MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunex2 Structured version   Visualization version   GIF version

Theorem wunex2 10317
Description: Construct a weak universe from a given set. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wunex2.f 𝐹 = (rec((𝑧 ∈ V ↦ ((𝑧 𝑧) ∪ 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1o)) ↾ ω)
wunex2.u 𝑈 = ran 𝐹
Assertion
Ref Expression
wunex2 (𝐴𝑉 → (𝑈 ∈ WUni ∧ 𝐴𝑈))
Distinct variable group:   𝑥,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)   𝑈(𝑥,𝑦,𝑧)   𝐹(𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem wunex2
Dummy variables 𝑢 𝑎 𝑣 𝑤 𝑏 𝑚 𝑛 𝑖 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wunex2.u . . . . . . . 8 𝑈 = ran 𝐹
21eleq2i 2822 . . . . . . 7 (𝑎𝑈𝑎 ran 𝐹)
3 frfnom 8148 . . . . . . . . 9 (rec((𝑧 ∈ V ↦ ((𝑧 𝑧) ∪ 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1o)) ↾ ω) Fn ω
4 wunex2.f . . . . . . . . . 10 𝐹 = (rec((𝑧 ∈ V ↦ ((𝑧 𝑧) ∪ 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1o)) ↾ ω)
54fneq1i 6454 . . . . . . . . 9 (𝐹 Fn ω ↔ (rec((𝑧 ∈ V ↦ ((𝑧 𝑧) ∪ 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1o)) ↾ ω) Fn ω)
63, 5mpbir 234 . . . . . . . 8 𝐹 Fn ω
7 fnunirn 7044 . . . . . . . 8 (𝐹 Fn ω → (𝑎 ran 𝐹 ↔ ∃𝑚 ∈ ω 𝑎 ∈ (𝐹𝑚)))
86, 7ax-mp 5 . . . . . . 7 (𝑎 ran 𝐹 ↔ ∃𝑚 ∈ ω 𝑎 ∈ (𝐹𝑚))
92, 8bitri 278 . . . . . 6 (𝑎𝑈 ↔ ∃𝑚 ∈ ω 𝑎 ∈ (𝐹𝑚))
10 elssuni 4837 . . . . . . . . . . 11 (𝑎 ∈ (𝐹𝑚) → 𝑎 (𝐹𝑚))
1110ad2antll 729 . . . . . . . . . 10 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) → 𝑎 (𝐹𝑚))
12 ssun2 4073 . . . . . . . . . . 11 (𝐹𝑚) ⊆ ((𝐹𝑚) ∪ (𝐹𝑚))
13 ssun1 4072 . . . . . . . . . . 11 ((𝐹𝑚) ∪ (𝐹𝑚)) ⊆ (((𝐹𝑚) ∪ (𝐹𝑚)) ∪ 𝑢 ∈ (𝐹𝑚)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣})))
1412, 13sstri 3896 . . . . . . . . . 10 (𝐹𝑚) ⊆ (((𝐹𝑚) ∪ (𝐹𝑚)) ∪ 𝑢 ∈ (𝐹𝑚)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣})))
1511, 14sstrdi 3899 . . . . . . . . 9 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) → 𝑎 ⊆ (((𝐹𝑚) ∪ (𝐹𝑚)) ∪ 𝑢 ∈ (𝐹𝑚)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣}))))
16 simprl 771 . . . . . . . . . 10 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) → 𝑚 ∈ ω)
17 fvex 6708 . . . . . . . . . . . 12 (𝐹𝑚) ∈ V
1817uniex 7507 . . . . . . . . . . . 12 (𝐹𝑚) ∈ V
1917, 18unex 7509 . . . . . . . . . . 11 ((𝐹𝑚) ∪ (𝐹𝑚)) ∈ V
20 prex 5310 . . . . . . . . . . . . 13 {𝒫 𝑢, 𝑢} ∈ V
