Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  arweutermc Structured version   Visualization version   GIF version

Theorem arweutermc 49188
Description: If a structure has a unique disjointified arrow, then the structure is a terminal category. (Contributed by Zhi Wang, 20-Oct-2025.)
Assertion
Ref Expression
arweutermc (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → 𝐶 ∈ TermCat)
Distinct variable group:   𝐶,𝑎

Proof of Theorem arweutermc
Dummy variables 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 arweuthinc 49187 . 2 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → 𝐶 ∈ ThinCat)
2 euex 2576 . . . 4 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → ∃𝑎 𝑎 ∈ (Arrow‘𝐶))
3 eqid 2736 . . . . . . 7 (Arrow‘𝐶) = (Arrow‘𝐶)
4 eqid 2736 . . . . . . 7 (Base‘𝐶) = (Base‘𝐶)
53, 4arwdm 18093 . . . . . 6 (𝑎 ∈ (Arrow‘𝐶) → (doma𝑎) ∈ (Base‘𝐶))
6 eleq1 2828 . . . . . 6 (𝑥 = (doma𝑎) → (𝑥 ∈ (Base‘𝐶) ↔ (doma𝑎) ∈ (Base‘𝐶)))
75, 5, 6spcedv 3597 . . . . 5 (𝑎 ∈ (Arrow‘𝐶) → ∃𝑥 𝑥 ∈ (Base‘𝐶))
87exlimiv 1929 . . . 4 (∃𝑎 𝑎 ∈ (Arrow‘𝐶) → ∃𝑥 𝑥 ∈ (Base‘𝐶))
92, 8syl 17 . . 3 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → ∃𝑥 𝑥 ∈ (Base‘𝐶))
10 eqeq1 2740 . . . . . . 7 (𝑎 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ → (𝑎 = 𝑏 ↔ ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ = 𝑏))
11 eqeq2 2748 . . . . . . 7 (𝑏 = ⟨𝑦, 𝑦, ((Id‘𝐶)‘𝑦)⟩ → (⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ = 𝑏 ↔ ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ = ⟨𝑦, 𝑦, ((Id‘𝐶)‘𝑦)⟩))
12 eumo 2577 . . . . . . . . 9 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → ∃*𝑎 𝑎 ∈ (Arrow‘𝐶))
1312adantr 480 . . . . . . . 8 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ∃*𝑎 𝑎 ∈ (Arrow‘𝐶))
14 moel 3401 . . . . . . . 8 (∃*𝑎 𝑎 ∈ (Arrow‘𝐶) ↔ ∀𝑎 ∈ (Arrow‘𝐶)∀𝑏 ∈ (Arrow‘𝐶)𝑎 = 𝑏)
1513, 14sylib 218 . . . . . . 7 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ∀𝑎 ∈ (Arrow‘𝐶)∀𝑏 ∈ (Arrow‘𝐶)𝑎 = 𝑏)
16 eqid 2736 . . . . . . . . 9 (Homa𝐶) = (Homa𝐶)
173, 16homarw 18092 . . . . . . . 8 (𝑥(Homa𝐶)𝑥) ⊆ (Arrow‘𝐶)
181adantr 480 . . . . . . . . . 10 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐶 ∈ ThinCat)
1918thinccd 49097 . . . . . . . . 9 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat)
20 eqid 2736 . . . . . . . . 9 (Hom ‘𝐶) = (Hom ‘𝐶)
21 simprl 770 . . . . . . . . 9 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
22 eqid 2736 . . . . . . . . . 10 (Id‘𝐶) = (Id‘𝐶)
234, 20, 22, 19, 21catidcl 17726 . . . . . . . . 9 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥))
2416, 4, 19, 20, 21, 21, 23elhomai2 18080 . . . . . . . 8 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ ∈ (𝑥(Homa𝐶)𝑥))
2517, 24sselid 3980 . . . . . . 7 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ ∈ (Arrow‘𝐶))
263, 16homarw 18092 . . . . . . . 8 (𝑦(Homa𝐶)𝑦) ⊆ (Arrow‘𝐶)
27 simprr 772 . . . . . . . . 9 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
284, 20, 22, 19, 27catidcl 17726 . . . . . . . . 9 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((Id‘𝐶)‘𝑦) ∈ (𝑦(Hom ‘𝐶)𝑦))
2916, 4, 19, 20, 27, 27, 28elhomai2 18080 . . . . . . . 8 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ⟨𝑦, 𝑦, ((Id‘𝐶)‘𝑦)⟩ ∈ (𝑦(Homa𝐶)𝑦))
3026, 29sselid 3980 . . . . . . 7 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ⟨𝑦, 𝑦, ((Id‘𝐶)‘𝑦)⟩ ∈ (Arrow‘𝐶))
3110, 11, 15, 25, 30rspc2dv 3636 . . . . . 6 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ = ⟨𝑦, 𝑦, ((Id‘𝐶)‘𝑦)⟩)
32 vex 3483 . . . . . . . 8 𝑥 ∈ V
33 fvex 6918 . . . . . . . 8 ((Id‘𝐶)‘𝑥) ∈ V
3432, 32, 33otth 5488 . . . . . . 7 (⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ = ⟨𝑦, 𝑦, ((Id‘𝐶)‘𝑦)⟩ ↔ (𝑥 = 𝑦𝑥 = 𝑦 ∧ ((Id‘𝐶)‘𝑥) = ((Id‘𝐶)‘𝑦)))
3534simp1bi 1145 . . . . . 6 (⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ = ⟨𝑦, 𝑦, ((Id‘𝐶)‘𝑦)⟩ → 𝑥 = 𝑦)
3631, 35syl 17 . . . . 5 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 = 𝑦)
3736ralrimivva 3201 . . . 4 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)𝑥 = 𝑦)
38 moel 3401 . . . 4 (∃*𝑥 𝑥 ∈ (Base‘𝐶) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)𝑥 = 𝑦)
3937, 38sylibr 234 . . 3 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → ∃*𝑥 𝑥 ∈ (Base‘𝐶))
40 df-eu 2568 . . 3 (∃!𝑥 𝑥 ∈ (Base‘𝐶) ↔ (∃𝑥 𝑥 ∈ (Base‘𝐶) ∧ ∃*𝑥 𝑥 ∈ (Base‘𝐶)))
419, 39, 40sylanbrc 583 . 2 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → ∃!𝑥 𝑥 ∈ (Base‘𝐶))
424istermc2 49147 . 2 (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ ∃!𝑥 𝑥 ∈ (Base‘𝐶)))
431, 41, 42sylanbrc 583 1 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → 𝐶 ∈ TermCat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wex 1778  wcel 2107  ∃*wmo 2537  ∃!weu 2567  wral 3060  cotp 4633  cfv 6560  (class class class)co 7432  Basecbs 17248  Hom chom 17309  Idccid 17709  domacdoma 18066  Arrowcarw 18068  Homachoma 18069  ThinCatcthinc 49091  TermCatctermc 49144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-ot 4634  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-1st 8015  df-2nd 8016  df-cat 17712  df-cid 17713  df-doma 18070  df-coda 18071  df-homa 18072  df-arw 18073  df-thinc 49092  df-termc 49145
This theorem is referenced by:  dftermc3  49189
  Copyright terms: Public domain W3C validator