MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iordsmo Structured version   Visualization version   GIF version

Theorem iordsmo 7977
Description: The identity relation restricted to the ordinals is a strictly monotone function. (Contributed by Andrew Salmon, 16-Nov-2011.)
Hypothesis
Ref Expression
iordsmo.1 Ord 𝐴
Assertion
Ref Expression
iordsmo Smo ( I ↾ 𝐴)

Proof of Theorem iordsmo
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnresi 6448 . . 3 ( I ↾ 𝐴) Fn 𝐴
2 rnresi 5910 . . . 4 ran ( I ↾ 𝐴) = 𝐴
3 iordsmo.1 . . . . 5 Ord 𝐴
4 ordsson 7484 . . . . 5 (Ord 𝐴𝐴 ⊆ On)
53, 4ax-mp 5 . . . 4 𝐴 ⊆ On
62, 5eqsstri 3949 . . 3 ran ( I ↾ 𝐴) ⊆ On
7 df-f 6328 . . 3 (( I ↾ 𝐴):𝐴⟶On ↔ (( I ↾ 𝐴) Fn 𝐴 ∧ ran ( I ↾ 𝐴) ⊆ On))
81, 6, 7mpbir2an 710 . 2 ( I ↾ 𝐴):𝐴⟶On
9 fvresi 6912 . . . . 5 (𝑥𝐴 → (( I ↾ 𝐴)‘𝑥) = 𝑥)
109adantr 484 . . . 4 ((𝑥𝐴𝑦𝐴) → (( I ↾ 𝐴)‘𝑥) = 𝑥)
11 fvresi 6912 . . . . 5 (𝑦𝐴 → (( I ↾ 𝐴)‘𝑦) = 𝑦)
1211adantl 485 . . . 4 ((𝑥𝐴𝑦𝐴) → (( I ↾ 𝐴)‘𝑦) = 𝑦)
1310, 12eleq12d 2884 . . 3 ((𝑥𝐴𝑦𝐴) → ((( I ↾ 𝐴)‘𝑥) ∈ (( I ↾ 𝐴)‘𝑦) ↔ 𝑥𝑦))
1413biimprd 251 . 2 ((𝑥𝐴𝑦𝐴) → (𝑥𝑦 → (( I ↾ 𝐴)‘𝑥) ∈ (( I ↾ 𝐴)‘𝑦)))
15 dmresi 5888 . 2 dom ( I ↾ 𝐴) = 𝐴
168, 3, 14, 15issmo 7968 1 Smo ( I ↾ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 399   = wceq 1538  wcel 2111  wss 3881   I cid 5424  ran crn 5520  cres 5521  Ord word 6158  Oncon0 6159   Fn wfn 6319  wf 6320  cfv 6324  Smo wsmo 7965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-ord 6162  df-on 6163  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fv 6332  df-smo 7966
This theorem is referenced by:  smo0  7978
  Copyright terms: Public domain W3C validator