![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sqxpeqd | Structured version Visualization version GIF version |
Description: Equality deduction for a Cartesian square, see Wikipedia "Cartesian product", https://en.wikipedia.org/wiki/Cartesian_product#n-ary_Cartesian_power. (Contributed by AV, 13-Jan-2020.) |
Ref | Expression |
---|---|
xpeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
sqxpeqd | ⊢ (𝜑 → (𝐴 × 𝐴) = (𝐵 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1, 1 | xpeq12d 5706 | 1 ⊢ (𝜑 → (𝐴 × 𝐴) = (𝐵 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 × cxp 5673 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-opab 5210 df-xp 5681 |
This theorem is referenced by: xpcoid 6288 hartogslem1 9539 isfin6 10297 fpwwe2cbv 10627 fpwwe2lem2 10629 fpwwe2lem3 10630 fpwwe2lem7 10634 fpwwe2lem11 10638 fpwwe2lem12 10639 fpwwe2 10640 fpwwecbv 10641 fpwwelem 10642 canthwelem 10647 canthwe 10648 pwfseqlem4 10659 prdsval 17405 imasval 17461 imasaddfnlem 17478 comfffval 17646 comfeq 17654 oppcval 17661 sscfn1 17768 sscfn2 17769 isssc 17771 ssceq 17777 reschomf 17783 isfunc 17818 idfuval 17830 funcres 17850 funcpropd 17855 fucval 17914 fucpropd 17934 homafval 17983 setcval 18031 catcval 18054 estrcval 18079 estrchomfeqhom 18091 hofval 18209 hofpropd 18224 islat 18390 istsr 18540 cnvtsr 18545 isdir 18555 tsrdir 18561 intopsn 18579 frmdval 18768 resgrpplusfrn 18872 opsrval 21820 matval 22131 ustval 23927 trust 23954 utop2nei 23975 utop3cls 23976 utopreg 23977 ussval 23984 ressuss 23987 tususs 23995 fmucnd 24017 cfilufg 24018 trcfilu 24019 neipcfilu 24021 ispsmet 24030 prdsdsf 24093 prdsxmet 24095 ressprdsds 24097 xpsdsfn2 24104 xpsxmetlem 24105 xpsmet 24108 isxms 24173 isms 24175 xmspropd 24199 mspropd 24200 setsxms 24207 setsms 24208 imasf1oxms 24218 imasf1oms 24219 ressxms 24254 ressms 24255 prdsxmslem2 24258 metuval 24278 nmpropd2 24324 ngppropd 24366 tngngp2 24389 pi1addf 24794 pi1addval 24795 iscms 25093 cmspropd 25097 cmssmscld 25098 cmsss 25099 cssbn 25123 rrxds 25141 rrxmfval 25154 minveclem3a 25175 dvlip2 25747 dchrval 26973 madeval 27584 brcgr 28425 issh 30728 qtophaus 33114 prsssdm 33195 ordtrestNEW 33199 ordtrest2NEW 33201 isrrext 33278 sibfof 33637 satefv 34703 mdvval 34793 msrval 34827 mthmpps 34871 funtransport 35307 fvtransport 35308 prdsbnd2 36966 cnpwstotbnd 36968 isrngo 37068 isrngod 37069 rngosn3 37095 isdivrngo 37121 drngoi 37122 isgrpda 37126 ldualset 38298 aomclem8 42105 intopval 46878 rngcvalALTV 46947 rngcval 46948 rnghmsubcsetclem1 46961 rngccat 46964 rngchomrnghmresALTV 46982 ringcvalALTV 46993 ringcval 46994 rhmsubcsetclem1 47007 ringccat 47010 rhmsubcrngclem1 47013 rhmsubcrngc 47015 srhmsubc 47062 rhmsubc 47076 srhmsubcALTV 47080 elpglem3 47845 pgindnf 47848 |
Copyright terms: Public domain | W3C validator |