Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  arweutermc Structured version   Visualization version   GIF version

Theorem arweutermc 49516
Description: If a structure has a unique disjointified arrow, then the structure is a terminal category. (Contributed by Zhi Wang, 20-Oct-2025.)
Assertion
Ref Expression
arweutermc (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → 𝐶 ∈ TermCat)
Distinct variable group:   𝐶,𝑎

Proof of Theorem arweutermc
Dummy variables 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 arweuthinc 49515 . 2 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → 𝐶 ∈ ThinCat)
2 euex 2570 . . . 4 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → ∃𝑎 𝑎 ∈ (Arrow‘𝐶))
3 eqid 2729 . . . . . . 7 (Arrow‘𝐶) = (Arrow‘𝐶)
4 eqid 2729 . . . . . . 7 (Base‘𝐶) = (Base‘𝐶)
53, 4arwdm 18009 . . . . . 6 (𝑎 ∈ (Arrow‘𝐶) → (doma𝑎) ∈ (Base‘𝐶))
6 eleq1 2816 . . . . . 6 (𝑥 = (doma𝑎) → (𝑥 ∈ (Base‘𝐶) ↔ (doma𝑎) ∈ (Base‘𝐶)))
75, 5, 6spcedv 3564 . . . . 5 (𝑎 ∈ (Arrow‘𝐶) → ∃𝑥 𝑥 ∈ (Base‘𝐶))
87exlimiv 1930 . . . 4 (∃𝑎 𝑎 ∈ (Arrow‘𝐶) → ∃𝑥 𝑥 ∈ (Base‘𝐶))
92, 8syl 17 . . 3 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → ∃𝑥 𝑥 ∈ (Base‘𝐶))
10 eqeq1 2733 . . . . . . 7 (𝑎 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ → (𝑎 = 𝑏 ↔ ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ = 𝑏))
11 eqeq2 2741 . . . . . . 7 (𝑏 = ⟨𝑦, 𝑦, ((Id‘𝐶)‘𝑦)⟩ → (⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ = 𝑏 ↔ ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ = ⟨𝑦, 𝑦, ((Id‘𝐶)‘𝑦)⟩))
12 eumo 2571 . . . . . . . . 9 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → ∃*𝑎 𝑎 ∈ (Arrow‘𝐶))
1312adantr 480 . . . . . . . 8 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ∃*𝑎 𝑎 ∈ (Arrow‘𝐶))
14 moel 3376 . . . . . . . 8 (∃*𝑎 𝑎 ∈ (Arrow‘𝐶) ↔ ∀𝑎 ∈ (Arrow‘𝐶)∀𝑏 ∈ (Arrow‘𝐶)𝑎 = 𝑏)
1513, 14sylib 218 . . . . . . 7 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ∀𝑎 ∈ (Arrow‘𝐶)∀𝑏 ∈ (Arrow‘𝐶)𝑎 = 𝑏)
16 eqid 2729 . . . . . . . . 9 (Homa𝐶) = (Homa𝐶)
173, 16homarw 18008 . . . . . . . 8 (𝑥(Homa𝐶)𝑥) ⊆ (Arrow‘𝐶)
181adantr 480 . . . . . . . . . 10 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐶 ∈ ThinCat)
1918thinccd 49409 . . . . . . . . 9 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat)
20 eqid 2729 . . . . . . . . 9 (Hom ‘𝐶) = (Hom ‘𝐶)
21 simprl 770 . . . . . . . . 9 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
22 eqid 2729 . . . . . . . . . 10 (Id‘𝐶) = (Id‘𝐶)
234, 20, 22, 19, 21catidcl 17643 . . . . . . . . 9 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥))
2416, 4, 19, 20, 21, 21, 23elhomai2 17996 . . . . . . . 8 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ ∈ (𝑥(Homa𝐶)𝑥))
2517, 24sselid 3944 . . . . . . 7 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ ∈ (Arrow‘𝐶))
263, 16homarw 18008 . . . . . . . 8 (𝑦(Homa𝐶)𝑦) ⊆ (Arrow‘𝐶)
27 simprr 772 . . . . . . . . 9 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
284, 20, 22, 19, 27catidcl 17643 . . . . . . . . 9 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((Id‘𝐶)‘𝑦) ∈ (𝑦(Hom ‘𝐶)𝑦))
2916, 4, 19, 20, 27, 27, 28elhomai2 17996 . . . . . . . 8 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ⟨𝑦, 𝑦, ((Id‘𝐶)‘𝑦)⟩ ∈ (𝑦(Homa𝐶)𝑦))
3026, 29sselid 3944 . . . . . . 7 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ⟨𝑦, 𝑦, ((Id‘𝐶)‘𝑦)⟩ ∈ (Arrow‘𝐶))
3110, 11, 15, 25, 30rspc2dv 3603 . . . . . 6 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ = ⟨𝑦, 𝑦, ((Id‘𝐶)‘𝑦)⟩)
32 vex 3451 . . . . . . . 8 𝑥 ∈ V
33 fvex 6871 . . . . . . . 8 ((Id‘𝐶)‘𝑥) ∈ V
3432, 32, 33otth 5444 . . . . . . 7 (⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ = ⟨𝑦, 𝑦, ((Id‘𝐶)‘𝑦)⟩ ↔ (𝑥 = 𝑦𝑥 = 𝑦 ∧ ((Id‘𝐶)‘𝑥) = ((Id‘𝐶)‘𝑦)))
3534simp1bi 1145 . . . . . 6 (⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ = ⟨𝑦, 𝑦, ((Id‘𝐶)‘𝑦)⟩ → 𝑥 = 𝑦)
3631, 35syl 17 . . . . 5 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 = 𝑦)
3736ralrimivva 3180 . . . 4 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)𝑥 = 𝑦)
38 moel 3376 . . . 4 (∃*𝑥 𝑥 ∈ (Base‘𝐶) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)𝑥 = 𝑦)
3937, 38sylibr 234 . . 3 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → ∃*𝑥 𝑥 ∈ (Base‘𝐶))
40 df-eu 2562 . . 3 (∃!𝑥 𝑥 ∈ (Base‘𝐶) ↔ (∃𝑥 𝑥 ∈ (Base‘𝐶) ∧ ∃*𝑥 𝑥 ∈ (Base‘𝐶)))
419, 39, 40sylanbrc 583 . 2 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → ∃!𝑥 𝑥 ∈ (Base‘𝐶))
424istermc2 49461 . 2 (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ ∃!𝑥 𝑥 ∈ (Base‘𝐶)))
431, 41, 42sylanbrc 583 1 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → 𝐶 ∈ TermCat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  ∃*wmo 2531  ∃!weu 2561  wral 3044  cotp 4597  cfv 6511  (class class class)co 7387  Basecbs 17179  Hom chom 17231  Idccid 17626  domacdoma 17982  Arrowcarw 17984  Homachoma 17985  ThinCatcthinc 49403  TermCatctermc 49458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-ot 4598  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-1st 7968  df-2nd 7969  df-cat 17629  df-cid 17630  df-doma 17986  df-coda 17987  df-homa 17988  df-arw 17989  df-thinc 49404  df-termc 49459
This theorem is referenced by:  dftermc3  49517
  Copyright terms: Public domain W3C validator