![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iordsmo | Structured version Visualization version GIF version |
Description: The identity relation restricted to the ordinals is a strictly monotone function. (Contributed by Andrew Salmon, 16-Nov-2011.) |
Ref | Expression |
---|---|
iordsmo.1 | ⊢ Ord 𝐴 |
Ref | Expression |
---|---|
iordsmo | ⊢ Smo ( I ↾ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnresi 6254 | . . 3 ⊢ ( I ↾ 𝐴) Fn 𝐴 | |
2 | rnresi 5733 | . . . 4 ⊢ ran ( I ↾ 𝐴) = 𝐴 | |
3 | iordsmo.1 | . . . . 5 ⊢ Ord 𝐴 | |
4 | ordsson 7267 | . . . . 5 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ 𝐴 ⊆ On |
6 | 2, 5 | eqsstri 3854 | . . 3 ⊢ ran ( I ↾ 𝐴) ⊆ On |
7 | df-f 6139 | . . 3 ⊢ (( I ↾ 𝐴):𝐴⟶On ↔ (( I ↾ 𝐴) Fn 𝐴 ∧ ran ( I ↾ 𝐴) ⊆ On)) | |
8 | 1, 6, 7 | mpbir2an 701 | . 2 ⊢ ( I ↾ 𝐴):𝐴⟶On |
9 | fvresi 6706 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (( I ↾ 𝐴)‘𝑥) = 𝑥) | |
10 | 9 | adantr 474 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (( I ↾ 𝐴)‘𝑥) = 𝑥) |
11 | fvresi 6706 | . . . . 5 ⊢ (𝑦 ∈ 𝐴 → (( I ↾ 𝐴)‘𝑦) = 𝑦) | |
12 | 11 | adantl 475 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (( I ↾ 𝐴)‘𝑦) = 𝑦) |
13 | 10, 12 | eleq12d 2853 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ((( I ↾ 𝐴)‘𝑥) ∈ (( I ↾ 𝐴)‘𝑦) ↔ 𝑥 ∈ 𝑦)) |
14 | 13 | biimprd 240 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 ∈ 𝑦 → (( I ↾ 𝐴)‘𝑥) ∈ (( I ↾ 𝐴)‘𝑦))) |
15 | dmresi 5713 | . 2 ⊢ dom ( I ↾ 𝐴) = 𝐴 | |
16 | 8, 3, 14, 15 | issmo 7728 | 1 ⊢ Smo ( I ↾ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 386 = wceq 1601 ∈ wcel 2107 ⊆ wss 3792 I cid 5260 ran crn 5356 ↾ cres 5357 Ord word 5975 Oncon0 5976 Fn wfn 6130 ⟶wf 6131 ‘cfv 6135 Smo wsmo 7725 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-br 4887 df-opab 4949 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-ord 5979 df-on 5980 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-fv 6143 df-smo 7726 |
This theorem is referenced by: smo0 7738 |
Copyright terms: Public domain | W3C validator |