![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sqxpeqd | Structured version Visualization version GIF version |
Description: Equality deduction for a Cartesian square, see Wikipedia "Cartesian product", https://en.wikipedia.org/wiki/Cartesian_product#n-ary_Cartesian_power. (Contributed by AV, 13-Jan-2020.) |
Ref | Expression |
---|---|
xpeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
sqxpeqd | ⊢ (𝜑 → (𝐴 × 𝐴) = (𝐵 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1, 1 | xpeq12d 5719 | 1 ⊢ (𝜑 → (𝐴 × 𝐴) = (𝐵 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 × cxp 5686 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-opab 5210 df-xp 5694 |
This theorem is referenced by: xpcoid 6311 hartogslem1 9579 isfin6 10337 fpwwe2cbv 10667 fpwwe2lem2 10669 fpwwe2lem3 10670 fpwwe2lem4 10671 fpwwe2lem7 10674 fpwwe2lem11 10678 fpwwe2lem12 10679 fpwwe2 10680 fpwwecbv 10681 fpwwelem 10682 canthwelem 10687 canthwe 10688 pwfseqlem4 10699 prdsval 17501 imasval 17557 imasaddfnlem 17574 comfffval 17742 comfeq 17750 oppcval 17757 sscfn1 17864 sscfn2 17865 isssc 17867 ssceq 17873 reschomf 17879 isfunc 17914 idfuval 17926 funcres 17946 funcpropd 17953 fucval 18013 fucpropd 18033 homafval 18082 setcval 18130 catcval 18153 estrcval 18178 estrchomfeqhom 18190 hofval 18308 hofpropd 18323 islat 18490 istsr 18640 cnvtsr 18645 isdir 18655 tsrdir 18661 intopsn 18679 frmdval 18876 resgrpplusfrn 18980 rngcval 20634 rnghmsubcsetclem1 20647 rngccat 20650 ringcval 20663 rhmsubcsetclem1 20676 ringccat 20679 rhmsubcrngclem1 20682 rhmsubcrngc 20684 srhmsubc 20696 rhmsubc 20705 opsrval 22081 matval 22430 ustval 24226 trust 24253 utop2nei 24274 utop3cls 24275 utopreg 24276 ussval 24283 ressuss 24286 tususs 24294 fmucnd 24316 cfilufg 24317 trcfilu 24318 neipcfilu 24320 ispsmet 24329 prdsdsf 24392 prdsxmet 24394 ressprdsds 24396 xpsdsfn2 24403 xpsxmetlem 24404 xpsmet 24407 isxms 24472 isms 24474 xmspropd 24498 mspropd 24499 setsxms 24506 setsms 24507 imasf1oxms 24517 imasf1oms 24518 ressxms 24553 ressms 24554 prdsxmslem2 24557 metuval 24577 nmpropd2 24623 ngppropd 24665 tngngp2 24688 pi1addf 25093 pi1addval 25094 iscms 25392 cmspropd 25396 cmssmscld 25397 cmsss 25398 cssbn 25422 rrxds 25440 rrxmfval 25453 minveclem3a 25474 dvlip2 26048 dchrval 27292 madeval 27905 brcgr 28929 issh 31236 qtophaus 33796 prsssdm 33877 ordtrestNEW 33881 ordtrest2NEW 33883 isrrext 33962 sibfof 34321 satefv 35398 mdvval 35488 msrval 35522 mthmpps 35566 funtransport 36012 fvtransport 36013 prdsbnd2 37781 cnpwstotbnd 37783 isrngo 37883 isrngod 37884 rngosn3 37910 isdivrngo 37936 drngoi 37937 isgrpda 37941 ldualset 39106 aomclem8 43049 intopval 48045 rngcvalALTV 48108 rngchomrnghmresALTV 48122 ringcvalALTV 48132 srhmsubcALTV 48168 elpglem3 48943 pgindnf 48946 |
Copyright terms: Public domain | W3C validator |