Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sqxpeqd | Structured version Visualization version GIF version |
Description: Equality deduction for a Cartesian square, see Wikipedia "Cartesian product", https://en.wikipedia.org/wiki/Cartesian_product#n-ary_Cartesian_power. (Contributed by AV, 13-Jan-2020.) |
Ref | Expression |
---|---|
xpeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
sqxpeqd | ⊢ (𝜑 → (𝐴 × 𝐴) = (𝐵 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1, 1 | xpeq12d 5611 | 1 ⊢ (𝜑 → (𝐴 × 𝐴) = (𝐵 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 × cxp 5578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-opab 5133 df-xp 5586 |
This theorem is referenced by: xpcoid 6182 hartogslem1 9231 isfin6 9987 fpwwe2cbv 10317 fpwwe2lem2 10319 fpwwe2lem3 10320 fpwwe2lem7 10324 fpwwe2lem11 10328 fpwwe2lem12 10329 fpwwe2 10330 fpwwecbv 10331 fpwwelem 10332 canthwelem 10337 canthwe 10338 pwfseqlem4 10349 prdsval 17083 imasval 17139 imasaddfnlem 17156 comfffval 17324 comfeq 17332 oppcval 17339 sscfn1 17446 sscfn2 17447 isssc 17449 ssceq 17455 reschomf 17461 isfunc 17495 idfuval 17507 funcres 17527 funcpropd 17532 fucval 17591 fucpropd 17611 homafval 17660 setcval 17708 catcval 17731 estrcval 17756 estrchomfeqhom 17768 hofval 17886 hofpropd 17901 islat 18066 istsr 18216 cnvtsr 18221 isdir 18231 tsrdir 18237 intopsn 18253 frmdval 18405 resgrpplusfrn 18508 opsrval 21157 matval 21468 ustval 23262 trust 23289 utop2nei 23310 utop3cls 23311 utopreg 23312 ussval 23319 ressuss 23322 tususs 23330 fmucnd 23352 cfilufg 23353 trcfilu 23354 neipcfilu 23356 ispsmet 23365 prdsdsf 23428 prdsxmet 23430 ressprdsds 23432 xpsdsfn2 23439 xpsxmetlem 23440 xpsmet 23443 isxms 23508 isms 23510 xmspropd 23534 mspropd 23535 setsxms 23540 setsms 23541 imasf1oxms 23551 imasf1oms 23552 ressxms 23587 ressms 23588 prdsxmslem2 23591 metuval 23611 nmpropd2 23657 ngppropd 23699 tngngp2 23722 pi1addf 24116 pi1addval 24117 iscms 24414 cmspropd 24418 cmssmscld 24419 cmsss 24420 cssbn 24444 rrxds 24462 rrxmfval 24475 minveclem3a 24496 dvlip2 25064 dchrval 26287 brcgr 27171 issh 29471 qtophaus 31688 prsssdm 31769 ordtrestNEW 31773 ordtrest2NEW 31775 isrrext 31850 sibfof 32207 satefv 33276 mdvval 33366 msrval 33400 mthmpps 33444 madeval 33963 funtransport 34260 fvtransport 34261 prdsbnd2 35880 cnpwstotbnd 35882 isrngo 35982 isrngod 35983 rngosn3 36009 isdivrngo 36035 drngoi 36036 isgrpda 36040 ldualset 37066 aomclem8 40802 intopval 45284 rngcvalALTV 45407 rngcval 45408 rnghmsubcsetclem1 45421 rngccat 45424 rngchomrnghmresALTV 45442 ringcvalALTV 45453 ringcval 45454 rhmsubcsetclem1 45467 ringccat 45470 rhmsubcrngclem1 45473 rhmsubcrngc 45475 srhmsubc 45522 rhmsubc 45536 srhmsubcALTV 45540 elpglem3 46304 |
Copyright terms: Public domain | W3C validator |