Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tsrps | Structured version Visualization version GIF version |
Description: A toset is a poset. (Contributed by Mario Carneiro, 9-Sep-2015.) |
Ref | Expression |
---|---|
tsrps | ⊢ (𝑅 ∈ TosetRel → 𝑅 ∈ PosetRel) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ dom 𝑅 = dom 𝑅 | |
2 | 1 | istsr 18216 | . 2 ⊢ (𝑅 ∈ TosetRel ↔ (𝑅 ∈ PosetRel ∧ (dom 𝑅 × dom 𝑅) ⊆ (𝑅 ∪ ◡𝑅))) |
3 | 2 | simplbi 497 | 1 ⊢ (𝑅 ∈ TosetRel → 𝑅 ∈ PosetRel) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∪ cun 3881 ⊆ wss 3883 × cxp 5578 ◡ccnv 5579 dom cdm 5580 PosetRelcps 18197 TosetRel ctsr 18198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-dm 5590 df-tsr 18200 |
This theorem is referenced by: cnvtsr 18221 tsrdir 18237 ordtbas2 22250 ordtrest2lem 22262 ordtrest2 22263 ordthauslem 22442 icopnfhmeo 24012 iccpnfhmeo 24014 xrhmeo 24015 cnvordtrestixx 31765 xrge0iifhmeo 31788 |
Copyright terms: Public domain | W3C validator |