Step | Hyp | Ref
| Expression |
1 | | wunex2.u |
. . . . . . . 8
⊢ 𝑈 = ∪
ran 𝐹 |
2 | 1 | eleq2i 2830 |
. . . . . . 7
⊢ (𝑎 ∈ 𝑈 ↔ 𝑎 ∈ ∪ ran
𝐹) |
3 | | frfnom 8266 |
. . . . . . . . 9
⊢
(rec((𝑧 ∈ V
↦ ((𝑧 ∪ ∪ 𝑧)
∪ ∪ 𝑥 ∈ 𝑧 ({𝒫 𝑥, ∪ 𝑥} ∪ ran (𝑦 ∈ 𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1o)) ↾ ω) Fn
ω |
4 | | wunex2.f |
. . . . . . . . . 10
⊢ 𝐹 = (rec((𝑧 ∈ V ↦ ((𝑧 ∪ ∪ 𝑧) ∪ ∪ 𝑥 ∈ 𝑧 ({𝒫 𝑥, ∪ 𝑥} ∪ ran (𝑦 ∈ 𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1o)) ↾
ω) |
5 | 4 | fneq1i 6530 |
. . . . . . . . 9
⊢ (𝐹 Fn ω ↔ (rec((𝑧 ∈ V ↦ ((𝑧 ∪ ∪ 𝑧)
∪ ∪ 𝑥 ∈ 𝑧 ({𝒫 𝑥, ∪ 𝑥} ∪ ran (𝑦 ∈ 𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1o)) ↾ ω) Fn
ω) |
6 | 3, 5 | mpbir 230 |
. . . . . . . 8
⊢ 𝐹 Fn ω |
7 | | fnunirn 7127 |
. . . . . . . 8
⊢ (𝐹 Fn ω → (𝑎 ∈ ∪ ran 𝐹 ↔ ∃𝑚 ∈ ω 𝑎 ∈ (𝐹‘𝑚))) |
8 | 6, 7 | ax-mp 5 |
. . . . . . 7
⊢ (𝑎 ∈ ∪ ran 𝐹 ↔ ∃𝑚 ∈ ω 𝑎 ∈ (𝐹‘𝑚)) |
9 | 2, 8 | bitri 274 |
. . . . . 6
⊢ (𝑎 ∈ 𝑈 ↔ ∃𝑚 ∈ ω 𝑎 ∈ (𝐹‘𝑚)) |
10 | | elssuni 4871 |
. . . . . . . . . . 11
⊢ (𝑎 ∈ (𝐹‘𝑚) → 𝑎 ⊆ ∪ (𝐹‘𝑚)) |
11 | 10 | ad2antll 726 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹‘𝑚))) → 𝑎 ⊆ ∪ (𝐹‘𝑚)) |
12 | | ssun2 4107 |
. . . . . . . . . . 11
⊢ ∪ (𝐹‘𝑚) ⊆ ((𝐹‘𝑚) ∪ ∪ (𝐹‘𝑚)) |
13 | | ssun1 4106 |
. . . . . . . . . . 11
⊢ ((𝐹‘𝑚) ∪ ∪ (𝐹‘𝑚)) ⊆ (((𝐹‘𝑚) ∪ ∪ (𝐹‘𝑚)) ∪ ∪
𝑢 ∈ (𝐹‘𝑚)({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ (𝐹‘𝑚) ↦ {𝑢, 𝑣}))) |
14 | 12, 13 | sstri 3930 |
. . . . . . . . . 10
⊢ ∪ (𝐹‘𝑚) ⊆ (((𝐹‘𝑚) ∪ ∪ (𝐹‘𝑚)) ∪ ∪
𝑢 ∈ (𝐹‘𝑚)({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ (𝐹‘𝑚) ↦ {𝑢, 𝑣}))) |
15 | 11, 14 | sstrdi 3933 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹‘𝑚))) → 𝑎 ⊆ (((𝐹‘𝑚) ∪ ∪ (𝐹‘𝑚)) ∪ ∪
𝑢 ∈ (𝐹‘𝑚)({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ (𝐹‘𝑚) ↦ {𝑢, 𝑣})))) |
16 | | simprl 768 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹‘𝑚))) → 𝑚 ∈ ω) |
17 | | fvex 6787 |
. . . . . . . . . . . 12
⊢ (𝐹‘𝑚) ∈ V |
18 | 17 | uniex 7594 |
. . . . . . . . . . . 12
⊢ ∪ (𝐹‘𝑚) ∈ V |
19 | 17, 18 | unex 7596 |
. . . . . . . . . . 11
⊢ ((𝐹‘𝑚) ∪ ∪ (𝐹‘𝑚)) ∈ V |
20 | | prex 5355 |
. . . . . . . . . . . . 13
⊢
{𝒫 𝑢, ∪ 𝑢}
∈ V |
21 | 17 | mptex 7099 |
. . . . . . . . . . . . . 14
⊢ (𝑣 ∈ (𝐹‘𝑚) ↦ {𝑢, 𝑣}) ∈ V |
22 | 21 | rnex 7759 |
. . . . . . . . . . . . 13
⊢ ran
(𝑣 ∈ (𝐹‘𝑚) ↦ {𝑢, 𝑣}) ∈ V |
23 | 20, 22 | unex 7596 |
. . . . . . . . . . . 12
⊢
({𝒫 𝑢, ∪ 𝑢}
∪ ran (𝑣 ∈ (𝐹‘𝑚) ↦ {𝑢, 𝑣})) ∈ V |
24 | 17, 23 | iunex 7811 |
. . . . . . . . . . 11
⊢ ∪ 𝑢 ∈ (𝐹‘𝑚)({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ (𝐹‘𝑚) ↦ {𝑢, 𝑣})) ∈ V |
25 | 19, 24 | unex 7596 |
. . . . . . . . . 10
⊢ (((𝐹‘𝑚) ∪ ∪ (𝐹‘𝑚)) ∪ ∪
𝑢 ∈ (𝐹‘𝑚)({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ (𝐹‘𝑚) ↦ {𝑢, 𝑣}))) ∈ V |
26 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑧 → 𝑤 = 𝑧) |
27 | | unieq 4850 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑧 → ∪ 𝑤 = ∪
𝑧) |
28 | 26, 27 | uneq12d 4098 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑧 → (𝑤 ∪ ∪ 𝑤) = (𝑧 ∪ ∪ 𝑧)) |
29 | | pweq 4549 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 = 𝑥 → 𝒫 𝑢 = 𝒫 𝑥) |
30 | | unieq 4850 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 = 𝑥 → ∪ 𝑢 = ∪
𝑥) |
31 | 29, 30 | preq12d 4677 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = 𝑥 → {𝒫 𝑢, ∪ 𝑢} = {𝒫 𝑥, ∪
𝑥}) |
32 | | preq2 4670 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑣 = 𝑦 → {𝑢, 𝑣} = {𝑢, 𝑦}) |
33 | 32 | cbvmptv 5187 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑣 ∈ 𝑤 ↦ {𝑢, 𝑣}) = (𝑦 ∈ 𝑤 ↦ {𝑢, 𝑦}) |
