Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  arweutermc Structured version   Visualization version   GIF version

Theorem arweutermc 49535
Description: If a structure has a unique disjointified arrow, then the structure is a terminal category. (Contributed by Zhi Wang, 20-Oct-2025.)
Assertion
Ref Expression
arweutermc (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → 𝐶 ∈ TermCat)
Distinct variable group:   𝐶,𝑎

Proof of Theorem arweutermc
Dummy variables 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 arweuthinc 49534 . 2 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → 𝐶 ∈ ThinCat)
2 euex 2570 . . . 4 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → ∃𝑎 𝑎 ∈ (Arrow‘𝐶))
3 eqid 2729 . . . . . . 7 (Arrow‘𝐶) = (Arrow‘𝐶)
4 eqid 2729 . . . . . . 7 (Base‘𝐶) = (Base‘𝐶)
53, 4arwdm 17954 . . . . . 6 (𝑎 ∈ (Arrow‘𝐶) → (doma𝑎) ∈ (Base‘𝐶))
6 eleq1 2816 . . . . . 6 (𝑥 = (doma𝑎) → (𝑥 ∈ (Base‘𝐶) ↔ (doma𝑎) ∈ (Base‘𝐶)))
75, 5, 6spcedv 3553 . . . . 5 (𝑎 ∈ (Arrow‘𝐶) → ∃𝑥 𝑥 ∈ (Base‘𝐶))
87exlimiv 1930 . . . 4 (∃𝑎 𝑎 ∈ (Arrow‘𝐶) → ∃𝑥 𝑥 ∈ (Base‘𝐶))
92, 8syl 17 . . 3 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → ∃𝑥 𝑥 ∈ (Base‘𝐶))
10 eqeq1 2733 . . . . . . 7 (𝑎 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ → (𝑎 = 𝑏 ↔ ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ = 𝑏))
11 eqeq2 2741 . . . . . . 7 (𝑏 = ⟨𝑦, 𝑦, ((Id‘𝐶)‘𝑦)⟩ → (⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ = 𝑏 ↔ ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ = ⟨𝑦, 𝑦, ((Id‘𝐶)‘𝑦)⟩))
12 eumo 2571 . . . . . . . . 9 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → ∃*𝑎 𝑎 ∈ (Arrow‘𝐶))
1312adantr 480 . . . . . . . 8 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ∃*𝑎 𝑎 ∈ (Arrow‘𝐶))
14 moel 3365 . . . . . . . 8 (∃*𝑎 𝑎 ∈ (Arrow‘𝐶) ↔ ∀𝑎 ∈ (Arrow‘𝐶)∀𝑏 ∈ (Arrow‘𝐶)𝑎 = 𝑏)
1513, 14sylib 218 . . . . . . 7 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ∀𝑎 ∈ (Arrow‘𝐶)∀𝑏 ∈ (Arrow‘𝐶)𝑎 = 𝑏)
16 eqid 2729 . . . . . . . . 9 (Homa𝐶) = (Homa𝐶)
173, 16homarw 17953 . . . . . . . 8 (𝑥(Homa𝐶)𝑥) ⊆ (Arrow‘𝐶)
181adantr 480 . . . . . . . . . 10 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐶 ∈ ThinCat)
1918thinccd 49428 . . . . . . . . 9 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat)
20 eqid 2729 . . . . . . . . 9 (Hom ‘𝐶) = (Hom ‘𝐶)
21 simprl 770 . . . . . . . . 9 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
22 eqid 2729 . . . . . . . . . 10 (Id‘𝐶) = (Id‘𝐶)
234, 20, 22, 19, 21catidcl 17588 . . . . . . . . 9 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥))
2416, 4, 19, 20, 21, 21, 23elhomai2 17941 . . . . . . . 8 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ ∈ (𝑥(Homa𝐶)𝑥))
2517, 24sselid 3933 . . . . . . 7 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ ∈ (Arrow‘𝐶))
263, 16homarw 17953 . . . . . . . 8 (𝑦(Homa𝐶)𝑦) ⊆ (Arrow‘𝐶)
27 simprr 772 . . . . . . . . 9 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
284, 20, 22, 19, 27catidcl 17588 . . . . . . . . 9 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((Id‘𝐶)‘𝑦) ∈ (𝑦(Hom ‘𝐶)𝑦))
2916, 4, 19, 20, 27, 27, 28elhomai2 17941 . . . . . . . 8 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ⟨𝑦, 𝑦, ((Id‘𝐶)‘𝑦)⟩ ∈ (𝑦(Homa𝐶)𝑦))
3026, 29sselid 3933 . . . . . . 7 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ⟨𝑦, 𝑦, ((Id‘𝐶)‘𝑦)⟩ ∈ (Arrow‘𝐶))
3110, 11, 15, 25, 30rspc2dv 3592 . . . . . 6 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ = ⟨𝑦, 𝑦, ((Id‘𝐶)‘𝑦)⟩)
32 vex 3440 . . . . . . . 8 𝑥 ∈ V
33 fvex 6835 . . . . . . . 8 ((Id‘𝐶)‘𝑥) ∈ V
3432, 32, 33otth 5427 . . . . . . 7 (⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ = ⟨𝑦, 𝑦, ((Id‘𝐶)‘𝑦)⟩ ↔ (𝑥 = 𝑦𝑥 = 𝑦 ∧ ((Id‘𝐶)‘𝑥) = ((Id‘𝐶)‘𝑦)))
3534simp1bi 1145 . . . . . 6 (⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ = ⟨𝑦, 𝑦, ((Id‘𝐶)‘𝑦)⟩ → 𝑥 = 𝑦)
3631, 35syl 17 . . . . 5 ((∃!𝑎 𝑎 ∈ (Arrow‘𝐶) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 = 𝑦)
3736ralrimivva 3172 . . . 4 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)𝑥 = 𝑦)
38 moel 3365 . . . 4 (∃*𝑥 𝑥 ∈ (Base‘𝐶) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)𝑥 = 𝑦)
3937, 38sylibr 234 . . 3 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → ∃*𝑥 𝑥 ∈ (Base‘𝐶))
40 df-eu 2562 . . 3 (∃!𝑥 𝑥 ∈ (Base‘𝐶) ↔ (∃𝑥 𝑥 ∈ (Base‘𝐶) ∧ ∃*𝑥 𝑥 ∈ (Base‘𝐶)))
419, 39, 40sylanbrc 583 . 2 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → ∃!𝑥 𝑥 ∈ (Base‘𝐶))
424istermc2 49480 . 2 (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ ∃!𝑥 𝑥 ∈ (Base‘𝐶)))
431, 41, 42sylanbrc 583 1 (∃!𝑎 𝑎 ∈ (Arrow‘𝐶) → 𝐶 ∈ TermCat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  ∃*wmo 2531  ∃!weu 2561  wral 3044  cotp 4585  cfv 6482  (class class class)co 7349  Basecbs 17120  Hom chom 17172  Idccid 17571  domacdoma 17927  Arrowcarw 17929  Homachoma 17930  ThinCatcthinc 49422  TermCatctermc 49477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-ot 4586  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-1st 7924  df-2nd 7925  df-cat 17574  df-cid 17575  df-doma 17931  df-coda 17932  df-homa 17933  df-arw 17934  df-thinc 49423  df-termc 49478
This theorem is referenced by:  dftermc3  49536
  Copyright terms: Public domain W3C validator