MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psssdm Structured version   Visualization version   GIF version

Theorem psssdm 18534
Description: Field of a subposet. (Contributed by FL, 19-Sep-2011.) (Revised by Mario Carneiro, 9-Sep-2015.)
Hypothesis
Ref Expression
psssdm.1 𝑋 = dom 𝑅
Assertion
Ref Expression
psssdm ((𝑅 ∈ PosetRel ∧ 𝐴𝑋) → dom (𝑅 ∩ (𝐴 × 𝐴)) = 𝐴)

Proof of Theorem psssdm
StepHypRef Expression
1 psssdm.1 . . 3 𝑋 = dom 𝑅
21psssdm2 18533 . 2 (𝑅 ∈ PosetRel → dom (𝑅 ∩ (𝐴 × 𝐴)) = (𝑋𝐴))
3 sseqin2 4215 . . 3 (𝐴𝑋 ↔ (𝑋𝐴) = 𝐴)
43biimpi 215 . 2 (𝐴𝑋 → (𝑋𝐴) = 𝐴)
52, 4sylan9eq 2792 1 ((𝑅 ∈ PosetRel ∧ 𝐴𝑋) → dom (𝑅 ∩ (𝐴 × 𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  cin 3947  wss 3948   × cxp 5674  dom cdm 5676  PosetRelcps 18516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ps 18518
This theorem is referenced by:  ordtrest2lem  22706  ordtrest2  22707  icopnfhmeo  24458  iccpnfhmeo  24460  xrhmeo  24461  xrge0iifhmeo  32911
  Copyright terms: Public domain W3C validator