2117mptex 7017 . . . . . . . . . . . . . 14 (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣}) ∈ V
2221rnex 7668 . . . . . . . . . . . . 13 ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣}) ∈ V
2320, 22unex 7509 . . . . . . . . . . . 12 ({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣})) ∈ V
2417, 23iunex 7719 . . . . . . . . . . 11 𝑢 ∈ (𝐹𝑚)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣})) ∈ V
2519, 24unex 7509 . . . . . . . . . 10 (((𝐹𝑚) ∪ (𝐹𝑚)) ∪ 𝑢 ∈ (𝐹𝑚)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣}))) ∈ V
26 id 22 . . . . . . . . . . . . 13 (𝑤 = 𝑧𝑤 = 𝑧)
27 unieq 4816 . . . . . . . . . . . . 13 (𝑤 = 𝑧 𝑤 = 𝑧)
2826, 27uneq12d 4064 . . . . . . . . . . . 12 (𝑤 = 𝑧 → (𝑤 𝑤) = (𝑧 𝑧))
29 pweq 4515 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑥 → 𝒫 𝑢 = 𝒫 𝑥)
30 unieq 4816 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑥 𝑢 = 𝑥)
3129, 30preq12d 4643 . . . . . . . . . . . . . . 15 (𝑢 = 𝑥 → {𝒫 𝑢, 𝑢} = {𝒫 𝑥, 𝑥})
32 preq2 4636 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝑦 → {𝑢, 𝑣} = {𝑢, 𝑦})
3332cbvmptv 5143 . . . . . . . . . . . . . . . . 17 (𝑣𝑤 ↦ {𝑢, 𝑣}) = (𝑦𝑤 ↦ {𝑢, 𝑦})
34 preq1 4635 . . . . . . . . . . . . . . . . . 18 (𝑢 = 𝑥 → {𝑢, 𝑦} = {𝑥, 𝑦})
3534mpteq2dv 5136 . . . . . . . . . . . . . . . . 17 (𝑢 = 𝑥 → (𝑦𝑤 ↦ {𝑢, 𝑦}) = (𝑦𝑤 ↦ {𝑥, 𝑦}))
3633, 35syl5eq 2783 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑥 → (𝑣𝑤 ↦ {𝑢, 𝑣}) = (𝑦𝑤 ↦ {𝑥, 𝑦}))
3736rneqd 5792 . . . . . . . . . . . . . . 15 (𝑢 = 𝑥 → ran (𝑣𝑤 ↦ {𝑢, 𝑣}) = ran (𝑦𝑤 ↦ {𝑥, 𝑦}))
3831, 37uneq12d 4064 . . . . . . . . . . . . . 14 (𝑢 = 𝑥 → ({𝒫 𝑢, 𝑢} ∪ ran (𝑣𝑤 ↦ {𝑢, 𝑣})) = ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑤 ↦ {𝑥, 𝑦})))
3938cbviunv 4935 . . . . . . . . . . . . 13 𝑢𝑤 ({𝒫 𝑢, 𝑢} ∪ ran (𝑣𝑤 ↦ {𝑢, 𝑣})) = 𝑥𝑤 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑤 ↦ {𝑥, 𝑦}))
40 mpteq1 5128 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑧 → (𝑦𝑤 ↦ {𝑥, 𝑦}) = (𝑦𝑧 ↦ {𝑥, 𝑦}))
4140rneqd 5792 . . . . . . . . . . . . . . 15 (𝑤 = 𝑧 → ran (𝑦𝑤 ↦ {𝑥, 𝑦}) = ran (𝑦𝑧 ↦ {𝑥, 𝑦}))
4241uneq2d 4063 . . . . . . . . . . . . . 14 (𝑤 = 𝑧 → ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑤 ↦ {𝑥, 𝑦})) = ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))
4326, 42iuneq12d 4918 . . . . . . . . . . . . 13 (𝑤 = 𝑧 𝑥𝑤 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑤 ↦ {𝑥, 𝑦})) = 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))
