MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iordsmo Structured version   Visualization version   GIF version

Theorem iordsmo 8303
Description: The identity relation restricted to the ordinals is a strictly monotone function. (Contributed by Andrew Salmon, 16-Nov-2011.)
Hypothesis
Ref Expression
iordsmo.1 Ord 𝐴
Assertion
Ref Expression
iordsmo Smo ( I ↾ 𝐴)

Proof of Theorem iordsmo
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnresi 6629 . . 3 ( I ↾ 𝐴) Fn 𝐴
2 rnresi 6035 . . . 4 ran ( I ↾ 𝐴) = 𝐴
3 iordsmo.1 . . . . 5 Ord 𝐴
4 ordsson 7739 . . . . 5 (Ord 𝐴𝐴 ⊆ On)
53, 4ax-mp 5 . . . 4 𝐴 ⊆ On
62, 5eqsstri 3990 . . 3 ran ( I ↾ 𝐴) ⊆ On
7 df-f 6503 . . 3 (( I ↾ 𝐴):𝐴⟶On ↔ (( I ↾ 𝐴) Fn 𝐴 ∧ ran ( I ↾ 𝐴) ⊆ On))
81, 6, 7mpbir2an 711 . 2 ( I ↾ 𝐴):𝐴⟶On
9 fvresi 7129 . . . . 5 (𝑥𝐴 → (( I ↾ 𝐴)‘𝑥) = 𝑥)
109adantr 480 . . . 4 ((𝑥𝐴𝑦𝐴) → (( I ↾ 𝐴)‘𝑥) = 𝑥)
11 fvresi 7129 . . . . 5 (𝑦𝐴 → (( I ↾ 𝐴)‘𝑦) = 𝑦)
1211adantl 481 . . . 4 ((𝑥𝐴𝑦𝐴) → (( I ↾ 𝐴)‘𝑦) = 𝑦)
1310, 12eleq12d 2822 . . 3 ((𝑥𝐴𝑦𝐴) → ((( I ↾ 𝐴)‘𝑥) ∈ (( I ↾ 𝐴)‘𝑦) ↔ 𝑥𝑦))
1413biimprd 248 . 2 ((𝑥𝐴𝑦𝐴) → (𝑥𝑦 → (( I ↾ 𝐴)‘𝑥) ∈ (( I ↾ 𝐴)‘𝑦)))
15 dmresi 6012 . 2 dom ( I ↾ 𝐴) = 𝐴
168, 3, 14, 15issmo 8294 1 Smo ( I ↾ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  wss 3911   I cid 5525  ran crn 5632  cres 5633  Ord word 6319  Oncon0 6320   Fn wfn 6494  wf 6495  cfv 6499  Smo wsmo 8291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-smo 8292
This theorem is referenced by:  smo0  8304
  Copyright terms: Public domain W3C validator