34 | | preq1 4669 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑢 = 𝑥 → {𝑢, 𝑦} = {𝑥, 𝑦}) |
35 | 34 | mpteq2dv 5176 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 = 𝑥 → (𝑦 ∈ 𝑤 ↦ {𝑢, 𝑦}) = (𝑦 ∈ 𝑤 ↦ {𝑥, 𝑦})) |
36 | 33, 35 | eqtrid 2790 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 = 𝑥 → (𝑣 ∈ 𝑤 ↦ {𝑢, 𝑣}) = (𝑦 ∈ 𝑤 ↦ {𝑥, 𝑦})) |
37 | 36 | rneqd 5847 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = 𝑥 → ran (𝑣 ∈ 𝑤 ↦ {𝑢, 𝑣}) = ran (𝑦 ∈ 𝑤 ↦ {𝑥, 𝑦})) |
38 | 31, 37 | uneq12d 4098 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = 𝑥 → ({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ 𝑤 ↦ {𝑢, 𝑣})) = ({𝒫 𝑥, ∪ 𝑥} ∪ ran (𝑦 ∈ 𝑤 ↦ {𝑥, 𝑦}))) |
39 | 38 | cbviunv 4970 |
. . . . . . . . . . . . 13
⊢ ∪ 𝑢 ∈ 𝑤 ({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ 𝑤 ↦ {𝑢, 𝑣})) = ∪
𝑥 ∈ 𝑤 ({𝒫 𝑥, ∪ 𝑥} ∪ ran (𝑦 ∈ 𝑤 ↦ {𝑥, 𝑦})) |
40 | | mpteq1 5167 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = 𝑧 → (𝑦 ∈ 𝑤 ↦ {𝑥, 𝑦}) = (𝑦 ∈ 𝑧 ↦ {𝑥, 𝑦})) |
41 | 40 | rneqd 5847 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = 𝑧 → ran (𝑦 ∈ 𝑤 ↦ {𝑥, 𝑦}) = ran (𝑦 ∈ 𝑧 ↦ {𝑥, 𝑦})) |
42 | 41 | uneq2d 4097 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 𝑧 → ({𝒫 𝑥, ∪ 𝑥} ∪ ran (𝑦 ∈ 𝑤 ↦ {𝑥, 𝑦})) = ({𝒫 𝑥, ∪ 𝑥} ∪ ran (𝑦 ∈ 𝑧 ↦ {𝑥, 𝑦}))) |
43 | 26, 42 | iuneq12d 4952 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑧 → ∪
𝑥 ∈ 𝑤 ({𝒫 𝑥, ∪ 𝑥} ∪ ran (𝑦 ∈ 𝑤 ↦ {𝑥, 𝑦})) = ∪
𝑥 ∈ 𝑧 ({𝒫 𝑥, ∪ 𝑥} ∪ ran (𝑦 ∈ 𝑧 ↦ {𝑥, 𝑦}))) |
44 | 39, 43 | eqtrid 2790 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑧 → ∪
𝑢 ∈ 𝑤 ({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ 𝑤 ↦ {𝑢, 𝑣})) = ∪
𝑥 ∈ 𝑧 ({𝒫 𝑥, ∪ 𝑥} ∪ ran (𝑦 ∈ 𝑧 ↦ {𝑥, 𝑦}))) |
45 | 28, 44 | uneq12d 4098 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑧 → ((𝑤 ∪ ∪ 𝑤) ∪ ∪ 𝑢 ∈ 𝑤 ({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ 𝑤 ↦ {𝑢, 𝑣}))) = ((𝑧 ∪ ∪ 𝑧) ∪ ∪ 𝑥 ∈ 𝑧 ({𝒫 𝑥, ∪ 𝑥} ∪ ran (𝑦 ∈ 𝑧 ↦ {𝑥, 𝑦})))) |
46 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑤 = (𝐹‘𝑚) → 𝑤 = (𝐹‘𝑚)) |
47 | | unieq 4850 |
. . . . . . . . . . . . 13
⊢ (𝑤 = (𝐹‘𝑚) → ∪ 𝑤 = ∪
(𝐹‘𝑚)) |
48 | 46, 47 | uneq12d 4098 |
. . . . . . . . . . . 12
⊢ (𝑤 = (𝐹‘𝑚) → (𝑤 ∪ ∪ 𝑤) = ((𝐹‘𝑚) ∪ ∪ (𝐹‘𝑚))) |
49 | | mpteq1 5167 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = (𝐹‘𝑚) → (𝑣 ∈ 𝑤 ↦ {𝑢, 𝑣}) = (𝑣 ∈ (𝐹‘𝑚) ↦ {𝑢, 𝑣})) |
50 | 49 | rneqd 5847 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = (𝐹‘𝑚) → ran (𝑣 ∈ 𝑤 ↦ {𝑢, 𝑣}) = ran (𝑣 ∈ (𝐹‘𝑚) ↦ {𝑢, 𝑣})) |
51 | 50 | uneq2d 4097 |
. . . . . . . . . . . . 13
⊢ (𝑤 = (𝐹‘𝑚) → ({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ 𝑤 ↦ {𝑢, 𝑣})) = ({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ (𝐹‘𝑚) ↦ {𝑢, 𝑣}))) |
52 | 46, 51 | iuneq12d 4952 |
. . . . . . . . . . . 12
⊢ (𝑤 = (𝐹‘𝑚) → ∪
𝑢 ∈ 𝑤 ({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ 𝑤 ↦ {𝑢, 𝑣})) = ∪
𝑢 ∈ (𝐹‘𝑚)({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ (𝐹‘𝑚) ↦ {𝑢, 𝑣}))) |
53 | 48, 52 | uneq12d 4098 |
. . . . . . . . . . 11
⊢ (𝑤 = (𝐹‘𝑚) → ((𝑤 ∪ ∪ 𝑤) ∪ ∪ 𝑢 ∈ 𝑤 ({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ 𝑤 ↦ {𝑢, 𝑣}))) = (((𝐹‘𝑚) ∪ ∪ (𝐹‘𝑚)) ∪ ∪
𝑢 ∈ (𝐹‘𝑚)({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ (𝐹‘𝑚) ↦ {𝑢, 𝑣})))) |
54 | 4, 45, 53 | frsucmpt2 8271 |
. . . . . . . . . 10
⊢ ((𝑚 ∈ ω ∧ (((𝐹‘𝑚) ∪ ∪ (𝐹‘𝑚)) ∪ ∪
𝑢 ∈ (𝐹‘𝑚)({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ (𝐹‘𝑚) ↦ {𝑢, 𝑣}))) ∈ V) → (𝐹‘suc 𝑚) = (((𝐹‘𝑚) ∪ ∪ (𝐹‘𝑚)) ∪ ∪
𝑢 ∈ (𝐹‘𝑚)({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ (𝐹‘𝑚) ↦ {𝑢, 𝑣})))) |
