Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sconnpht Structured version   Visualization version   GIF version

Theorem sconnpht 35256
Description: A closed path in a simply connected space is contractible to a point. (Contributed by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
sconnpht ((𝐽 ∈ SConn ∧ 𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = (𝐹‘1)) → 𝐹( ≃ph𝐽)((0[,]1) × {(𝐹‘0)}))

Proof of Theorem sconnpht
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 issconn 35253 . . 3 (𝐽 ∈ SConn ↔ (𝐽 ∈ PConn ∧ ∀𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)}))))
2 fveq1 6880 . . . . . 6 (𝑓 = 𝐹 → (𝑓‘0) = (𝐹‘0))
3 fveq1 6880 . . . . . 6 (𝑓 = 𝐹 → (𝑓‘1) = (𝐹‘1))
42, 3eqeq12d 2752 . . . . 5 (𝑓 = 𝐹 → ((𝑓‘0) = (𝑓‘1) ↔ (𝐹‘0) = (𝐹‘1)))
5 id 22 . . . . . 6 (𝑓 = 𝐹𝑓 = 𝐹)
62sneqd 4618 . . . . . . 7 (𝑓 = 𝐹 → {(𝑓‘0)} = {(𝐹‘0)})
76xpeq2d 5689 . . . . . 6 (𝑓 = 𝐹 → ((0[,]1) × {(𝑓‘0)}) = ((0[,]1) × {(𝐹‘0)}))
85, 7breq12d 5137 . . . . 5 (𝑓 = 𝐹 → (𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)}) ↔ 𝐹( ≃ph𝐽)((0[,]1) × {(𝐹‘0)})))
94, 8imbi12d 344 . . . 4 (𝑓 = 𝐹 → (((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)})) ↔ ((𝐹‘0) = (𝐹‘1) → 𝐹( ≃ph𝐽)((0[,]1) × {(𝐹‘0)}))))
109rspccv 3603 . . 3 (∀𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)})) → (𝐹 ∈ (II Cn 𝐽) → ((𝐹‘0) = (𝐹‘1) → 𝐹( ≃ph𝐽)((0[,]1) × {(𝐹‘0)}))))
111, 10simplbiim 504 . 2 (𝐽 ∈ SConn → (𝐹 ∈ (II Cn 𝐽) → ((𝐹‘0) = (𝐹‘1) → 𝐹( ≃ph𝐽)((0[,]1) × {(𝐹‘0)}))))
12113imp 1110 1 ((𝐽 ∈ SConn ∧ 𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = (𝐹‘1)) → 𝐹( ≃ph𝐽)((0[,]1) × {(𝐹‘0)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wral 3052  {csn 4606   class class class wbr 5124   × cxp 5657  cfv 6536  (class class class)co 7410  0cc0 11134  1c1 11135  [,]cicc 13370   Cn ccn 23167  IIcii 24824  phcphtpc 24924  PConncpconn 35246  SConncsconn 35247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-xp 5665  df-iota 6489  df-fv 6544  df-ov 7413  df-sconn 35249
This theorem is referenced by:  sconnpht2  35265  sconnpi1  35266  txsconn  35268
  Copyright terms: Public domain W3C validator