Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iordsmo | Structured version Visualization version GIF version |
Description: The identity relation restricted to the ordinals is a strictly monotone function. (Contributed by Andrew Salmon, 16-Nov-2011.) |
Ref | Expression |
---|---|
iordsmo.1 | ⊢ Ord 𝐴 |
Ref | Expression |
---|---|
iordsmo | ⊢ Smo ( I ↾ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnresi 6545 | . . 3 ⊢ ( I ↾ 𝐴) Fn 𝐴 | |
2 | rnresi 5972 | . . . 4 ⊢ ran ( I ↾ 𝐴) = 𝐴 | |
3 | iordsmo.1 | . . . . 5 ⊢ Ord 𝐴 | |
4 | ordsson 7610 | . . . . 5 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ 𝐴 ⊆ On |
6 | 2, 5 | eqsstri 3951 | . . 3 ⊢ ran ( I ↾ 𝐴) ⊆ On |
7 | df-f 6422 | . . 3 ⊢ (( I ↾ 𝐴):𝐴⟶On ↔ (( I ↾ 𝐴) Fn 𝐴 ∧ ran ( I ↾ 𝐴) ⊆ On)) | |
8 | 1, 6, 7 | mpbir2an 707 | . 2 ⊢ ( I ↾ 𝐴):𝐴⟶On |
9 | fvresi 7027 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (( I ↾ 𝐴)‘𝑥) = 𝑥) | |
10 | 9 | adantr 480 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (( I ↾ 𝐴)‘𝑥) = 𝑥) |
11 | fvresi 7027 | . . . . 5 ⊢ (𝑦 ∈ 𝐴 → (( I ↾ 𝐴)‘𝑦) = 𝑦) | |
12 | 11 | adantl 481 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (( I ↾ 𝐴)‘𝑦) = 𝑦) |
13 | 10, 12 | eleq12d 2833 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ((( I ↾ 𝐴)‘𝑥) ∈ (( I ↾ 𝐴)‘𝑦) ↔ 𝑥 ∈ 𝑦)) |
14 | 13 | biimprd 247 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 ∈ 𝑦 → (( I ↾ 𝐴)‘𝑥) ∈ (( I ↾ 𝐴)‘𝑦))) |
15 | dmresi 5950 | . 2 ⊢ dom ( I ↾ 𝐴) = 𝐴 | |
16 | 8, 3, 14, 15 | issmo 8150 | 1 ⊢ Smo ( I ↾ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 I cid 5479 ran crn 5581 ↾ cres 5582 Ord word 6250 Oncon0 6251 Fn wfn 6413 ⟶wf 6414 ‘cfv 6418 Smo wsmo 8147 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-smo 8148 |
This theorem is referenced by: smo0 8160 |
Copyright terms: Public domain | W3C validator |