| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iordsmo | Structured version Visualization version GIF version | ||
| Description: The identity relation restricted to the ordinals is a strictly monotone function. (Contributed by Andrew Salmon, 16-Nov-2011.) |
| Ref | Expression |
|---|---|
| iordsmo.1 | ⊢ Ord 𝐴 |
| Ref | Expression |
|---|---|
| iordsmo | ⊢ Smo ( I ↾ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnresi 6605 | . . 3 ⊢ ( I ↾ 𝐴) Fn 𝐴 | |
| 2 | rnresi 6019 | . . . 4 ⊢ ran ( I ↾ 𝐴) = 𝐴 | |
| 3 | iordsmo.1 | . . . . 5 ⊢ Ord 𝐴 | |
| 4 | ordsson 7711 | . . . . 5 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) | |
| 5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ 𝐴 ⊆ On |
| 6 | 2, 5 | eqsstri 3976 | . . 3 ⊢ ran ( I ↾ 𝐴) ⊆ On |
| 7 | df-f 6480 | . . 3 ⊢ (( I ↾ 𝐴):𝐴⟶On ↔ (( I ↾ 𝐴) Fn 𝐴 ∧ ran ( I ↾ 𝐴) ⊆ On)) | |
| 8 | 1, 6, 7 | mpbir2an 711 | . 2 ⊢ ( I ↾ 𝐴):𝐴⟶On |
| 9 | fvresi 7102 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (( I ↾ 𝐴)‘𝑥) = 𝑥) | |
| 10 | 9 | adantr 480 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (( I ↾ 𝐴)‘𝑥) = 𝑥) |
| 11 | fvresi 7102 | . . . . 5 ⊢ (𝑦 ∈ 𝐴 → (( I ↾ 𝐴)‘𝑦) = 𝑦) | |
| 12 | 11 | adantl 481 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (( I ↾ 𝐴)‘𝑦) = 𝑦) |
| 13 | 10, 12 | eleq12d 2825 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ((( I ↾ 𝐴)‘𝑥) ∈ (( I ↾ 𝐴)‘𝑦) ↔ 𝑥 ∈ 𝑦)) |
| 14 | 13 | biimprd 248 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 ∈ 𝑦 → (( I ↾ 𝐴)‘𝑥) ∈ (( I ↾ 𝐴)‘𝑦))) |
| 15 | dmresi 5996 | . 2 ⊢ dom ( I ↾ 𝐴) = 𝐴 | |
| 16 | 8, 3, 14, 15 | issmo 8263 | 1 ⊢ Smo ( I ↾ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 I cid 5505 ran crn 5612 ↾ cres 5613 Ord word 6300 Oncon0 6301 Fn wfn 6471 ⟶wf 6472 ‘cfv 6476 Smo wsmo 8260 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-ord 6304 df-on 6305 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-fv 6484 df-smo 8261 |
| This theorem is referenced by: smo0 8273 |
| Copyright terms: Public domain | W3C validator |