| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tsrps | Structured version Visualization version GIF version | ||
| Description: A toset is a poset. (Contributed by Mario Carneiro, 9-Sep-2015.) |
| Ref | Expression |
|---|---|
| tsrps | ⊢ (𝑅 ∈ TosetRel → 𝑅 ∈ PosetRel) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ dom 𝑅 = dom 𝑅 | |
| 2 | 1 | istsr 18491 | . 2 ⊢ (𝑅 ∈ TosetRel ↔ (𝑅 ∈ PosetRel ∧ (dom 𝑅 × dom 𝑅) ⊆ (𝑅 ∪ ◡𝑅))) |
| 3 | 2 | simplbi 497 | 1 ⊢ (𝑅 ∈ TosetRel → 𝑅 ∈ PosetRel) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 ∪ cun 3896 ⊆ wss 3898 × cxp 5617 ◡ccnv 5618 dom cdm 5619 PosetRelcps 18472 TosetRel ctsr 18473 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-xp 5625 df-cnv 5627 df-dm 5629 df-tsr 18475 |
| This theorem is referenced by: cnvtsr 18496 tsrdir 18512 ordtbas2 23107 ordtrest2lem 23119 ordtrest2 23120 ordthauslem 23299 icopnfhmeo 24869 iccpnfhmeo 24871 xrhmeo 24872 cnvordtrestixx 33947 xrge0iifhmeo 33970 |
| Copyright terms: Public domain | W3C validator |