4439, 43syl5eq 2783 . . . . . . . . . . . 12 (𝑤 = 𝑧 𝑢𝑤 ({𝒫 𝑢, 𝑢} ∪ ran (𝑣𝑤 ↦ {𝑢, 𝑣})) = 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))
4528, 44uneq12d 4064 . . . . . . . . . . 11 (𝑤 = 𝑧 → ((𝑤 𝑤) ∪ 𝑢𝑤 ({𝒫 𝑢, 𝑢} ∪ ran (𝑣𝑤 ↦ {𝑢, 𝑣}))) = ((𝑧 𝑧) ∪ 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦}))))
46 id 22 . . . . . . . . . . . . 13 (𝑤 = (𝐹𝑚) → 𝑤 = (𝐹𝑚))
47 unieq 4816 . . . . . . . . . . . . 13 (𝑤 = (𝐹𝑚) → 𝑤 = (𝐹𝑚))
4846, 47uneq12d 4064 . . . . . . . . . . . 12 (𝑤 = (𝐹𝑚) → (𝑤 𝑤) = ((𝐹𝑚) ∪ (𝐹𝑚)))
49 mpteq1 5128 . . . . . . . . . . . . . . 15 (𝑤 = (𝐹𝑚) → (𝑣𝑤 ↦ {𝑢, 𝑣}) = (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣}))
5049rneqd 5792 . . . . . . . . . . . . . 14 (𝑤 = (𝐹𝑚) → ran (𝑣𝑤 ↦ {𝑢, 𝑣}) = ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣}))
5150uneq2d 4063 . . . . . . . . . . . . 13 (𝑤 = (𝐹𝑚) → ({𝒫 𝑢, 𝑢} ∪ ran (𝑣𝑤 ↦ {𝑢, 𝑣})) = ({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣})))
5246, 51iuneq12d 4918 . . . . . . . . . . . 12 (𝑤 = (𝐹𝑚) → 𝑢𝑤 ({𝒫 𝑢, 𝑢} ∪ ran (𝑣𝑤 ↦ {𝑢, 𝑣})) = 𝑢 ∈ (𝐹𝑚)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣})))
5348, 52uneq12d 4064 . . . . . . . . . . 11 (𝑤 = (𝐹𝑚) → ((𝑤 𝑤) ∪ 𝑢𝑤 ({𝒫 𝑢, 𝑢} ∪ ran (𝑣𝑤 ↦ {𝑢, 𝑣}))) = (((𝐹𝑚) ∪ (𝐹𝑚)) ∪ 𝑢 ∈ (𝐹𝑚)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣}))))
544, 45, 53frsucmpt2w 8153 . . . . . . . . . 10 ((𝑚 ∈ ω ∧ (((𝐹𝑚) ∪ (𝐹𝑚)) ∪ 𝑢 ∈ (𝐹𝑚)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣}))) ∈ V) → (𝐹‘suc 𝑚) = (((𝐹𝑚) ∪ (𝐹𝑚)) ∪ 𝑢 ∈ (𝐹𝑚)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣}))))
5516, 25, 54sylancl 589 . . . . . . . . 9 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) → (𝐹‘suc 𝑚) = (((𝐹𝑚) ∪ (𝐹𝑚)) ∪ 𝑢 ∈ (𝐹𝑚)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣}))))
5615, 55sseqtrrd 3928 . . . . . . . 8 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) → 𝑎 ⊆ (𝐹‘suc 𝑚))
57 fvssunirn 6724 . . . . . . . . 9 (𝐹‘suc 𝑚) ⊆ ran 𝐹
5857, 1sseqtrri 3924 . . . . . . . 8 (𝐹‘suc 𝑚) ⊆ 𝑈
5956, 58sstrdi 3899 . . . . . . 7 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) → 𝑎𝑈)
6059rexlimdvaa 3194 . . . . . 6 (𝐴𝑉 → (∃𝑚 ∈ ω 𝑎 ∈ (𝐹𝑚) → 𝑎𝑈))
619, 60syl5bi 245 . . . . 5 (𝐴𝑉 → (𝑎𝑈𝑎𝑈))
6261ralrimiv 3094 . . . 4 (𝐴𝑉 → ∀𝑎𝑈 𝑎𝑈)
63 dftr3 5150 . . . 4 (Tr 𝑈 ↔ ∀𝑎𝑈 𝑎𝑈)
6462, 63sylibr 237 . . 3 (𝐴𝑉 → Tr 𝑈)
65 1on 8187 . . . . . . . 8 1o ∈ On
66 unexg 7512 . . . . . . . 8 ((𝐴𝑉 ∧ 1o ∈ On) → (𝐴 ∪ 1o) ∈ V)
