| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sqxpeqd | Structured version Visualization version GIF version | ||
| Description: Equality deduction for a Cartesian square, see Wikipedia "Cartesian product", https://en.wikipedia.org/wiki/Cartesian_product#n-ary_Cartesian_power. (Contributed by AV, 13-Jan-2020.) |
| Ref | Expression |
|---|---|
| xpeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| sqxpeqd | ⊢ (𝜑 → (𝐴 × 𝐴) = (𝐵 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1, 1 | xpeq12d 5662 | 1 ⊢ (𝜑 → (𝐴 × 𝐴) = (𝐵 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 × cxp 5629 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-opab 5165 df-xp 5637 |
| This theorem is referenced by: xpcoid 6251 hartogslem1 9471 isfin6 10229 fpwwe2cbv 10559 fpwwe2lem2 10561 fpwwe2lem3 10562 fpwwe2lem4 10563 fpwwe2lem7 10566 fpwwe2lem11 10570 fpwwe2lem12 10571 fpwwe2 10572 fpwwecbv 10573 fpwwelem 10574 canthwelem 10579 canthwe 10580 pwfseqlem4 10591 prdsval 17394 imasval 17450 imasaddfnlem 17467 comfffval 17639 comfeq 17647 oppcval 17654 sscfn1 17759 sscfn2 17760 isssc 17762 ssceq 17768 reschomf 17773 isfunc 17806 idfuval 17818 funcres 17838 funcpropd 17844 fucval 17903 fucpropd 17922 homafval 17971 setcval 18019 catcval 18042 estrcval 18065 estrchomfeqhom 18077 hofval 18193 hofpropd 18208 islat 18374 istsr 18524 cnvtsr 18529 isdir 18539 tsrdir 18545 intopsn 18563 frmdval 18760 resgrpplusfrn 18864 rngcval 20538 rnghmsubcsetclem1 20551 rngccat 20554 ringcval 20567 rhmsubcsetclem1 20580 ringccat 20583 rhmsubcrngclem1 20586 rhmsubcrngc 20588 srhmsubc 20600 rhmsubc 20609 opsrval 21986 matval 22331 ustval 24123 trust 24150 utop2nei 24171 utop3cls 24172 utopreg 24173 ussval 24180 ressuss 24183 tususs 24190 fmucnd 24212 cfilufg 24213 trcfilu 24214 neipcfilu 24216 ispsmet 24225 prdsdsf 24288 prdsxmet 24290 ressprdsds 24292 xpsdsfn2 24299 xpsxmetlem 24300 xpsmet 24303 isxms 24368 isms 24370 xmspropd 24394 mspropd 24395 setsxms 24400 setsms 24401 imasf1oxms 24410 imasf1oms 24411 ressxms 24446 ressms 24447 prdsxmslem2 24450 metuval 24470 nmpropd2 24516 ngppropd 24558 tngngp2 24573 pi1addf 24980 pi1addval 24981 iscms 25278 cmspropd 25282 cmssmscld 25283 cmsss 25284 cssbn 25308 rrxds 25326 rrxmfval 25339 minveclem3a 25360 dvlip2 25933 dchrval 27178 madeval 27797 brcgr 28880 issh 31187 qtophaus 33819 prsssdm 33900 ordtrestNEW 33904 ordtrest2NEW 33906 isrrext 33983 sibfof 34324 satefv 35394 mdvval 35484 msrval 35518 mthmpps 35562 funtransport 36012 fvtransport 36013 prdsbnd2 37782 cnpwstotbnd 37784 isrngo 37884 isrngod 37885 rngosn3 37911 isdivrngo 37937 drngoi 37938 isgrpda 37942 ldualset 39111 aomclem8 43043 intopval 48183 rngcvalALTV 48246 rngchomrnghmresALTV 48260 ringcvalALTV 48270 srhmsubcALTV 48306 nelsubc3lem 49052 0funcg2 49066 imaidfu2 49093 idfullsubc 49143 termcfuncval 49514 cnelsubclem 49585 elpglem3 49695 pgindnf 49698 |
| Copyright terms: Public domain | W3C validator |