MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsrps Structured version   Visualization version   GIF version

Theorem tsrps 18220
Description: A toset is a poset. (Contributed by Mario Carneiro, 9-Sep-2015.)
Assertion
Ref Expression
tsrps (𝑅 ∈ TosetRel → 𝑅 ∈ PosetRel)

Proof of Theorem tsrps
StepHypRef Expression
1 eqid 2738 . . 3 dom 𝑅 = dom 𝑅
21istsr 18216 . 2 (𝑅 ∈ TosetRel ↔ (𝑅 ∈ PosetRel ∧ (dom 𝑅 × dom 𝑅) ⊆ (𝑅𝑅)))
32simplbi 497 1 (𝑅 ∈ TosetRel → 𝑅 ∈ PosetRel)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  cun 3881  wss 3883   × cxp 5578  ccnv 5579  dom cdm 5580  PosetRelcps 18197   TosetRel ctsr 18198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-cnv 5588  df-dm 5590  df-tsr 18200
This theorem is referenced by:  cnvtsr  18221  tsrdir  18237  ordtbas2  22250  ordtrest2lem  22262  ordtrest2  22263  ordthauslem  22442  icopnfhmeo  24012  iccpnfhmeo  24014  xrhmeo  24015  cnvordtrestixx  31765  xrge0iifhmeo  31788
  Copyright terms: Public domain W3C validator