![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sqxpeqd | Structured version Visualization version GIF version |
Description: Equality deduction for a Cartesian square, see Wikipedia "Cartesian product", https://en.wikipedia.org/wiki/Cartesian_product#n-ary_Cartesian_power. (Contributed by AV, 13-Jan-2020.) |
Ref | Expression |
---|---|
xpeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
sqxpeqd | ⊢ (𝜑 → (𝐴 × 𝐴) = (𝐵 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1, 1 | xpeq12d 5731 | 1 ⊢ (𝜑 → (𝐴 × 𝐴) = (𝐵 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 × cxp 5698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-opab 5229 df-xp 5706 |
This theorem is referenced by: xpcoid 6321 hartogslem1 9611 isfin6 10369 fpwwe2cbv 10699 fpwwe2lem2 10701 fpwwe2lem3 10702 fpwwe2lem4 10703 fpwwe2lem7 10706 fpwwe2lem11 10710 fpwwe2lem12 10711 fpwwe2 10712 fpwwecbv 10713 fpwwelem 10714 canthwelem 10719 canthwe 10720 pwfseqlem4 10731 prdsval 17515 imasval 17571 imasaddfnlem 17588 comfffval 17756 comfeq 17764 oppcval 17771 sscfn1 17878 sscfn2 17879 isssc 17881 ssceq 17887 reschomf 17893 isfunc 17928 idfuval 17940 funcres 17960 funcpropd 17967 fucval 18027 fucpropd 18047 homafval 18096 setcval 18144 catcval 18167 estrcval 18192 estrchomfeqhom 18204 hofval 18322 hofpropd 18337 islat 18503 istsr 18653 cnvtsr 18658 isdir 18668 tsrdir 18674 intopsn 18692 frmdval 18886 resgrpplusfrn 18990 rngcval 20640 rnghmsubcsetclem1 20653 rngccat 20656 ringcval 20669 rhmsubcsetclem1 20682 ringccat 20685 rhmsubcrngclem1 20688 rhmsubcrngc 20690 srhmsubc 20702 rhmsubc 20711 opsrval 22087 matval 22436 ustval 24232 trust 24259 utop2nei 24280 utop3cls 24281 utopreg 24282 ussval 24289 ressuss 24292 tususs 24300 fmucnd 24322 cfilufg 24323 trcfilu 24324 neipcfilu 24326 ispsmet 24335 prdsdsf 24398 prdsxmet 24400 ressprdsds 24402 xpsdsfn2 24409 xpsxmetlem 24410 xpsmet 24413 isxms 24478 isms 24480 xmspropd 24504 mspropd 24505 setsxms 24512 setsms 24513 imasf1oxms 24523 imasf1oms 24524 ressxms 24559 ressms 24560 prdsxmslem2 24563 metuval 24583 nmpropd2 24629 ngppropd 24671 tngngp2 24694 pi1addf 25099 pi1addval 25100 iscms 25398 cmspropd 25402 cmssmscld 25403 cmsss 25404 cssbn 25428 rrxds 25446 rrxmfval 25459 minveclem3a 25480 dvlip2 26054 dchrval 27296 madeval 27909 brcgr 28933 issh 31240 qtophaus 33782 prsssdm 33863 ordtrestNEW 33867 ordtrest2NEW 33869 isrrext 33946 sibfof 34305 satefv 35382 mdvval 35472 msrval 35506 mthmpps 35550 funtransport 35995 fvtransport 35996 prdsbnd2 37755 cnpwstotbnd 37757 isrngo 37857 isrngod 37858 rngosn3 37884 isdivrngo 37910 drngoi 37911 isgrpda 37915 ldualset 39081 aomclem8 43018 intopval 47925 rngcvalALTV 47988 rngchomrnghmresALTV 48002 ringcvalALTV 48012 srhmsubcALTV 48048 elpglem3 48805 pgindnf 48808 |
Copyright terms: Public domain | W3C validator |