![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iordsmo | Structured version Visualization version GIF version |
Description: The identity relation restricted to the ordinals is a strictly monotone function. (Contributed by Andrew Salmon, 16-Nov-2011.) |
Ref | Expression |
---|---|
iordsmo.1 | β’ Ord π΄ |
Ref | Expression |
---|---|
iordsmo | β’ Smo ( I βΎ π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnresi 6676 | . . 3 β’ ( I βΎ π΄) Fn π΄ | |
2 | rnresi 6071 | . . . 4 β’ ran ( I βΎ π΄) = π΄ | |
3 | iordsmo.1 | . . . . 5 β’ Ord π΄ | |
4 | ordsson 7766 | . . . . 5 β’ (Ord π΄ β π΄ β On) | |
5 | 3, 4 | ax-mp 5 | . . . 4 β’ π΄ β On |
6 | 2, 5 | eqsstri 4015 | . . 3 β’ ran ( I βΎ π΄) β On |
7 | df-f 6544 | . . 3 β’ (( I βΎ π΄):π΄βΆOn β (( I βΎ π΄) Fn π΄ β§ ran ( I βΎ π΄) β On)) | |
8 | 1, 6, 7 | mpbir2an 709 | . 2 β’ ( I βΎ π΄):π΄βΆOn |
9 | fvresi 7167 | . . . . 5 β’ (π₯ β π΄ β (( I βΎ π΄)βπ₯) = π₯) | |
10 | 9 | adantr 481 | . . . 4 β’ ((π₯ β π΄ β§ π¦ β π΄) β (( I βΎ π΄)βπ₯) = π₯) |
11 | fvresi 7167 | . . . . 5 β’ (π¦ β π΄ β (( I βΎ π΄)βπ¦) = π¦) | |
12 | 11 | adantl 482 | . . . 4 β’ ((π₯ β π΄ β§ π¦ β π΄) β (( I βΎ π΄)βπ¦) = π¦) |
13 | 10, 12 | eleq12d 2827 | . . 3 β’ ((π₯ β π΄ β§ π¦ β π΄) β ((( I βΎ π΄)βπ₯) β (( I βΎ π΄)βπ¦) β π₯ β π¦)) |
14 | 13 | biimprd 247 | . 2 β’ ((π₯ β π΄ β§ π¦ β π΄) β (π₯ β π¦ β (( I βΎ π΄)βπ₯) β (( I βΎ π΄)βπ¦))) |
15 | dmresi 6049 | . 2 β’ dom ( I βΎ π΄) = π΄ | |
16 | 8, 3, 14, 15 | issmo 8344 | 1 β’ Smo ( I βΎ π΄) |
Colors of variables: wff setvar class |
Syntax hints: β§ wa 396 = wceq 1541 β wcel 2106 β wss 3947 I cid 5572 ran crn 5676 βΎ cres 5677 Ord word 6360 Oncon0 6361 Fn wfn 6535 βΆwf 6536 βcfv 6540 Smo wsmo 8341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-ord 6364 df-on 6365 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-fv 6548 df-smo 8342 |
This theorem is referenced by: smo0 8354 |
Copyright terms: Public domain | W3C validator |