| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sqxpeqd | Structured version Visualization version GIF version | ||
| Description: Equality deduction for a Cartesian square, see Wikipedia "Cartesian product", https://en.wikipedia.org/wiki/Cartesian_product#n-ary_Cartesian_power. (Contributed by AV, 13-Jan-2020.) |
| Ref | Expression |
|---|---|
| xpeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| sqxpeqd | ⊢ (𝜑 → (𝐴 × 𝐴) = (𝐵 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1, 1 | xpeq12d 5669 | 1 ⊢ (𝜑 → (𝐴 × 𝐴) = (𝐵 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 × cxp 5636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-opab 5170 df-xp 5644 |
| This theorem is referenced by: xpcoid 6263 hartogslem1 9495 isfin6 10253 fpwwe2cbv 10583 fpwwe2lem2 10585 fpwwe2lem3 10586 fpwwe2lem4 10587 fpwwe2lem7 10590 fpwwe2lem11 10594 fpwwe2lem12 10595 fpwwe2 10596 fpwwecbv 10597 fpwwelem 10598 canthwelem 10603 canthwe 10604 pwfseqlem4 10615 prdsval 17418 imasval 17474 imasaddfnlem 17491 comfffval 17659 comfeq 17667 oppcval 17674 sscfn1 17779 sscfn2 17780 isssc 17782 ssceq 17788 reschomf 17793 isfunc 17826 idfuval 17838 funcres 17858 funcpropd 17864 fucval 17923 fucpropd 17942 homafval 17991 setcval 18039 catcval 18062 estrcval 18085 estrchomfeqhom 18097 hofval 18213 hofpropd 18228 islat 18392 istsr 18542 cnvtsr 18547 isdir 18557 tsrdir 18563 intopsn 18581 frmdval 18778 resgrpplusfrn 18882 rngcval 20527 rnghmsubcsetclem1 20540 rngccat 20543 ringcval 20556 rhmsubcsetclem1 20569 ringccat 20572 rhmsubcrngclem1 20575 rhmsubcrngc 20577 srhmsubc 20589 rhmsubc 20598 opsrval 21953 matval 22298 ustval 24090 trust 24117 utop2nei 24138 utop3cls 24139 utopreg 24140 ussval 24147 ressuss 24150 tususs 24157 fmucnd 24179 cfilufg 24180 trcfilu 24181 neipcfilu 24183 ispsmet 24192 prdsdsf 24255 prdsxmet 24257 ressprdsds 24259 xpsdsfn2 24266 xpsxmetlem 24267 xpsmet 24270 isxms 24335 isms 24337 xmspropd 24361 mspropd 24362 setsxms 24367 setsms 24368 imasf1oxms 24377 imasf1oms 24378 ressxms 24413 ressms 24414 prdsxmslem2 24417 metuval 24437 nmpropd2 24483 ngppropd 24525 tngngp2 24540 pi1addf 24947 pi1addval 24948 iscms 25245 cmspropd 25249 cmssmscld 25250 cmsss 25251 cssbn 25275 rrxds 25293 rrxmfval 25306 minveclem3a 25327 dvlip2 25900 dchrval 27145 madeval 27760 brcgr 28827 issh 31137 qtophaus 33826 prsssdm 33907 ordtrestNEW 33911 ordtrest2NEW 33913 isrrext 33990 sibfof 34331 satefv 35401 mdvval 35491 msrval 35525 mthmpps 35569 funtransport 36019 fvtransport 36020 prdsbnd2 37789 cnpwstotbnd 37791 isrngo 37891 isrngod 37892 rngosn3 37918 isdivrngo 37944 drngoi 37945 isgrpda 37949 ldualset 39118 aomclem8 43050 intopval 48190 rngcvalALTV 48253 rngchomrnghmresALTV 48267 ringcvalALTV 48277 srhmsubcALTV 48313 nelsubc3lem 49059 0funcg2 49073 imaidfu2 49100 idfullsubc 49150 termcfuncval 49521 cnelsubclem 49592 elpglem3 49702 pgindnf 49705 |
| Copyright terms: Public domain | W3C validator |