| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tsrps | Structured version Visualization version GIF version | ||
| Description: A toset is a poset. (Contributed by Mario Carneiro, 9-Sep-2015.) |
| Ref | Expression |
|---|---|
| tsrps | ⊢ (𝑅 ∈ TosetRel → 𝑅 ∈ PosetRel) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ dom 𝑅 = dom 𝑅 | |
| 2 | 1 | istsr 18549 | . 2 ⊢ (𝑅 ∈ TosetRel ↔ (𝑅 ∈ PosetRel ∧ (dom 𝑅 × dom 𝑅) ⊆ (𝑅 ∪ ◡𝑅))) |
| 3 | 2 | simplbi 497 | 1 ⊢ (𝑅 ∈ TosetRel → 𝑅 ∈ PosetRel) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∪ cun 3915 ⊆ wss 3917 × cxp 5639 ◡ccnv 5640 dom cdm 5641 PosetRelcps 18530 TosetRel ctsr 18531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-cnv 5649 df-dm 5651 df-tsr 18533 |
| This theorem is referenced by: cnvtsr 18554 tsrdir 18570 ordtbas2 23085 ordtrest2lem 23097 ordtrest2 23098 ordthauslem 23277 icopnfhmeo 24848 iccpnfhmeo 24850 xrhmeo 24851 cnvordtrestixx 33910 xrge0iifhmeo 33933 |
| Copyright terms: Public domain | W3C validator |