| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sqxpeqd | Structured version Visualization version GIF version | ||
| Description: Equality deduction for a Cartesian square, see Wikipedia "Cartesian product", https://en.wikipedia.org/wiki/Cartesian_product#n-ary_Cartesian_power. (Contributed by AV, 13-Jan-2020.) |
| Ref | Expression |
|---|---|
| xpeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| sqxpeqd | ⊢ (𝜑 → (𝐴 × 𝐴) = (𝐵 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1, 1 | xpeq12d 5650 | 1 ⊢ (𝜑 → (𝐴 × 𝐴) = (𝐵 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 × cxp 5617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-opab 5155 df-xp 5625 |
| This theorem is referenced by: xpcoid 6238 hartogslem1 9434 isfin6 10194 fpwwe2cbv 10524 fpwwe2lem2 10526 fpwwe2lem3 10527 fpwwe2lem4 10528 fpwwe2lem7 10531 fpwwe2lem11 10535 fpwwe2lem12 10536 fpwwe2 10537 fpwwecbv 10538 fpwwelem 10539 canthwelem 10544 canthwe 10545 pwfseqlem4 10556 prdsval 17359 imasval 17415 imasaddfnlem 17432 comfffval 17604 comfeq 17612 oppcval 17619 sscfn1 17724 sscfn2 17725 isssc 17727 ssceq 17733 reschomf 17738 isfunc 17771 idfuval 17783 funcres 17803 funcpropd 17809 fucval 17868 fucpropd 17887 homafval 17936 setcval 17984 catcval 18007 estrcval 18030 estrchomfeqhom 18042 hofval 18158 hofpropd 18173 islat 18339 istsr 18489 cnvtsr 18494 isdir 18504 tsrdir 18510 intopsn 18528 frmdval 18725 resgrpplusfrn 18829 rngcval 20503 rnghmsubcsetclem1 20516 rngccat 20519 ringcval 20532 rhmsubcsetclem1 20545 ringccat 20548 rhmsubcrngclem1 20551 rhmsubcrngc 20553 srhmsubc 20565 rhmsubc 20574 opsrval 21951 matval 22296 ustval 24088 trust 24115 utop2nei 24136 utop3cls 24137 utopreg 24138 ussval 24145 ressuss 24148 tususs 24155 fmucnd 24177 cfilufg 24178 trcfilu 24179 neipcfilu 24181 ispsmet 24190 prdsdsf 24253 prdsxmet 24255 ressprdsds 24257 xpsdsfn2 24264 xpsxmetlem 24265 xpsmet 24268 isxms 24333 isms 24335 xmspropd 24359 mspropd 24360 setsxms 24365 setsms 24366 imasf1oxms 24375 imasf1oms 24376 ressxms 24411 ressms 24412 prdsxmslem2 24415 metuval 24435 nmpropd2 24481 ngppropd 24523 tngngp2 24538 pi1addf 24945 pi1addval 24946 iscms 25243 cmspropd 25247 cmssmscld 25248 cmsss 25249 cssbn 25273 rrxds 25291 rrxmfval 25304 minveclem3a 25325 dvlip2 25898 dchrval 27143 madeval 27762 brcgr 28845 issh 31152 qtophaus 33809 prsssdm 33890 ordtrestNEW 33894 ordtrest2NEW 33896 isrrext 33973 sibfof 34314 satefv 35397 mdvval 35487 msrval 35521 mthmpps 35565 funtransport 36015 fvtransport 36016 prdsbnd2 37785 cnpwstotbnd 37787 isrngo 37887 isrngod 37888 rngosn3 37914 isdivrngo 37940 drngoi 37941 isgrpda 37945 ldualset 39114 aomclem8 43044 intopval 48196 rngcvalALTV 48259 rngchomrnghmresALTV 48273 ringcvalALTV 48283 srhmsubcALTV 48319 nelsubc3lem 49065 0funcg2 49079 imaidfu2 49106 idfullsubc 49156 termcfuncval 49527 cnelsubclem 49598 elpglem3 49708 pgindnf 49711 |
| Copyright terms: Public domain | W3C validator |