MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iordsmo Structured version   Visualization version   GIF version

Theorem iordsmo 8188
Description: The identity relation restricted to the ordinals is a strictly monotone function. (Contributed by Andrew Salmon, 16-Nov-2011.)
Hypothesis
Ref Expression
iordsmo.1 Ord 𝐴
Assertion
Ref Expression
iordsmo Smo ( I ↾ 𝐴)

Proof of Theorem iordsmo
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnresi 6561 . . 3 ( I ↾ 𝐴) Fn 𝐴
2 rnresi 5983 . . . 4 ran ( I ↾ 𝐴) = 𝐴
3 iordsmo.1 . . . . 5 Ord 𝐴
4 ordsson 7633 . . . . 5 (Ord 𝐴𝐴 ⊆ On)
53, 4ax-mp 5 . . . 4 𝐴 ⊆ On
62, 5eqsstri 3955 . . 3 ran ( I ↾ 𝐴) ⊆ On
7 df-f 6437 . . 3 (( I ↾ 𝐴):𝐴⟶On ↔ (( I ↾ 𝐴) Fn 𝐴 ∧ ran ( I ↾ 𝐴) ⊆ On))
81, 6, 7mpbir2an 708 . 2 ( I ↾ 𝐴):𝐴⟶On
9 fvresi 7045 . . . . 5 (𝑥𝐴 → (( I ↾ 𝐴)‘𝑥) = 𝑥)
109adantr 481 . . . 4 ((𝑥𝐴𝑦𝐴) → (( I ↾ 𝐴)‘𝑥) = 𝑥)
11 fvresi 7045 . . . . 5 (𝑦𝐴 → (( I ↾ 𝐴)‘𝑦) = 𝑦)
1211adantl 482 . . . 4 ((𝑥𝐴𝑦𝐴) → (( I ↾ 𝐴)‘𝑦) = 𝑦)
1310, 12eleq12d 2833 . . 3 ((𝑥𝐴𝑦𝐴) → ((( I ↾ 𝐴)‘𝑥) ∈ (( I ↾ 𝐴)‘𝑦) ↔ 𝑥𝑦))
1413biimprd 247 . 2 ((𝑥𝐴𝑦𝐴) → (𝑥𝑦 → (( I ↾ 𝐴)‘𝑥) ∈ (( I ↾ 𝐴)‘𝑦)))
15 dmresi 5961 . 2 dom ( I ↾ 𝐴) = 𝐴
168, 3, 14, 15issmo 8179 1 Smo ( I ↾ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1539  wcel 2106  wss 3887   I cid 5488  ran crn 5590  cres 5591  Ord word 6265  Oncon0 6266   Fn wfn 6428  wf 6429  cfv 6433  Smo wsmo 8176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-smo 8177
This theorem is referenced by:  smo0  8189
  Copyright terms: Public domain W3C validator