![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tsrps | Structured version Visualization version GIF version |
Description: A toset is a poset. (Contributed by Mario Carneiro, 9-Sep-2015.) |
Ref | Expression |
---|---|
tsrps | ⊢ (𝑅 ∈ TosetRel → 𝑅 ∈ PosetRel) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2825 | . . 3 ⊢ dom 𝑅 = dom 𝑅 | |
2 | 1 | istsr 17577 | . 2 ⊢ (𝑅 ∈ TosetRel ↔ (𝑅 ∈ PosetRel ∧ (dom 𝑅 × dom 𝑅) ⊆ (𝑅 ∪ ◡𝑅))) |
3 | 2 | simplbi 493 | 1 ⊢ (𝑅 ∈ TosetRel → 𝑅 ∈ PosetRel) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2164 ∪ cun 3796 ⊆ wss 3798 × cxp 5344 ◡ccnv 5345 dom cdm 5346 PosetRelcps 17558 TosetRel ctsr 17559 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-rab 3126 df-v 3416 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-sn 4400 df-pr 4402 df-op 4406 df-br 4876 df-opab 4938 df-xp 5352 df-cnv 5354 df-dm 5356 df-tsr 17561 |
This theorem is referenced by: cnvtsr 17582 tsrdir 17598 ordtbas2 21373 ordtrest2lem 21385 ordtrest2 21386 ordthauslem 21565 icopnfhmeo 23119 iccpnfhmeo 23121 xrhmeo 23122 cnvordtrestixx 30500 xrge0iifhmeo 30523 |
Copyright terms: Public domain | W3C validator |