6765, 66mpan2 691 . . . . . . 7 (𝐴𝑉 → (𝐴 ∪ 1o) ∈ V)
684fveq1i 6696 . . . . . . . 8 (𝐹‘∅) = ((rec((𝑧 ∈ V ↦ ((𝑧 𝑧) ∪ 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1o)) ↾ ω)‘∅)
69 fr0g 8149 . . . . . . . 8 ((𝐴 ∪ 1o) ∈ V → ((rec((𝑧 ∈ V ↦ ((𝑧 𝑧) ∪ 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1o)) ↾ ω)‘∅) = (𝐴 ∪ 1o))
7068, 69syl5eq 2783 . . . . . . 7 ((𝐴 ∪ 1o) ∈ V → (𝐹‘∅) = (𝐴 ∪ 1o))
7167, 70syl 17 . . . . . 6 (𝐴𝑉 → (𝐹‘∅) = (𝐴 ∪ 1o))
72 fvssunirn 6724 . . . . . . 7 (𝐹‘∅) ⊆ ran 𝐹
7372, 1sseqtrri 3924 . . . . . 6 (𝐹‘∅) ⊆ 𝑈
7471, 73eqsstrrdi 3942 . . . . 5 (𝐴𝑉 → (𝐴 ∪ 1o) ⊆ 𝑈)
7574unssbd 4088 . . . 4 (𝐴𝑉 → 1o𝑈)
76 1n0 8199 . . . 4 1o ≠ ∅
77 ssn0 4301 . . . 4 ((1o𝑈 ∧ 1o ≠ ∅) → 𝑈 ≠ ∅)
7875, 76, 77sylancl 589 . . 3 (𝐴𝑉𝑈 ≠ ∅)
79 pweq 4515 . . . . . . . . . . . . . . 15 (𝑢 = 𝑎 → 𝒫 𝑢 = 𝒫 𝑎)
80 unieq 4816 . . . . . . . . . . . . . . 15 (𝑢 = 𝑎 𝑢 = 𝑎)
8179, 80preq12d 4643 . . . . . . . . . . . . . 14 (𝑢 = 𝑎 → {𝒫 𝑢, 𝑢} = {𝒫 𝑎, 𝑎})
82 preq1 4635 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑎 → {𝑢, 𝑣} = {𝑎, 𝑣})
8382mpteq2dv 5136 . . . . . . . . . . . . . . 15 (𝑢 = 𝑎 → (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣}) = (𝑣 ∈ (𝐹𝑚) ↦ {𝑎, 𝑣}))
8483rneqd 5792 . . . . . . . . . . . . . 14 (𝑢 = 𝑎 → ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣}) = ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑎, 𝑣}))
8581, 84uneq12d 4064 . . . . . . . . . . . . 13 (𝑢 = 𝑎 → ({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣})) = ({𝒫 𝑎, 𝑎} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑎, 𝑣})))
8685ssiun2s 4943 . . . . . . . . . . . 12 (𝑎 ∈ (𝐹𝑚) → ({𝒫 𝑎, 𝑎} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑎, 𝑣})) ⊆ 𝑢 ∈ (𝐹𝑚)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣})))
8786ad2antll 729 . . . . . . . . . . 11 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) → ({𝒫 𝑎, 𝑎} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑎, 𝑣})) ⊆ 𝑢 ∈ (𝐹𝑚)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣})))
88 ssun2 4073 . . . . . . . . . . . . 13 𝑢 ∈ (𝐹𝑚)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣})) ⊆ (((𝐹𝑚) ∪ (𝐹𝑚)) ∪ 𝑢 ∈ (𝐹𝑚)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣})))
8988, 55sseqtrrid 3940 . . . . . . . . . . . 12 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) → 𝑢 ∈ (𝐹𝑚)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣})) ⊆ (𝐹‘suc 𝑚))