55 | 16, 25, 54 | sylancl 586 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹‘𝑚))) → (𝐹‘suc 𝑚) = (((𝐹‘𝑚) ∪ ∪ (𝐹‘𝑚)) ∪ ∪
𝑢 ∈ (𝐹‘𝑚)({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ (𝐹‘𝑚) ↦ {𝑢, 𝑣})))) |
56 | 15, 55 | sseqtrrd 3962 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹‘𝑚))) → 𝑎 ⊆ (𝐹‘suc 𝑚)) |
57 | | fvssunirn 6803 |
. . . . . . . . 9
⊢ (𝐹‘suc 𝑚) ⊆ ∪ ran
𝐹 |
58 | 57, 1 | sseqtrri 3958 |
. . . . . . . 8
⊢ (𝐹‘suc 𝑚) ⊆ 𝑈 |
59 | 56, 58 | sstrdi 3933 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹‘𝑚))) → 𝑎 ⊆ 𝑈) |
60 | 59 | rexlimdvaa 3214 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → (∃𝑚 ∈ ω 𝑎 ∈ (𝐹‘𝑚) → 𝑎 ⊆ 𝑈)) |
61 | 9, 60 | syl5bi 241 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → (𝑎 ∈ 𝑈 → 𝑎 ⊆ 𝑈)) |
62 | 61 | ralrimiv 3102 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → ∀𝑎 ∈ 𝑈 𝑎 ⊆ 𝑈) |
63 | | dftr3 5195 |
. . . 4
⊢ (Tr 𝑈 ↔ ∀𝑎 ∈ 𝑈 𝑎 ⊆ 𝑈) |
64 | 62, 63 | sylibr 233 |
. . 3
⊢ (𝐴 ∈ 𝑉 → Tr 𝑈) |
65 | | 1on 8309 |
. . . . . . . 8
⊢
1o ∈ On |
66 | | unexg 7599 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 1o ∈ On) →
(𝐴 ∪ 1o)
∈ V) |
67 | 65, 66 | mpan2 688 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∪ 1o) ∈
V) |
68 | 4 | fveq1i 6775 |
. . . . . . . 8
⊢ (𝐹‘∅) = ((rec((𝑧 ∈ V ↦ ((𝑧 ∪ ∪ 𝑧)
∪ ∪ 𝑥 ∈ 𝑧 ({𝒫 𝑥, ∪ 𝑥} ∪ ran (𝑦 ∈ 𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1o)) ↾
ω)‘∅) |
69 | | fr0g 8267 |
. . . . . . . 8
⊢ ((𝐴 ∪ 1o) ∈ V
→ ((rec((𝑧 ∈ V
↦ ((𝑧 ∪ ∪ 𝑧)
∪ ∪ 𝑥 ∈ 𝑧 ({𝒫 𝑥, ∪ 𝑥} ∪ ran (𝑦 ∈ 𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1o)) ↾
ω)‘∅) = (𝐴 ∪ 1o)) |
70 | 68, 69 | eqtrid 2790 |
. . . . . . 7
⊢ ((𝐴 ∪ 1o) ∈ V
→ (𝐹‘∅) =
(𝐴 ∪
1o)) |
71 | 67, 70 | syl 17 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → (𝐹‘∅) = (𝐴 ∪ 1o)) |
72 | | fvssunirn 6803 |
. . . . . . 7
⊢ (𝐹‘∅) ⊆ ∪ ran 𝐹 |
73 | 72, 1 | sseqtrri 3958 |
. . . . . 6
⊢ (𝐹‘∅) ⊆ 𝑈 |
74 | 71, 73 | eqsstrrdi 3976 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∪ 1o) ⊆ 𝑈) |
75 | 74 | unssbd 4122 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → 1o ⊆ 𝑈) |
76 | | 1n0 8318 |
. . . 4
⊢
1o ≠ ∅ |
77 | | ssn0 4334 |
. . . 4
⊢
((1o ⊆ 𝑈 ∧ 1o ≠ ∅) →
𝑈 ≠
∅) |
78 | 75, 76, 77 | sylancl 586 |
. . 3
⊢ (𝐴 ∈ 𝑉 → 𝑈 ≠ ∅) |
79 | | pweq 4549 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = 𝑎 → 𝒫 𝑢 = 𝒫 𝑎) |
80 | | unieq 4850 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = 𝑎 → ∪ 𝑢 = ∪
𝑎) |
81 | 79, 80 | preq12d 4677 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = 𝑎 → {𝒫 𝑢, ∪ 𝑢} = {𝒫 𝑎, ∪
𝑎}) |
82 | | preq1 4669 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 = 𝑎 → {𝑢, 𝑣} = {𝑎, 𝑣}) |
83 | 82 | mpteq2dv 5176 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = 𝑎 → (𝑣 ∈ (𝐹‘𝑚) ↦ {𝑢, 𝑣}) = (𝑣 ∈ (𝐹‘𝑚) ↦ {𝑎, 𝑣})) |
84 | 83 | rneqd 5847 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = 𝑎 → ran (𝑣 ∈ (𝐹‘𝑚) ↦ {𝑢, 𝑣}) = ran (𝑣 ∈ (𝐹‘𝑚) ↦ {𝑎, 𝑣})) |
85 | 81, 84 | uneq12d 4098 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑎 → ({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ (𝐹‘𝑚) ↦ {𝑢, 𝑣})) = ({𝒫 𝑎, ∪ 𝑎} ∪ ran (𝑣 ∈ (𝐹‘𝑚) ↦ {𝑎, 𝑣}))) |
86 | 85 | ssiun2s 4978 |
. . . . . . . . . . . 12
⊢ (𝑎 ∈ (𝐹‘𝑚) → ({𝒫 𝑎, ∪ 𝑎} ∪ ran (𝑣 ∈ (𝐹‘𝑚) ↦ {𝑎, 𝑣})) ⊆ ∪ 𝑢 ∈ (𝐹‘𝑚)({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ (𝐹‘𝑚) ↦ {𝑢, 𝑣}))) |
87 | 86 | ad2antll 726 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹‘𝑚))) → ({𝒫 𝑎, ∪ 𝑎} ∪ ran (𝑣 ∈ (𝐹‘𝑚) ↦ {𝑎, 𝑣})) ⊆ ∪ 𝑢 ∈ (𝐹‘𝑚)({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ (𝐹‘𝑚) ↦ {𝑢, 𝑣}))) |
