![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sqxpeqd | Structured version Visualization version GIF version |
Description: Equality deduction for a Cartesian square, see Wikipedia "Cartesian product", https://en.wikipedia.org/wiki/Cartesian_product#n-ary_Cartesian_power. (Contributed by AV, 13-Jan-2020.) |
Ref | Expression |
---|---|
xpeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
sqxpeqd | ⊢ (𝜑 → (𝐴 × 𝐴) = (𝐵 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1, 1 | xpeq12d 5707 | 1 ⊢ (𝜑 → (𝐴 × 𝐴) = (𝐵 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 × cxp 5674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-opab 5211 df-xp 5682 |
This theorem is referenced by: xpcoid 6289 hartogslem1 9539 isfin6 10297 fpwwe2cbv 10627 fpwwe2lem2 10629 fpwwe2lem3 10630 fpwwe2lem7 10634 fpwwe2lem11 10638 fpwwe2lem12 10639 fpwwe2 10640 fpwwecbv 10641 fpwwelem 10642 canthwelem 10647 canthwe 10648 pwfseqlem4 10659 prdsval 17405 imasval 17461 imasaddfnlem 17478 comfffval 17646 comfeq 17654 oppcval 17661 sscfn1 17768 sscfn2 17769 isssc 17771 ssceq 17777 reschomf 17783 isfunc 17818 idfuval 17830 funcres 17850 funcpropd 17855 fucval 17914 fucpropd 17934 homafval 17983 setcval 18031 catcval 18054 estrcval 18079 estrchomfeqhom 18091 hofval 18209 hofpropd 18224 islat 18390 istsr 18540 cnvtsr 18545 isdir 18555 tsrdir 18561 intopsn 18579 frmdval 18768 resgrpplusfrn 18872 opsrval 21820 matval 22131 ustval 23927 trust 23954 utop2nei 23975 utop3cls 23976 utopreg 23977 ussval 23984 ressuss 23987 tususs 23995 fmucnd 24017 cfilufg 24018 trcfilu 24019 neipcfilu 24021 ispsmet 24030 prdsdsf 24093 prdsxmet 24095 ressprdsds 24097 xpsdsfn2 24104 xpsxmetlem 24105 xpsmet 24108 isxms 24173 isms 24175 xmspropd 24199 mspropd 24200 setsxms 24207 setsms 24208 imasf1oxms 24218 imasf1oms 24219 ressxms 24254 ressms 24255 prdsxmslem2 24258 metuval 24278 nmpropd2 24324 ngppropd 24366 tngngp2 24389 pi1addf 24787 pi1addval 24788 iscms 25086 cmspropd 25090 cmssmscld 25091 cmsss 25092 cssbn 25116 rrxds 25134 rrxmfval 25147 minveclem3a 25168 dvlip2 25736 dchrval 26961 madeval 27572 brcgr 28413 issh 30716 qtophaus 33102 prsssdm 33183 ordtrestNEW 33187 ordtrest2NEW 33189 isrrext 33266 sibfof 33625 satefv 34691 mdvval 34781 msrval 34815 mthmpps 34859 funtransport 35295 fvtransport 35296 prdsbnd2 36966 cnpwstotbnd 36968 isrngo 37068 isrngod 37069 rngosn3 37095 isdivrngo 37121 drngoi 37122 isgrpda 37126 ldualset 38298 aomclem8 42105 intopval 46879 rngcvalALTV 46948 rngcval 46949 rnghmsubcsetclem1 46962 rngccat 46965 rngchomrnghmresALTV 46983 ringcvalALTV 46994 ringcval 46995 rhmsubcsetclem1 47008 ringccat 47011 rhmsubcrngclem1 47014 rhmsubcrngc 47016 srhmsubc 47063 rhmsubc 47077 srhmsubcALTV 47081 elpglem3 47846 pgindnf 47849 |
Copyright terms: Public domain | W3C validator |