| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sqxpeqd | Structured version Visualization version GIF version | ||
| Description: Equality deduction for a Cartesian square, see Wikipedia "Cartesian product", https://en.wikipedia.org/wiki/Cartesian_product#n-ary_Cartesian_power. (Contributed by AV, 13-Jan-2020.) |
| Ref | Expression |
|---|---|
| xpeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| sqxpeqd | ⊢ (𝜑 → (𝐴 × 𝐴) = (𝐵 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1, 1 | xpeq12d 5672 | 1 ⊢ (𝜑 → (𝐴 × 𝐴) = (𝐵 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 × cxp 5639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-opab 5173 df-xp 5647 |
| This theorem is referenced by: xpcoid 6266 hartogslem1 9502 isfin6 10260 fpwwe2cbv 10590 fpwwe2lem2 10592 fpwwe2lem3 10593 fpwwe2lem4 10594 fpwwe2lem7 10597 fpwwe2lem11 10601 fpwwe2lem12 10602 fpwwe2 10603 fpwwecbv 10604 fpwwelem 10605 canthwelem 10610 canthwe 10611 pwfseqlem4 10622 prdsval 17425 imasval 17481 imasaddfnlem 17498 comfffval 17666 comfeq 17674 oppcval 17681 sscfn1 17786 sscfn2 17787 isssc 17789 ssceq 17795 reschomf 17800 isfunc 17833 idfuval 17845 funcres 17865 funcpropd 17871 fucval 17930 fucpropd 17949 homafval 17998 setcval 18046 catcval 18069 estrcval 18092 estrchomfeqhom 18104 hofval 18220 hofpropd 18235 islat 18399 istsr 18549 cnvtsr 18554 isdir 18564 tsrdir 18570 intopsn 18588 frmdval 18785 resgrpplusfrn 18889 rngcval 20534 rnghmsubcsetclem1 20547 rngccat 20550 ringcval 20563 rhmsubcsetclem1 20576 ringccat 20579 rhmsubcrngclem1 20582 rhmsubcrngc 20584 srhmsubc 20596 rhmsubc 20605 opsrval 21960 matval 22305 ustval 24097 trust 24124 utop2nei 24145 utop3cls 24146 utopreg 24147 ussval 24154 ressuss 24157 tususs 24164 fmucnd 24186 cfilufg 24187 trcfilu 24188 neipcfilu 24190 ispsmet 24199 prdsdsf 24262 prdsxmet 24264 ressprdsds 24266 xpsdsfn2 24273 xpsxmetlem 24274 xpsmet 24277 isxms 24342 isms 24344 xmspropd 24368 mspropd 24369 setsxms 24374 setsms 24375 imasf1oxms 24384 imasf1oms 24385 ressxms 24420 ressms 24421 prdsxmslem2 24424 metuval 24444 nmpropd2 24490 ngppropd 24532 tngngp2 24547 pi1addf 24954 pi1addval 24955 iscms 25252 cmspropd 25256 cmssmscld 25257 cmsss 25258 cssbn 25282 rrxds 25300 rrxmfval 25313 minveclem3a 25334 dvlip2 25907 dchrval 27152 madeval 27767 brcgr 28834 issh 31144 qtophaus 33833 prsssdm 33914 ordtrestNEW 33918 ordtrest2NEW 33920 isrrext 33997 sibfof 34338 satefv 35408 mdvval 35498 msrval 35532 mthmpps 35576 funtransport 36026 fvtransport 36027 prdsbnd2 37796 cnpwstotbnd 37798 isrngo 37898 isrngod 37899 rngosn3 37925 isdivrngo 37951 drngoi 37952 isgrpda 37956 ldualset 39125 aomclem8 43057 intopval 48194 rngcvalALTV 48257 rngchomrnghmresALTV 48271 ringcvalALTV 48281 srhmsubcALTV 48317 nelsubc3lem 49063 0funcg2 49077 imaidfu2 49104 idfullsubc 49154 termcfuncval 49525 cnelsubclem 49596 elpglem3 49706 pgindnf 49709 |
| Copyright terms: Public domain | W3C validator |