88 | | ssun2 4107 |
. . . . . . . . . . . . 13
⊢ ∪ 𝑢 ∈ (𝐹‘𝑚)({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ (𝐹‘𝑚) ↦ {𝑢, 𝑣})) ⊆ (((𝐹‘𝑚) ∪ ∪ (𝐹‘𝑚)) ∪ ∪
𝑢 ∈ (𝐹‘𝑚)({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ (𝐹‘𝑚) ↦ {𝑢, 𝑣}))) |
89 | 88, 55 | sseqtrrid 3974 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹‘𝑚))) → ∪ 𝑢 ∈ (𝐹‘𝑚)({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ (𝐹‘𝑚) ↦ {𝑢, 𝑣})) ⊆ (𝐹‘suc 𝑚)) |
90 | 89, 58 | sstrdi 3933 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹‘𝑚))) → ∪ 𝑢 ∈ (𝐹‘𝑚)({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ (𝐹‘𝑚) ↦ {𝑢, 𝑣})) ⊆ 𝑈) |
91 | 87, 90 | sstrd 3931 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹‘𝑚))) → ({𝒫 𝑎, ∪ 𝑎} ∪ ran (𝑣 ∈ (𝐹‘𝑚) ↦ {𝑎, 𝑣})) ⊆ 𝑈) |
92 | 91 | unssad 4121 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹‘𝑚))) → {𝒫 𝑎, ∪ 𝑎} ⊆ 𝑈) |
93 | | vpwex 5300 |
. . . . . . . . . 10
⊢ 𝒫
𝑎 ∈ V |
94 | | vuniex 7592 |
. . . . . . . . . 10
⊢ ∪ 𝑎
∈ V |
95 | 93, 94 | prss 4753 |
. . . . . . . . 9
⊢
((𝒫 𝑎 ∈
𝑈 ∧ ∪ 𝑎
∈ 𝑈) ↔ {𝒫
𝑎, ∪ 𝑎}
⊆ 𝑈) |
96 | 92, 95 | sylibr 233 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹‘𝑚))) → (𝒫 𝑎 ∈ 𝑈 ∧ ∪ 𝑎 ∈ 𝑈)) |
97 | 96 | simprd 496 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹‘𝑚))) → ∪ 𝑎 ∈ 𝑈) |
98 | 96 | simpld 495 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹‘𝑚))) → 𝒫 𝑎 ∈ 𝑈) |
99 | 1 | eleq2i 2830 |
. . . . . . . . . 10
⊢ (𝑏 ∈ 𝑈 ↔ 𝑏 ∈ ∪ ran
𝐹) |
100 | | fnunirn 7127 |
. . . . . . . . . . 11
⊢ (𝐹 Fn ω → (𝑏 ∈ ∪ ran 𝐹 ↔ ∃𝑛 ∈ ω 𝑏 ∈ (𝐹‘𝑛))) |
101 | 6, 100 | ax-mp 5 |
. . . . . . . . . 10
⊢ (𝑏 ∈ ∪ ran 𝐹 ↔ ∃𝑛 ∈ ω 𝑏 ∈ (𝐹‘𝑛)) |
102 | 99, 101 | bitri 274 |
. . . . . . . . 9
⊢ (𝑏 ∈ 𝑈 ↔ ∃𝑛 ∈ ω 𝑏 ∈ (𝐹‘𝑛)) |
103 | | ordom 7722 |
. . . . . . . . . . . . . . . . 17
⊢ Ord
ω |
104 | | simplrl 774 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹‘𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹‘𝑛))) → 𝑚 ∈ ω) |
105 | | simprl 768 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹‘𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹‘𝑛))) → 𝑛 ∈ ω) |
106 | | ordunel 7674 |
. . . . . . . . . . . . . . . . 17
⊢ ((Ord
ω ∧ 𝑚 ∈
ω ∧ 𝑛 ∈
ω) → (𝑚 ∪
𝑛) ∈
ω) |
107 | 103, 104,
105, 106 | mp3an2i 1465 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹‘𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹‘𝑛))) → (𝑚 ∪ 𝑛) ∈ ω) |
108 | | ssun1 4106 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑚 ⊆ (𝑚 ∪ 𝑛) |
109 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑚 → (𝐹‘𝑘) = (𝐹‘𝑚)) |
110 | 109 | sseq2d 3953 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑚 → ((𝐹‘𝑚) ⊆ (𝐹‘𝑘) ↔ (𝐹‘𝑚) ⊆ (𝐹‘𝑚))) |
111 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑖 → (𝐹‘𝑘) = (𝐹‘𝑖)) |
112 | 111 | sseq2d 3953 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑖 → ((𝐹‘𝑚) ⊆ (𝐹‘𝑘) ↔ (𝐹‘𝑚) ⊆ (𝐹‘𝑖))) |
113 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = suc 𝑖 → (𝐹‘𝑘) = (𝐹‘suc 𝑖)) |
114 | 113 | sseq2d 3953 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = suc 𝑖 → ((𝐹‘𝑚) ⊆ (𝐹‘𝑘) ↔ (𝐹‘𝑚) ⊆ (𝐹‘suc 𝑖))) |
115 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = (𝑚 ∪ 𝑛) → (𝐹‘𝑘) = (𝐹‘(𝑚 ∪ 𝑛))) |
116 | 115 | sseq2d 3953 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = (𝑚 ∪ 𝑛) → ((𝐹‘𝑚) ⊆ (𝐹‘𝑘) ↔ (𝐹‘𝑚) ⊆ (𝐹‘(𝑚 ∪ 𝑛)))) |
117 | | ssidd 3944 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 ∈ ω → (𝐹‘𝑚) ⊆ (𝐹‘𝑚)) |
