| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sqxpeqd | Structured version Visualization version GIF version | ||
| Description: Equality deduction for a Cartesian square, see Wikipedia "Cartesian product", https://en.wikipedia.org/wiki/Cartesian_product#n-ary_Cartesian_power. (Contributed by AV, 13-Jan-2020.) |
| Ref | Expression |
|---|---|
| xpeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| sqxpeqd | ⊢ (𝜑 → (𝐴 × 𝐴) = (𝐵 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1, 1 | xpeq12d 5645 | 1 ⊢ (𝜑 → (𝐴 × 𝐴) = (𝐵 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 × cxp 5612 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-opab 5152 df-xp 5620 |
| This theorem is referenced by: xpcoid 6237 hartogslem1 9428 isfin6 10191 fpwwe2cbv 10521 fpwwe2lem2 10523 fpwwe2lem3 10524 fpwwe2lem4 10525 fpwwe2lem7 10528 fpwwe2lem11 10532 fpwwe2lem12 10533 fpwwe2 10534 fpwwecbv 10535 fpwwelem 10536 canthwelem 10541 canthwe 10542 pwfseqlem4 10553 prdsval 17359 imasval 17415 imasaddfnlem 17432 comfffval 17604 comfeq 17612 oppcval 17619 sscfn1 17724 sscfn2 17725 isssc 17727 ssceq 17733 reschomf 17738 isfunc 17771 idfuval 17783 funcres 17803 funcpropd 17809 fucval 17868 fucpropd 17887 homafval 17936 setcval 17984 catcval 18007 estrcval 18030 estrchomfeqhom 18042 hofval 18158 hofpropd 18173 islat 18339 istsr 18489 cnvtsr 18494 isdir 18504 tsrdir 18510 intopsn 18562 frmdval 18759 resgrpplusfrn 18863 rngcval 20533 rnghmsubcsetclem1 20546 rngccat 20549 ringcval 20562 rhmsubcsetclem1 20575 ringccat 20578 rhmsubcrngclem1 20581 rhmsubcrngc 20583 srhmsubc 20595 rhmsubc 20604 opsrval 21981 matval 22326 ustval 24118 trust 24144 utop2nei 24165 utop3cls 24166 utopreg 24167 ussval 24174 ressuss 24177 tususs 24184 fmucnd 24206 cfilufg 24207 trcfilu 24208 neipcfilu 24210 ispsmet 24219 prdsdsf 24282 prdsxmet 24284 ressprdsds 24286 xpsdsfn2 24293 xpsxmetlem 24294 xpsmet 24297 isxms 24362 isms 24364 xmspropd 24388 mspropd 24389 setsxms 24394 setsms 24395 imasf1oxms 24404 imasf1oms 24405 ressxms 24440 ressms 24441 prdsxmslem2 24444 metuval 24464 nmpropd2 24510 ngppropd 24552 tngngp2 24567 pi1addf 24974 pi1addval 24975 iscms 25272 cmspropd 25276 cmssmscld 25277 cmsss 25278 cssbn 25302 rrxds 25320 rrxmfval 25333 minveclem3a 25354 dvlip2 25927 dchrval 27172 madeval 27793 brcgr 28878 issh 31188 qtophaus 33849 prsssdm 33930 ordtrestNEW 33934 ordtrest2NEW 33936 isrrext 34013 sibfof 34353 satefv 35458 mdvval 35548 msrval 35582 mthmpps 35626 funtransport 36075 fvtransport 36076 prdsbnd2 37834 cnpwstotbnd 37836 isrngo 37936 isrngod 37937 rngosn3 37963 isdivrngo 37989 drngoi 37990 isgrpda 37994 ldualset 39223 aomclem8 43153 intopval 48301 rngcvalALTV 48364 rngchomrnghmresALTV 48378 ringcvalALTV 48388 srhmsubcALTV 48424 nelsubc3lem 49170 0funcg2 49184 imaidfu2 49211 idfullsubc 49261 termcfuncval 49632 cnelsubclem 49703 elpglem3 49813 pgindnf 49816 |
| Copyright terms: Public domain | W3C validator |