| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tsrps | Structured version Visualization version GIF version | ||
| Description: A toset is a poset. (Contributed by Mario Carneiro, 9-Sep-2015.) |
| Ref | Expression |
|---|---|
| tsrps | ⊢ (𝑅 ∈ TosetRel → 𝑅 ∈ PosetRel) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . 3 ⊢ dom 𝑅 = dom 𝑅 | |
| 2 | 1 | istsr 18598 | . 2 ⊢ (𝑅 ∈ TosetRel ↔ (𝑅 ∈ PosetRel ∧ (dom 𝑅 × dom 𝑅) ⊆ (𝑅 ∪ ◡𝑅))) |
| 3 | 2 | simplbi 497 | 1 ⊢ (𝑅 ∈ TosetRel → 𝑅 ∈ PosetRel) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∪ cun 3929 ⊆ wss 3931 × cxp 5657 ◡ccnv 5658 dom cdm 5659 PosetRelcps 18579 TosetRel ctsr 18580 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-xp 5665 df-cnv 5667 df-dm 5669 df-tsr 18582 |
| This theorem is referenced by: cnvtsr 18603 tsrdir 18619 ordtbas2 23134 ordtrest2lem 23146 ordtrest2 23147 ordthauslem 23326 icopnfhmeo 24897 iccpnfhmeo 24899 xrhmeo 24900 cnvordtrestixx 33949 xrge0iifhmeo 33972 |
| Copyright terms: Public domain | W3C validator |