118 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑚 = 𝑖 → (𝐹‘𝑚) = (𝐹‘𝑖)) |
119 | | suceq 6331 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑚 = 𝑖 → suc 𝑚 = suc 𝑖) |
120 | 119 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑚 = 𝑖 → (𝐹‘suc 𝑚) = (𝐹‘suc 𝑖)) |
121 | 118, 120 | sseq12d 3954 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 = 𝑖 → ((𝐹‘𝑚) ⊆ (𝐹‘suc 𝑚) ↔ (𝐹‘𝑖) ⊆ (𝐹‘suc 𝑖))) |
122 | | ssun1 4106 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐹‘𝑚) ⊆ ((𝐹‘𝑚) ∪ ∪ (𝐹‘𝑚)) |
123 | 122, 13 | sstri 3930 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐹‘𝑚) ⊆ (((𝐹‘𝑚) ∪ ∪ (𝐹‘𝑚)) ∪ ∪
𝑢 ∈ (𝐹‘𝑚)({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ (𝐹‘𝑚) ↦ {𝑢, 𝑣}))) |
124 | 25, 54 | mpan2 688 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑚 ∈ ω → (𝐹‘suc 𝑚) = (((𝐹‘𝑚) ∪ ∪ (𝐹‘𝑚)) ∪ ∪
𝑢 ∈ (𝐹‘𝑚)({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ (𝐹‘𝑚) ↦ {𝑢, 𝑣})))) |
125 | 123, 124 | sseqtrrid 3974 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 ∈ ω → (𝐹‘𝑚) ⊆ (𝐹‘suc 𝑚)) |
126 | 121, 125 | vtoclga 3513 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈ ω → (𝐹‘𝑖) ⊆ (𝐹‘suc 𝑖)) |
127 | 126 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑖 ∈ ω ∧ 𝑚 ∈ ω) ∧ 𝑚 ⊆ 𝑖) → (𝐹‘𝑖) ⊆ (𝐹‘suc 𝑖)) |
128 | | sstr2 3928 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹‘𝑚) ⊆ (𝐹‘𝑖) → ((𝐹‘𝑖) ⊆ (𝐹‘suc 𝑖) → (𝐹‘𝑚) ⊆ (𝐹‘suc 𝑖))) |
129 | 127, 128 | syl5com 31 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑖 ∈ ω ∧ 𝑚 ∈ ω) ∧ 𝑚 ⊆ 𝑖) → ((𝐹‘𝑚) ⊆ (𝐹‘𝑖) → (𝐹‘𝑚) ⊆ (𝐹‘suc 𝑖))) |
130 | 110, 112,
114, 116, 117, 129 | findsg 7746 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑚 ∪ 𝑛) ∈ ω ∧ 𝑚 ∈ ω) ∧ 𝑚 ⊆ (𝑚 ∪ 𝑛)) → (𝐹‘𝑚) ⊆ (𝐹‘(𝑚 ∪ 𝑛))) |
131 | 108, 130 | mpan2 688 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑚 ∪ 𝑛) ∈ ω ∧ 𝑚 ∈ ω) → (𝐹‘𝑚) ⊆ (𝐹‘(𝑚 ∪ 𝑛))) |
132 | 107, 104,
131 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹‘𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹‘𝑛))) → (𝐹‘𝑚) ⊆ (𝐹‘(𝑚 ∪ 𝑛))) |
133 | | simplrr 775 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹‘𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹‘𝑛))) → 𝑎 ∈ (𝐹‘𝑚)) |
134 | 132, 133 | sseldd 3922 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹‘𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹‘𝑛))) → 𝑎 ∈ (𝐹‘(𝑚 ∪ 𝑛))) |
135 | 82 | mpteq2dv 5176 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 = 𝑎 → (𝑣 ∈ (𝐹‘(𝑚 ∪ 𝑛)) ↦ {𝑢, 𝑣}) = (𝑣 ∈ (𝐹‘(𝑚 ∪ 𝑛)) ↦ {𝑎, 𝑣})) |
136 | 135 | rneqd 5847 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 = 𝑎 → ran (𝑣 ∈ (𝐹‘(𝑚 ∪ 𝑛)) ↦ {𝑢, 𝑣}) = ran (𝑣 ∈ (𝐹‘(𝑚 ∪ 𝑛)) ↦ {𝑎, 𝑣})) |
137 | 81, 136 | uneq12d 4098 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = 𝑎 → ({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚 ∪ 𝑛)) ↦ {𝑢, 𝑣})) = ({𝒫 𝑎, ∪ 𝑎} ∪ ran (𝑣 ∈ (𝐹‘(𝑚 ∪ 𝑛)) ↦ {𝑎, 𝑣}))) |
138 | 137 | ssiun2s 4978 |
. . . . . . . . . . . . . 14
⊢ (𝑎 ∈ (𝐹‘(𝑚 ∪ 𝑛)) → ({𝒫 𝑎, ∪ 𝑎} ∪ ran (𝑣 ∈ (𝐹‘(𝑚 ∪ 𝑛)) ↦ {𝑎, 𝑣})) ⊆ ∪ 𝑢 ∈ (𝐹‘(𝑚 ∪ 𝑛))({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚 ∪ 𝑛)) ↦ {𝑢, 𝑣}))) |
139 | 134, 138 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹‘𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹‘𝑛))) → ({𝒫 𝑎, ∪ 𝑎} ∪ ran (𝑣 ∈ (𝐹‘(𝑚 ∪ 𝑛)) ↦ {𝑎, 𝑣})) ⊆ ∪ 𝑢 ∈ (𝐹‘(𝑚 ∪ 𝑛))({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚 ∪ 𝑛)) ↦ {𝑢, 𝑣}))) |
140 | | ssun2 4107 |
. . . . . . . . . . . . . . 15
⊢ ∪ 𝑢 ∈ (𝐹‘(𝑚 ∪ 𝑛))({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚 ∪ 𝑛)) ↦ {𝑢, 𝑣})) ⊆ (((𝐹‘(𝑚 ∪ 𝑛)) ∪ ∪ (𝐹‘(𝑚 ∪ 𝑛))) ∪ ∪
