| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | arweuthinc 49187 | . 2
⊢
(∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → 𝐶 ∈ ThinCat) | 
| 2 |  | euex 2576 | . . . 4
⊢
(∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → ∃𝑎 𝑎 ∈ (Arrow‘𝐶)) | 
| 3 |  | eqid 2736 | . . . . . . 7
⊢
(Arrow‘𝐶) =
(Arrow‘𝐶) | 
| 4 |  | eqid 2736 | . . . . . . 7
⊢
(Base‘𝐶) =
(Base‘𝐶) | 
| 5 | 3, 4 | arwdm 18093 | . . . . . 6
⊢ (𝑎 ∈ (Arrow‘𝐶) →
(doma‘𝑎) ∈ (Base‘𝐶)) | 
| 6 |  | eleq1 2828 | . . . . . 6
⊢ (𝑥 =
(doma‘𝑎) → (𝑥 ∈ (Base‘𝐶) ↔ (doma‘𝑎) ∈ (Base‘𝐶))) | 
| 7 | 5, 5, 6 | spcedv 3597 | . . . . 5
⊢ (𝑎 ∈ (Arrow‘𝐶) → ∃𝑥 𝑥 ∈ (Base‘𝐶)) | 
| 8 | 7 | exlimiv 1929 | . . . 4
⊢
(∃𝑎 𝑎 ∈ (Arrow‘𝐶) → ∃𝑥 𝑥 ∈ (Base‘𝐶)) | 
| 9 | 2, 8 | syl 17 | . . 3
⊢
(∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → ∃𝑥 𝑥 ∈ (Base‘𝐶)) | 
| 10 |  | eqeq1 2740 | . . . . . . 7
⊢ (𝑎 = 〈𝑥, 𝑥, ((Id‘𝐶)‘𝑥)〉 → (𝑎 = 𝑏 ↔ 〈𝑥, 𝑥, ((Id‘𝐶)‘𝑥)〉 = 𝑏)) | 
| 11 |  | eqeq2 2748 | . . . . . . 7
⊢ (𝑏 = 〈𝑦, 𝑦, ((Id‘𝐶)‘𝑦)〉 → (〈𝑥, 𝑥, ((Id‘𝐶)‘𝑥)〉 = 𝑏 ↔ 〈𝑥, 𝑥, ((Id‘𝐶)‘𝑥)〉 = 〈𝑦, 𝑦, ((Id‘𝐶)‘𝑦)〉)) | 
| 12 |  | eumo 2577 | . . . . . . . . 9
⊢
(∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → ∃*𝑎 𝑎 ∈ (Arrow‘𝐶)) | 
| 13 | 12 | adantr 480 | . . . . . . . 8
⊢
((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ∃*𝑎 𝑎 ∈ (Arrow‘𝐶)) | 
| 14 |  | moel 3401 | . . . . . . . 8
⊢
(∃*𝑎 𝑎 ∈ (Arrow‘𝐶) ↔ ∀𝑎 ∈ (Arrow‘𝐶)∀𝑏 ∈ (Arrow‘𝐶)𝑎 = 𝑏) | 
| 15 | 13, 14 | sylib 218 | . . . . . . 7
⊢
((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ∀𝑎 ∈ (Arrow‘𝐶)∀𝑏 ∈ (Arrow‘𝐶)𝑎 = 𝑏) | 
| 16 |  | eqid 2736 | . . . . . . . . 9
⊢
(Homa‘𝐶) = (Homa‘𝐶) | 
| 17 | 3, 16 | homarw 18092 | . . . . . . . 8
⊢ (𝑥(Homa‘𝐶)𝑥) ⊆ (Arrow‘𝐶) | 
| 18 | 1 | adantr 480 | . . . . . . . . . 10
⊢
((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐶 ∈ ThinCat) | 
| 19 | 18 | thinccd 49097 | . . . . . . . . 9
⊢
((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat) | 
| 20 |  | eqid 2736 | . . . . . . . . 9
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) | 
| 21 |  | simprl 770 | . . . . . . . . 9
⊢
((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶)) | 
| 22 |  | eqid 2736 | . . . . . . . . . 10
⊢
(Id‘𝐶) =
(Id‘𝐶) | 
| 23 | 4, 20, 22, 19, 21 | catidcl 17726 | . . . . . . . . 9
⊢
((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥)) | 
