MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psssdm Structured version   Visualization version   GIF version

Theorem psssdm 18592
Description: Field of a subposet. (Contributed by FL, 19-Sep-2011.) (Revised by Mario Carneiro, 9-Sep-2015.)
Hypothesis
Ref Expression
psssdm.1 𝑋 = dom 𝑅
Assertion
Ref Expression
psssdm ((𝑅 ∈ PosetRel ∧ 𝐴𝑋) → dom (𝑅 ∩ (𝐴 × 𝐴)) = 𝐴)

Proof of Theorem psssdm
StepHypRef Expression
1 psssdm.1 . . 3 𝑋 = dom 𝑅
21psssdm2 18591 . 2 (𝑅 ∈ PosetRel → dom (𝑅 ∩ (𝐴 × 𝐴)) = (𝑋𝐴))
3 sseqin2 4198 . . 3 (𝐴𝑋 ↔ (𝑋𝐴) = 𝐴)
43biimpi 216 . 2 (𝐴𝑋 → (𝑋𝐴) = 𝐴)
52, 4sylan9eq 2790 1 ((𝑅 ∈ PosetRel ∧ 𝐴𝑋) → dom (𝑅 ∩ (𝐴 × 𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cin 3925  wss 3926   × cxp 5652  dom cdm 5654  PosetRelcps 18574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ps 18576
This theorem is referenced by:  ordtrest2lem  23141  ordtrest2  23142  icopnfhmeo  24892  iccpnfhmeo  24894  xrhmeo  24895  xrge0iifhmeo  33967
  Copyright terms: Public domain W3C validator