𝑢 ∈ (𝐹‘(𝑚 ∪ 𝑛))({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚 ∪ 𝑛)) ↦ {𝑢, 𝑣}))) |
141 | | fvex 6787 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹‘(𝑚 ∪ 𝑛)) ∈ V |
142 | 141 | uniex 7594 |
. . . . . . . . . . . . . . . . . 18
⊢ ∪ (𝐹‘(𝑚 ∪ 𝑛)) ∈ V |
143 | 141, 142 | unex 7596 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹‘(𝑚 ∪ 𝑛)) ∪ ∪ (𝐹‘(𝑚 ∪ 𝑛))) ∈ V |
144 | 141 | mptex 7099 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑣 ∈ (𝐹‘(𝑚 ∪ 𝑛)) ↦ {𝑢, 𝑣}) ∈ V |
145 | 144 | rnex 7759 |
. . . . . . . . . . . . . . . . . . 19
⊢ ran
(𝑣 ∈ (𝐹‘(𝑚 ∪ 𝑛)) ↦ {𝑢, 𝑣}) ∈ V |
146 | 20, 145 | unex 7596 |
. . . . . . . . . . . . . . . . . 18
⊢
({𝒫 𝑢, ∪ 𝑢}
∪ ran (𝑣 ∈ (𝐹‘(𝑚 ∪ 𝑛)) ↦ {𝑢, 𝑣})) ∈ V |
147 | 141, 146 | iunex 7811 |
. . . . . . . . . . . . . . . . 17
⊢ ∪ 𝑢 ∈ (𝐹‘(𝑚 ∪ 𝑛))({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚 ∪ 𝑛)) ↦ {𝑢, 𝑣})) ∈ V |
148 | 143, 147 | unex 7596 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹‘(𝑚 ∪ 𝑛)) ∪ ∪ (𝐹‘(𝑚 ∪ 𝑛))) ∪ ∪
𝑢 ∈ (𝐹‘(𝑚 ∪ 𝑛))({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚 ∪ 𝑛)) ↦ {𝑢, 𝑣}))) ∈ V |
149 | | id 22 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 = (𝐹‘(𝑚 ∪ 𝑛)) → 𝑤 = (𝐹‘(𝑚 ∪ 𝑛))) |
150 | | unieq 4850 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 = (𝐹‘(𝑚 ∪ 𝑛)) → ∪ 𝑤 = ∪
(𝐹‘(𝑚 ∪ 𝑛))) |
151 | 149, 150 | uneq12d 4098 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 = (𝐹‘(𝑚 ∪ 𝑛)) → (𝑤 ∪ ∪ 𝑤) = ((𝐹‘(𝑚 ∪ 𝑛)) ∪ ∪ (𝐹‘(𝑚 ∪ 𝑛)))) |
152 | | mpteq1 5167 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑤 = (𝐹‘(𝑚 ∪ 𝑛)) → (𝑣 ∈ 𝑤 ↦ {𝑢, 𝑣}) = (𝑣 ∈ (𝐹‘(𝑚 ∪ 𝑛)) ↦ {𝑢, 𝑣})) |
153 | 152 | rneqd 5847 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 = (𝐹‘(𝑚 ∪ 𝑛)) → ran (𝑣 ∈ 𝑤 ↦ {𝑢, 𝑣}) = ran (𝑣 ∈ (𝐹‘(𝑚 ∪ 𝑛)) ↦ {𝑢, 𝑣})) |
154 | 153 | uneq2d 4097 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 = (𝐹‘(𝑚 ∪ 𝑛)) → ({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ 𝑤 ↦ {𝑢, 𝑣})) = ({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚 ∪ 𝑛)) ↦ {𝑢, 𝑣}))) |
155 | 149, 154 | iuneq12d 4952 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 = (𝐹‘(𝑚 ∪ 𝑛)) → ∪
𝑢 ∈ 𝑤 ({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ 𝑤 ↦ {𝑢, 𝑣})) = ∪
𝑢 ∈ (𝐹‘(𝑚 ∪ 𝑛))({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚 ∪ 𝑛)) ↦ {𝑢, 𝑣}))) |
156 | 151, 155 | uneq12d 4098 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = (𝐹‘(𝑚 ∪ 𝑛)) → ((𝑤 ∪ ∪ 𝑤) ∪ ∪ 𝑢 ∈ 𝑤 ({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ 𝑤 ↦ {𝑢, 𝑣}))) = (((𝐹‘(𝑚 ∪ 𝑛)) ∪ ∪ (𝐹‘(𝑚 ∪ 𝑛))) ∪ ∪
𝑢 ∈ (𝐹‘(𝑚 ∪ 𝑛))({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚 ∪ 𝑛)) ↦ {𝑢, 𝑣})))) |
157 | 4, 45, 156 | frsucmpt2 8271 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑚 ∪ 𝑛) ∈ ω ∧ (((𝐹‘(𝑚 ∪ 𝑛)) ∪ ∪ (𝐹‘(𝑚 ∪ 𝑛))) ∪ ∪
𝑢 ∈ (𝐹‘(𝑚 ∪ 𝑛))({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚 ∪ 𝑛)) ↦ {𝑢, 𝑣}))) ∈ V) → (𝐹‘suc (𝑚 ∪ 𝑛)) = (((𝐹‘(𝑚 ∪ 𝑛)) ∪ ∪ (𝐹‘(𝑚 ∪ 𝑛))) ∪ ∪
𝑢 ∈ (𝐹‘(𝑚 ∪ 𝑛))({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚 ∪ 𝑛)) ↦ {𝑢, 𝑣})))) |
158 | 107, 148,
157 | sylancl 586 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹‘𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹‘𝑛))) → (𝐹‘suc (𝑚 ∪ 𝑛)) = (((𝐹‘(𝑚 ∪ 𝑛)) ∪ ∪ (𝐹‘(𝑚 ∪ 𝑛))) ∪ ∪
𝑢 ∈ (𝐹‘(𝑚 ∪ 𝑛))({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚 ∪ 𝑛)) ↦ {𝑢, 𝑣})))) |
