Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  arweutermc Structured version   Visualization version   GIF version

Theorem arweutermc 49382
Description: If a structure has a unique disjointified arrow, then the structure is a terminal category. (Contributed by Zhi Wang, 20-Oct-2025.)
Assertion
Ref Expression
arweutermc (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → 𝐶 ∈ TermCat)
Distinct variable group:   𝐶,𝑎

Proof of Theorem arweutermc
Dummy variables 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 arweuthinc 49381 . 2 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → 𝐶 ∈ ThinCat)
2 euex 2577 . . . 4 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → ∃𝑎 𝑎 ∈ (Arrow‘𝐶))
3 eqid 2736 . . . . . . 7 (Arrow‘𝐶) = (Arrow‘𝐶)
4 eqid 2736 . . . . . . 7 (Base‘𝐶) = (Base‘𝐶)
53, 4arwdm 18065 . . . . . 6 (𝑎 ∈ (Arrow‘𝐶) → (doma𝑎) ∈ (Base‘𝐶))
6 eleq1 2823 . . . . . 6 (𝑥 = (doma𝑎) → (𝑥 ∈ (Base‘𝐶) ↔ (doma𝑎) ∈ (Base‘𝐶)))
75, 5, 6spcedv 3582 . . . . 5 (𝑎 ∈ (Arrow‘𝐶) → ∃𝑥 𝑥 ∈ (Base‘𝐶))
87exlimiv 1930 . . . 4 (∃𝑎 𝑎 ∈ (Arrow‘𝐶) → ∃𝑥 𝑥 ∈ (Base‘𝐶))
92, 8syl 17 . . 3 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → ∃𝑥 𝑥 ∈ (Base‘𝐶))
10 eqeq1 2740 . . . . . . 7 (𝑎 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ → (𝑎 = 𝑏 ↔ ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ = 𝑏))
11 eqeq2 2748 . . . . . . 7 (𝑏 = ⟨𝑦, 𝑦, ((Id‘𝐶)‘𝑦)⟩ → (⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ = 𝑏 ↔ ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ = ⟨𝑦, 𝑦, ((Id‘𝐶)‘𝑦)⟩))
12 eumo 2578 . . . . . . . . 9 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → ∃*𝑎 𝑎 ∈ (Arrow‘𝐶))
1312adantr 480 . . . . . . . 8 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ∃*𝑎 𝑎 ∈ (Arrow‘𝐶))
14 moel 3386 . . . . . . . 8 (∃*𝑎 𝑎 ∈ (Arrow‘𝐶) ↔ ∀𝑎 ∈ (Arrow‘𝐶)∀𝑏 ∈ (Arrow‘𝐶)𝑎 = 𝑏)
1513, 14sylib 218 . . . . . . 7 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ∀𝑎 ∈ (Arrow‘𝐶)∀𝑏 ∈ (Arrow‘𝐶)𝑎 = 𝑏)
16 eqid 2736 . . . . . . . . 9 (Homa𝐶) = (Homa𝐶)
173, 16homarw 18064 . . . . . . . 8 (𝑥(Homa𝐶)𝑥) ⊆ (Arrow‘𝐶)
181adantr 480 . . . . . . . . . 10 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐶 ∈ ThinCat)
1918thinccd 49276 . . . . . . . . 9 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat)
20 eqid 2736 . . . . . . . . 9 (Hom ‘𝐶) = (Hom ‘𝐶)
21 simprl 770 . . . . . . . . 9 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
22 eqid 2736 . . . . . . . . . 10 (Id‘𝐶) = (Id‘𝐶)
234, 20, 22, 19, 21catidcl 17699 . . . . . . . . 9 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥))
2416, 4, 19, 20, 21, 21, 23elhomai2 18052 . . . . . . . 8 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ ∈ (𝑥(Homa𝐶)𝑥))
2517, 24sselid 3961 . . . . . . 7 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ ∈ (Arrow‘𝐶))
263, 16homarw 18064 . . . . . . . 8 (𝑦(Homa𝐶)𝑦) ⊆ (Arrow‘𝐶)
27 simprr 772 . . . . . . . . 9 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
284, 20, 22, 19, 27catidcl 17699 . . . . . . . . 9 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((Id‘𝐶)‘𝑦) ∈ (𝑦(Hom ‘𝐶)𝑦))
2916, 4, 19, 20, 27, 27, 28elhomai2 18052 . . . . . . . 8 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ⟨𝑦, 𝑦, ((Id‘𝐶)‘𝑦)⟩ ∈ (𝑦(Homa𝐶)𝑦))
3026, 29sselid 3961 . . . . . . 7 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ⟨𝑦, 𝑦, ((Id‘𝐶)‘𝑦)⟩ ∈ (Arrow‘𝐶))
3110, 11, 15, 25, 30rspc2dv 3621 . . . . . 6 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ = ⟨𝑦, 𝑦, ((Id‘𝐶)‘𝑦)⟩)
32 vex 3468 . . . . . . . 8 𝑥 ∈ V
33 fvex 6894 . . . . . . . 8 ((Id‘𝐶)‘𝑥) ∈ V
3432, 32, 33otth 5464 . . . . . . 7 (⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ = ⟨𝑦, 𝑦, ((Id‘𝐶)‘𝑦)⟩ ↔ (𝑥 = 𝑦𝑥 = 𝑦 ∧ ((Id‘𝐶)‘𝑥) = ((Id‘𝐶)‘𝑦)))
3534simp1bi 1145 . . . . . 6 (⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ = ⟨𝑦, 𝑦, ((Id‘𝐶)‘𝑦)⟩ → 𝑥 = 𝑦)
3631, 35syl 17 . . . . 5 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 = 𝑦)
3736ralrimivva 3188 . . . 4 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)𝑥 = 𝑦)
38 moel 3386 . . . 4 (∃*𝑥 𝑥 ∈ (Base‘𝐶) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)𝑥 = 𝑦)
3937, 38sylibr 234 . . 3 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → ∃*𝑥 𝑥 ∈ (Base‘𝐶))
40 df-eu 2569 . . 3 (∃!𝑥 𝑥 ∈ (Base‘𝐶) ↔ (∃𝑥 𝑥 ∈ (Base‘𝐶) ∧ ∃*𝑥 𝑥 ∈ (Base‘𝐶)))
419, 39, 40sylanbrc 583 . 2 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → ∃!𝑥 𝑥 ∈ (Base‘𝐶))
424istermc2 49328 . 2 (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ ∃!𝑥 𝑥 ∈ (Base‘𝐶)))
431, 41, 42sylanbrc 583 1 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → 𝐶 ∈ TermCat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  ∃*wmo 2538  ∃!weu 2568  wral 3052  cotp 4614  cfv 6536  (class class class)co 7410  Basecbs 17233  Hom chom 17287  Idccid 17682  domacdoma 18038  Arrowcarw 18040  Homachoma 18041  ThinCatcthinc 49270  TermCatctermc 49325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-ot 4615  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-1st 7993  df-2nd 7994  df-cat 17685  df-cid 17686  df-doma 18042  df-coda 18043  df-homa 18044  df-arw 18045  df-thinc 49271  df-termc 49326
This theorem is referenced by:  dftermc3  49383
  Copyright terms: Public domain W3C validator