| 24 | 16, 4, 19, 20, 21, 21, 23 | elhomai2 18080 | . . . . . . . 8
⊢
((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 〈𝑥, 𝑥, ((Id‘𝐶)‘𝑥)〉 ∈ (𝑥(Homa‘𝐶)𝑥)) | 
| 25 | 17, 24 | sselid 3980 | . . . . . . 7
⊢
((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 〈𝑥, 𝑥, ((Id‘𝐶)‘𝑥)〉 ∈ (Arrow‘𝐶)) | 
| 26 | 3, 16 | homarw 18092 | . . . . . . . 8
⊢ (𝑦(Homa‘𝐶)𝑦) ⊆ (Arrow‘𝐶) | 
| 27 |  | simprr 772 | . . . . . . . . 9
⊢
((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶)) | 
| 28 | 4, 20, 22, 19, 27 | catidcl 17726 | . . . . . . . . 9
⊢
((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((Id‘𝐶)‘𝑦) ∈ (𝑦(Hom ‘𝐶)𝑦)) | 
| 29 | 16, 4, 19, 20, 27, 27, 28 | elhomai2 18080 | . . . . . . . 8
⊢
((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 〈𝑦, 𝑦, ((Id‘𝐶)‘𝑦)〉 ∈ (𝑦(Homa‘𝐶)𝑦)) | 
| 30 | 26, 29 | sselid 3980 | . . . . . . 7
⊢
((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 〈𝑦, 𝑦, ((Id‘𝐶)‘𝑦)〉 ∈ (Arrow‘𝐶)) | 
| 31 | 10, 11, 15, 25, 30 | rspc2dv 3636 | . . . . . 6
⊢
((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 〈𝑥, 𝑥, ((Id‘𝐶)‘𝑥)〉 = 〈𝑦, 𝑦, ((Id‘𝐶)‘𝑦)〉) | 
| 32 |  | vex 3483 | . . . . . . . 8
⊢ 𝑥 ∈ V | 
| 33 |  | fvex 6918 | . . . . . . . 8
⊢
((Id‘𝐶)‘𝑥) ∈ V | 
| 34 | 32, 32, 33 | otth 5488 | . . . . . . 7
⊢
(〈𝑥, 𝑥, ((Id‘𝐶)‘𝑥)〉 = 〈𝑦, 𝑦, ((Id‘𝐶)‘𝑦)〉 ↔ (𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ∧ ((Id‘𝐶)‘𝑥) = ((Id‘𝐶)‘𝑦))) | 
| 35 | 34 | simp1bi 1145 | . . . . . 6
⊢
(〈𝑥, 𝑥, ((Id‘𝐶)‘𝑥)〉 = 〈𝑦, 𝑦, ((Id‘𝐶)‘𝑦)〉 → 𝑥 = 𝑦) | 
| 36 | 31, 35 | syl 17 | . . . . 5
⊢
((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 = 𝑦) | 
| 37 | 36 | ralrimivva 3201 | . . . 4
⊢
(∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)𝑥 = 𝑦) | 
| 38 |  | moel 3401 | . . . 4
⊢
(∃*𝑥 𝑥 ∈ (Base‘𝐶) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)𝑥 = 𝑦) | 
| 39 | 37, 38 | sylibr 234 | . . 3
⊢
(∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → ∃*𝑥 𝑥 ∈ (Base‘𝐶)) | 
| 40 |  | df-eu 2568 | . . 3
⊢
(∃!𝑥 𝑥 ∈ (Base‘𝐶) ↔ (∃𝑥 𝑥 ∈ (Base‘𝐶) ∧ ∃*𝑥 𝑥 ∈ (Base‘𝐶))) | 
| 41 | 9, 39, 40 | sylanbrc 583 | . 2
⊢
(∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → ∃!𝑥 𝑥 ∈ (Base‘𝐶)) | 
| 42 | 4 | istermc2 49147 | . 2
⊢ (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧
∃!𝑥 𝑥 ∈ (Base‘𝐶))) | 
| 43 | 1, 41, 42 | sylanbrc 583 | 1
⊢
(∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → 𝐶 ∈ TermCat) |