159 | 140, 158 | sseqtrrid 3974 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹‘𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹‘𝑛))) → ∪ 𝑢 ∈ (𝐹‘(𝑚 ∪ 𝑛))({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚 ∪ 𝑛)) ↦ {𝑢, 𝑣})) ⊆ (𝐹‘suc (𝑚 ∪ 𝑛))) |
160 | | fvssunirn 6803 |
. . . . . . . . . . . . . . 15
⊢ (𝐹‘suc (𝑚 ∪ 𝑛)) ⊆ ∪ ran
𝐹 |
161 | 160, 1 | sseqtrri 3958 |
. . . . . . . . . . . . . 14
⊢ (𝐹‘suc (𝑚 ∪ 𝑛)) ⊆ 𝑈 |
162 | 159, 161 | sstrdi 3933 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹‘𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹‘𝑛))) → ∪ 𝑢 ∈ (𝐹‘(𝑚 ∪ 𝑛))({𝒫 𝑢, ∪ 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚 ∪ 𝑛)) ↦ {𝑢, 𝑣})) ⊆ 𝑈) |
163 | 139, 162 | sstrd 3931 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹‘𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹‘𝑛))) → ({𝒫 𝑎, ∪ 𝑎} ∪ ran (𝑣 ∈ (𝐹‘(𝑚 ∪ 𝑛)) ↦ {𝑎, 𝑣})) ⊆ 𝑈) |
164 | 163 | unssbd 4122 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹‘𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹‘𝑛))) → ran (𝑣 ∈ (𝐹‘(𝑚 ∪ 𝑛)) ↦ {𝑎, 𝑣}) ⊆ 𝑈) |
165 | | ssun2 4107 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑛 ⊆ (𝑚 ∪ 𝑛) |
166 | | id 22 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 = (𝑚 ∪ 𝑛) → 𝑖 = (𝑚 ∪ 𝑛)) |
167 | 165, 166 | sseqtrrid 3974 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 = (𝑚 ∪ 𝑛) → 𝑛 ⊆ 𝑖) |
168 | 167 | biantrud 532 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = (𝑚 ∪ 𝑛) → (𝑛 ∈ ω ↔ (𝑛 ∈ ω ∧ 𝑛 ⊆ 𝑖))) |
169 | 168 | bicomd 222 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = (𝑚 ∪ 𝑛) → ((𝑛 ∈ ω ∧ 𝑛 ⊆ 𝑖) ↔ 𝑛 ∈ ω)) |
170 | | fveq2 6774 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = (𝑚 ∪ 𝑛) → (𝐹‘𝑖) = (𝐹‘(𝑚 ∪ 𝑛))) |
171 | 170 | sseq2d 3953 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = (𝑚 ∪ 𝑛) → ((𝐹‘𝑛) ⊆ (𝐹‘𝑖) ↔ (𝐹‘𝑛) ⊆ (𝐹‘(𝑚 ∪ 𝑛)))) |
172 | 169, 171 | imbi12d 345 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = (𝑚 ∪ 𝑛) → (((𝑛 ∈ ω ∧ 𝑛 ⊆ 𝑖) → (𝐹‘𝑛) ⊆ (𝐹‘𝑖)) ↔ (𝑛 ∈ ω → (𝐹‘𝑛) ⊆ (𝐹‘(𝑚 ∪ 𝑛))))) |
173 | | eleq1w 2821 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 = 𝑛 → (𝑚 ∈ ω ↔ 𝑛 ∈ ω)) |
174 | 173 | anbi2d 629 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 = 𝑛 → ((𝑖 ∈ ω ∧ 𝑚 ∈ ω) ↔ (𝑖 ∈ ω ∧ 𝑛 ∈ ω))) |
175 | | sseq1 3946 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 = 𝑛 → (𝑚 ⊆ 𝑖 ↔ 𝑛 ⊆ 𝑖)) |
176 | 174, 175 | anbi12d 631 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 = 𝑛 → (((𝑖 ∈ ω ∧ 𝑚 ∈ ω) ∧ 𝑚 ⊆ 𝑖) ↔ ((𝑖 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑛 ⊆ 𝑖))) |
177 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 = 𝑛 → (𝐹‘𝑚) = (𝐹‘𝑛)) |
178 | 177 | sseq1d 3952 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 = 𝑛 → ((𝐹‘𝑚) ⊆ (𝐹‘𝑖) ↔ (𝐹‘𝑛) ⊆ (𝐹‘𝑖))) |
179 | 176, 178 | imbi12d 345 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 = 𝑛 → ((((𝑖 ∈ ω ∧ 𝑚 ∈ ω) ∧ 𝑚 ⊆ 𝑖) → (𝐹‘𝑚) ⊆ (𝐹‘𝑖)) ↔ (((𝑖 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑛 ⊆ 𝑖) → (𝐹‘𝑛) ⊆ (𝐹‘𝑖)))) |
180 | 110, 112,
114, 112, 117, 129 | findsg 7746 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑖 ∈ ω ∧ 𝑚 ∈ ω) ∧ 𝑚 ⊆ 𝑖) → (𝐹‘𝑚) ⊆ (𝐹‘𝑖)) |
181 | 179, 180 | chvarvv 2002 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑖 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑛 ⊆ 𝑖) → (𝐹‘𝑛) ⊆ (𝐹‘𝑖)) |
182 | 181 | expl 458 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ ω → ((𝑛 ∈ ω ∧ 𝑛 ⊆ 𝑖) → (𝐹‘𝑛) ⊆ (𝐹‘𝑖))) |
183 | 172, 182 | vtoclga 3513 |
. . . . . . . . . . . . . 14
⊢ ((𝑚 ∪ 𝑛) ∈ ω → (𝑛 ∈ ω → (𝐹‘𝑛) ⊆ (𝐹‘(𝑚 ∪ 𝑛)))) |
184 | 107, 105,
