| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psssdm | Structured version Visualization version GIF version | ||
| Description: Field of a subposet. (Contributed by FL, 19-Sep-2011.) (Revised by Mario Carneiro, 9-Sep-2015.) |
| Ref | Expression |
|---|---|
| psssdm.1 | ⊢ 𝑋 = dom 𝑅 |
| Ref | Expression |
|---|---|
| psssdm | ⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ⊆ 𝑋) → dom (𝑅 ∩ (𝐴 × 𝐴)) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psssdm.1 | . . 3 ⊢ 𝑋 = dom 𝑅 | |
| 2 | 1 | psssdm2 18516 | . 2 ⊢ (𝑅 ∈ PosetRel → dom (𝑅 ∩ (𝐴 × 𝐴)) = (𝑋 ∩ 𝐴)) |
| 3 | sseqin2 4182 | . . 3 ⊢ (𝐴 ⊆ 𝑋 ↔ (𝑋 ∩ 𝐴) = 𝐴) | |
| 4 | 3 | biimpi 216 | . 2 ⊢ (𝐴 ⊆ 𝑋 → (𝑋 ∩ 𝐴) = 𝐴) |
| 5 | 2, 4 | sylan9eq 2784 | 1 ⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ⊆ 𝑋) → dom (𝑅 ∩ (𝐴 × 𝐴)) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3910 ⊆ wss 3911 × cxp 5629 dom cdm 5631 PosetRelcps 18499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ps 18501 |
| This theorem is referenced by: ordtrest2lem 23066 ordtrest2 23067 icopnfhmeo 24817 iccpnfhmeo 24819 xrhmeo 24820 xrge0iifhmeo 33899 |
| Copyright terms: Public domain | W3C validator |