![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tsrps | Structured version Visualization version GIF version |
Description: A toset is a poset. (Contributed by Mario Carneiro, 9-Sep-2015.) |
Ref | Expression |
---|---|
tsrps | ⊢ (𝑅 ∈ TosetRel → 𝑅 ∈ PosetRel) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ dom 𝑅 = dom 𝑅 | |
2 | 1 | istsr 18653 | . 2 ⊢ (𝑅 ∈ TosetRel ↔ (𝑅 ∈ PosetRel ∧ (dom 𝑅 × dom 𝑅) ⊆ (𝑅 ∪ ◡𝑅))) |
3 | 2 | simplbi 497 | 1 ⊢ (𝑅 ∈ TosetRel → 𝑅 ∈ PosetRel) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∪ cun 3974 ⊆ wss 3976 × cxp 5698 ◡ccnv 5699 dom cdm 5700 PosetRelcps 18634 TosetRel ctsr 18635 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-dm 5710 df-tsr 18637 |
This theorem is referenced by: cnvtsr 18658 tsrdir 18674 ordtbas2 23220 ordtrest2lem 23232 ordtrest2 23233 ordthauslem 23412 icopnfhmeo 24993 iccpnfhmeo 24995 xrhmeo 24996 cnvordtrestixx 33859 xrge0iifhmeo 33882 |
Copyright terms: Public domain | W3C validator |