‘0) = (𝐹‘1) → 𝐹( ≃ph‘𝐽)((0[,]1) × {(𝐹‘0)})))) |
| 11 | 1, 10 | simplbiim 504 | . 2 ⊢ (𝐽 ∈ SConn → (𝐹 ∈ (II Cn 𝐽) → ((𝐹‘0) = (𝐹‘1) → 𝐹( ≃ph‘𝐽)((0[,]1) × {(𝐹‘0)})))) |
| 12 | 11 | 3imp 1110 | 1 ⊢ ((𝐽 ∈ SConn ∧ 𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = (𝐹‘1)) → 𝐹( ≃ph‘𝐽)((0[,]1) × {(𝐹‘0)})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {csn 4577 class class class wbr 5092 × cxp 5617 ‘cfv 6482 (class class class)co 7349 0cc0 11009 1c1 11010 [,]cicc 13251 Cn ccn 23109 IIcii 24766 ≃phcphtpc 24866 PConncpconn 35196 SConncsconn 35197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-xp 5625 df-iota 6438 df-fv 6490 df-ov 7352 df-sconn 35199 |
| This theorem is referenced by: sconnpht2 35215 sconnpi1 35216 txsconn 35218 |
| Copyright terms: Public domain | W3C validator |