| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tsrps | Structured version Visualization version GIF version | ||
| Description: A toset is a poset. (Contributed by Mario Carneiro, 9-Sep-2015.) |
| Ref | Expression |
|---|---|
| tsrps | ⊢ (𝑅 ∈ TosetRel → 𝑅 ∈ PosetRel) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ dom 𝑅 = dom 𝑅 | |
| 2 | 1 | istsr 18486 | . 2 ⊢ (𝑅 ∈ TosetRel ↔ (𝑅 ∈ PosetRel ∧ (dom 𝑅 × dom 𝑅) ⊆ (𝑅 ∪ ◡𝑅))) |
| 3 | 2 | simplbi 497 | 1 ⊢ (𝑅 ∈ TosetRel → 𝑅 ∈ PosetRel) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ∪ cun 3900 ⊆ wss 3902 × cxp 5614 ◡ccnv 5615 dom cdm 5616 PosetRelcps 18467 TosetRel ctsr 18468 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 df-cnv 5624 df-dm 5626 df-tsr 18470 |
| This theorem is referenced by: cnvtsr 18491 tsrdir 18507 ordtbas2 23104 ordtrest2lem 23116 ordtrest2 23117 ordthauslem 23296 icopnfhmeo 24866 iccpnfhmeo 24868 xrhmeo 24869 cnvordtrestixx 33921 xrge0iifhmeo 33944 |
| Copyright terms: Public domain | W3C validator |