MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsrps Structured version   Visualization version   GIF version

Theorem tsrps 18633
Description: A toset is a poset. (Contributed by Mario Carneiro, 9-Sep-2015.)
Assertion
Ref Expression
tsrps (𝑅 ∈ TosetRel → 𝑅 ∈ PosetRel)

Proof of Theorem tsrps
StepHypRef Expression
1 eqid 2736 . . 3 dom 𝑅 = dom 𝑅
21istsr 18629 . 2 (𝑅 ∈ TosetRel ↔ (𝑅 ∈ PosetRel ∧ (dom 𝑅 × dom 𝑅) ⊆ (𝑅𝑅)))
32simplbi 497 1 (𝑅 ∈ TosetRel → 𝑅 ∈ PosetRel)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  cun 3948  wss 3950   × cxp 5682  ccnv 5683  dom cdm 5684  PosetRelcps 18610   TosetRel ctsr 18611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-br 5143  df-opab 5205  df-xp 5690  df-cnv 5692  df-dm 5694  df-tsr 18613
This theorem is referenced by:  cnvtsr  18634  tsrdir  18650  ordtbas2  23200  ordtrest2lem  23212  ordtrest2  23213  ordthauslem  23392  icopnfhmeo  24975  iccpnfhmeo  24977  xrhmeo  24978  cnvordtrestixx  33913  xrge0iifhmeo  33936
  Copyright terms: Public domain W3C validator