183 | sylc 65 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹‘𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹‘𝑛))) → (𝐹‘𝑛) ⊆ (𝐹‘(𝑚 ∪ 𝑛))) |
185 | | simprr 770 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹‘𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹‘𝑛))) → 𝑏 ∈ (𝐹‘𝑛)) |
186 | 184, 185 | sseldd 3922 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹‘𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹‘𝑛))) → 𝑏 ∈ (𝐹‘(𝑚 ∪ 𝑛))) |
187 | | prex 5355 |
. . . . . . . . . . . 12
⊢ {𝑎, 𝑏} ∈ V |
188 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ (𝑣 ∈ (𝐹‘(𝑚 ∪ 𝑛)) ↦ {𝑎, 𝑣}) = (𝑣 ∈ (𝐹‘(𝑚 ∪ 𝑛)) ↦ {𝑎, 𝑣}) |
189 | | preq2 4670 |
. . . . . . . . . . . . 13
⊢ (𝑣 = 𝑏 → {𝑎, 𝑣} = {𝑎, 𝑏}) |
190 | 188, 189 | elrnmpt1s 5866 |
. . . . . . . . . . . 12
⊢ ((𝑏 ∈ (𝐹‘(𝑚 ∪ 𝑛)) ∧ {𝑎, 𝑏} ∈ V) → {𝑎, 𝑏} ∈ ran (𝑣 ∈ (𝐹‘(𝑚 ∪ 𝑛)) ↦ {𝑎, 𝑣})) |
191 | 186, 187,
190 | sylancl 586 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹‘𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹‘𝑛))) → {𝑎, 𝑏} ∈ ran (𝑣 ∈ (𝐹‘(𝑚 ∪ 𝑛)) ↦ {𝑎, 𝑣})) |
192 | 164, 191 | sseldd 3922 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹‘𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹‘𝑛))) → {𝑎, 𝑏} ∈ 𝑈) |
193 | 192 | rexlimdvaa 3214 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹‘𝑚))) → (∃𝑛 ∈ ω 𝑏 ∈ (𝐹‘𝑛) → {𝑎, 𝑏} ∈ 𝑈)) |
194 | 102, 193 | syl5bi 241 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹‘𝑚))) → (𝑏 ∈ 𝑈 → {𝑎, 𝑏} ∈ 𝑈)) |
195 | 194 | ralrimiv 3102 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹‘𝑚))) → ∀𝑏 ∈ 𝑈 {𝑎, 𝑏} ∈ 𝑈) |
196 | 97, 98, 195 | 3jca 1127 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹‘𝑚))) → (∪
𝑎 ∈ 𝑈 ∧ 𝒫 𝑎 ∈ 𝑈 ∧ ∀𝑏 ∈ 𝑈 {𝑎, 𝑏} ∈ 𝑈)) |
197 | 196 | rexlimdvaa 3214 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → (∃𝑚 ∈ ω 𝑎 ∈ (𝐹‘𝑚) → (∪ 𝑎 ∈ 𝑈 ∧ 𝒫 𝑎 ∈ 𝑈 ∧ ∀𝑏 ∈ 𝑈 {𝑎, 𝑏} ∈ 𝑈))) |
198 | 9, 197 | syl5bi 241 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → (𝑎 ∈ 𝑈 → (∪ 𝑎 ∈ 𝑈 ∧ 𝒫 𝑎 ∈ 𝑈 ∧ ∀𝑏 ∈ 𝑈 {𝑎, 𝑏} ∈ 𝑈))) |
199 | 198 | ralrimiv 3102 |
. . 3
⊢ (𝐴 ∈ 𝑉 → ∀𝑎 ∈ 𝑈 (∪ 𝑎 ∈ 𝑈 ∧ 𝒫 𝑎 ∈ 𝑈 ∧ ∀𝑏 ∈ 𝑈 {𝑎, 𝑏} ∈ 𝑈)) |
200 | | rdgfun 8247 |
. . . . . . . . 9
⊢ Fun
rec((𝑧 ∈ V ↦
((𝑧 ∪ ∪ 𝑧)
∪ ∪ 𝑥 ∈ 𝑧 ({𝒫 𝑥, ∪ 𝑥} ∪ ran (𝑦 ∈ 𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1o)) |
201 | | omex 9401 |
. . . . . . . . 9
⊢ ω
∈ V |
202 | | resfunexg 7091 |
. . . . . . . . 9
⊢ ((Fun
rec((𝑧 ∈ V ↦
((𝑧 ∪ ∪ 𝑧)
∪ ∪ 𝑥 ∈ 𝑧 ({𝒫 𝑥, ∪ 𝑥} ∪ ran (𝑦 ∈ 𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1o)) ∧ ω ∈
V) → (rec((𝑧 ∈ V
↦ ((𝑧 ∪ ∪ 𝑧)
∪ ∪ 𝑥 ∈ 𝑧 ({𝒫 𝑥, ∪ 𝑥} ∪ ran (𝑦 ∈ 𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1o)) ↾ ω)
∈ V) |
203 | 200, 201,
202 | mp2an 689 |
. . . . . . . 8
⊢
(rec((𝑧 ∈ V
↦ ((𝑧 ∪ ∪ 𝑧)
∪ ∪ 𝑥 ∈ 𝑧 ({𝒫 𝑥, ∪ 𝑥} ∪ ran (𝑦 ∈ 𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1o)) ↾ ω)
∈ V |
204 | 4, 203 | eqeltri 2835 |
. . . . . . 7
⊢ 𝐹 ∈ V |
205 | 204 | rnex 7759 |
. . . . . 6
⊢ ran 𝐹 ∈ V |
206 | 205 | uniex 7594 |
. . . . 5
⊢ ∪ ran 𝐹 ∈ V |
207 | 1, 206 | eqeltri 2835 |
. . . 4
⊢ 𝑈 ∈ V |
208 | | iswun 10460 |
. . . 4
⊢ (𝑈 ∈ V → (𝑈 ∈ WUni ↔ (Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀𝑎 ∈ 𝑈 (∪ 𝑎 ∈ 𝑈 ∧ 𝒫 𝑎 ∈ 𝑈 ∧ ∀𝑏 ∈ 𝑈 {𝑎, 𝑏} ∈ 𝑈)))) |
209 | 207, 208 | ax-mp 5 |
. . 3
⊢ (𝑈 ∈ WUni ↔ (Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀𝑎 ∈ 𝑈 (∪ 𝑎 ∈ 𝑈 ∧ 𝒫 𝑎 ∈ 𝑈 ∧ ∀𝑏 ∈ 𝑈 {𝑎, 𝑏} ∈ 𝑈))) |
210 | 64, 78, 199, 209 | syl3anbrc 1342 |
. 2
⊢ (𝐴 ∈ 𝑉 → 𝑈 ∈ WUni) |
211 | 74 | unssad 4121 |
. 2
⊢ (𝐴 ∈ 𝑉 → 𝐴 ⊆ 𝑈) |
212 | 210, 211 | jca 512 |
1
⊢ (𝐴 ∈ 𝑉 → (𝑈 ∈ WUni ∧ 𝐴 ⊆ 𝑈)) |