Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > psssdm | Structured version Visualization version GIF version |
Description: Field of a subposet. (Contributed by FL, 19-Sep-2011.) (Revised by Mario Carneiro, 9-Sep-2015.) |
Ref | Expression |
---|---|
psssdm.1 | ⊢ 𝑋 = dom 𝑅 |
Ref | Expression |
---|---|
psssdm | ⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ⊆ 𝑋) → dom (𝑅 ∩ (𝐴 × 𝐴)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psssdm.1 | . . 3 ⊢ 𝑋 = dom 𝑅 | |
2 | 1 | psssdm2 17934 | . 2 ⊢ (𝑅 ∈ PosetRel → dom (𝑅 ∩ (𝐴 × 𝐴)) = (𝑋 ∩ 𝐴)) |
3 | sseqin2 4104 | . . 3 ⊢ (𝐴 ⊆ 𝑋 ↔ (𝑋 ∩ 𝐴) = 𝐴) | |
4 | 3 | biimpi 219 | . 2 ⊢ (𝐴 ⊆ 𝑋 → (𝑋 ∩ 𝐴) = 𝐴) |
5 | 2, 4 | sylan9eq 2793 | 1 ⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ⊆ 𝑋) → dom (𝑅 ∩ (𝐴 × 𝐴)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2113 ∩ cin 3840 ⊆ wss 3841 × cxp 5517 dom cdm 5519 PosetRelcps 17917 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-sep 5164 ax-nul 5171 ax-pr 5293 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3399 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-nul 4210 df-if 4412 df-sn 4514 df-pr 4516 df-op 4520 df-uni 4794 df-br 5028 df-opab 5090 df-id 5425 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ps 17919 |
This theorem is referenced by: ordtrest2lem 21947 ordtrest2 21948 icopnfhmeo 23688 iccpnfhmeo 23690 xrhmeo 23691 xrge0iifhmeo 31450 |
Copyright terms: Public domain | W3C validator |