| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sqxpeqd | Structured version Visualization version GIF version | ||
| Description: Equality deduction for a Cartesian square, see Wikipedia "Cartesian product", https://en.wikipedia.org/wiki/Cartesian_product#n-ary_Cartesian_power. (Contributed by AV, 13-Jan-2020.) |
| Ref | Expression |
|---|---|
| xpeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| sqxpeqd | ⊢ (𝜑 → (𝐴 × 𝐴) = (𝐵 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1, 1 | xpeq12d 5685 | 1 ⊢ (𝜑 → (𝐴 × 𝐴) = (𝐵 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 × cxp 5652 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-opab 5182 df-xp 5660 |
| This theorem is referenced by: xpcoid 6279 hartogslem1 9556 isfin6 10314 fpwwe2cbv 10644 fpwwe2lem2 10646 fpwwe2lem3 10647 fpwwe2lem4 10648 fpwwe2lem7 10651 fpwwe2lem11 10655 fpwwe2lem12 10656 fpwwe2 10657 fpwwecbv 10658 fpwwelem 10659 canthwelem 10664 canthwe 10665 pwfseqlem4 10676 prdsval 17469 imasval 17525 imasaddfnlem 17542 comfffval 17710 comfeq 17718 oppcval 17725 sscfn1 17830 sscfn2 17831 isssc 17833 ssceq 17839 reschomf 17844 isfunc 17877 idfuval 17889 funcres 17909 funcpropd 17915 fucval 17974 fucpropd 17993 homafval 18042 setcval 18090 catcval 18113 estrcval 18136 estrchomfeqhom 18148 hofval 18264 hofpropd 18279 islat 18443 istsr 18593 cnvtsr 18598 isdir 18608 tsrdir 18614 intopsn 18632 frmdval 18829 resgrpplusfrn 18933 rngcval 20578 rnghmsubcsetclem1 20591 rngccat 20594 ringcval 20607 rhmsubcsetclem1 20620 ringccat 20623 rhmsubcrngclem1 20626 rhmsubcrngc 20628 srhmsubc 20640 rhmsubc 20649 opsrval 22004 matval 22349 ustval 24141 trust 24168 utop2nei 24189 utop3cls 24190 utopreg 24191 ussval 24198 ressuss 24201 tususs 24208 fmucnd 24230 cfilufg 24231 trcfilu 24232 neipcfilu 24234 ispsmet 24243 prdsdsf 24306 prdsxmet 24308 ressprdsds 24310 xpsdsfn2 24317 xpsxmetlem 24318 xpsmet 24321 isxms 24386 isms 24388 xmspropd 24412 mspropd 24413 setsxms 24418 setsms 24419 imasf1oxms 24428 imasf1oms 24429 ressxms 24464 ressms 24465 prdsxmslem2 24468 metuval 24488 nmpropd2 24534 ngppropd 24576 tngngp2 24591 pi1addf 24998 pi1addval 24999 iscms 25297 cmspropd 25301 cmssmscld 25302 cmsss 25303 cssbn 25327 rrxds 25345 rrxmfval 25358 minveclem3a 25379 dvlip2 25952 dchrval 27197 madeval 27812 brcgr 28879 issh 31189 qtophaus 33867 prsssdm 33948 ordtrestNEW 33952 ordtrest2NEW 33954 isrrext 34031 sibfof 34372 satefv 35436 mdvval 35526 msrval 35560 mthmpps 35604 funtransport 36049 fvtransport 36050 prdsbnd2 37819 cnpwstotbnd 37821 isrngo 37921 isrngod 37922 rngosn3 37948 isdivrngo 37974 drngoi 37975 isgrpda 37979 ldualset 39143 aomclem8 43085 intopval 48177 rngcvalALTV 48240 rngchomrnghmresALTV 48254 ringcvalALTV 48264 srhmsubcALTV 48300 nelsubc3lem 49037 0funcg2 49049 imaidfu2 49070 idfullsubc 49100 termcfuncval 49417 cnelsubclem 49480 elpglem3 49577 pgindnf 49580 |
| Copyright terms: Public domain | W3C validator |