9089, 58sstrdi 3899 . . . . . . . . . . 11 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) → 𝑢 ∈ (𝐹𝑚)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣})) ⊆ 𝑈)
9187, 90sstrd 3897 . . . . . . . . . 10 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) → ({𝒫 𝑎, 𝑎} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑎, 𝑣})) ⊆ 𝑈)
9291unssad 4087 . . . . . . . . 9 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) → {𝒫 𝑎, 𝑎} ⊆ 𝑈)
93 vpwex 5255 . . . . . . . . . 10 𝒫 𝑎 ∈ V
94 vuniex 7505 . . . . . . . . . 10 𝑎 ∈ V
9593, 94prss 4719 . . . . . . . . 9 ((𝒫 𝑎𝑈 𝑎𝑈) ↔ {𝒫 𝑎, 𝑎} ⊆ 𝑈)
9692, 95sylibr 237 . . . . . . . 8 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) → (𝒫 𝑎𝑈 𝑎𝑈))
9796simprd 499 . . . . . . 7 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) → 𝑎𝑈)
9896simpld 498 . . . . . . 7 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) → 𝒫 𝑎𝑈)
991eleq2i 2822 . . . . . . . . . 10 (𝑏𝑈𝑏 ran 𝐹)
100 fnunirn 7044 . . . . . . . . . . 11 (𝐹 Fn ω → (𝑏 ran 𝐹 ↔ ∃𝑛 ∈ ω 𝑏 ∈ (𝐹𝑛)))
1016, 100ax-mp 5 . . . . . . . . . 10 (𝑏 ran 𝐹 ↔ ∃𝑛 ∈ ω 𝑏 ∈ (𝐹𝑛))
10299, 101bitri 278 . . . . . . . . 9 (𝑏𝑈 ↔ ∃𝑛 ∈ ω 𝑏 ∈ (𝐹𝑛))
103 ordom 7632 . . . . . . . . . . . . . . . . 17 Ord ω
104 simplrl 777 . . . . . . . . . . . . . . . . 17 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹𝑛))) → 𝑚 ∈ ω)
105 simprl 771 . . . . . . . . . . . . . . . . 17 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹𝑛))) → 𝑛 ∈ ω)
106 ordunel 7584 . . . . . . . . . . . . . . . . 17 ((Ord ω ∧ 𝑚 ∈ ω ∧ 𝑛 ∈ ω) → (𝑚𝑛) ∈ ω)
107103, 104, 105, 106mp3an2i 1468 . . . . . . . . . . . . . . . 16 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹𝑛))) → (𝑚𝑛) ∈ ω)
108 ssun1 4072 . . . . . . . . . . . . . . . . 17 𝑚 ⊆ (𝑚𝑛)
109 fveq2 6695 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑚 → (𝐹𝑘) = (𝐹𝑚))
110109sseq2d 3919 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑚 → ((𝐹𝑚) ⊆ (𝐹𝑘) ↔ (𝐹𝑚) ⊆ (𝐹𝑚)))
111 fveq2 6695 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑖 → (𝐹𝑘) = (𝐹𝑖))
112111sseq2d 3919 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑖 → ((𝐹𝑚) ⊆ (𝐹𝑘) ↔ (𝐹𝑚) ⊆ (𝐹𝑖)))
113 fveq2 6695 . . . . . . . . . . . . . . . . . . 19 (𝑘 = suc 𝑖 → (𝐹𝑘) = (𝐹‘suc 𝑖))
114113sseq2d 3919 . . . . . . . . . . . . . . . . . 18 (𝑘 = suc 𝑖 → ((𝐹𝑚) ⊆ (𝐹𝑘) ↔ (𝐹𝑚) ⊆ (𝐹‘suc 𝑖)))
115 fveq2 6695 . . . . . . . . . . . . . . . . . . 19 (𝑘 = (𝑚𝑛) → (𝐹𝑘) = (𝐹‘(𝑚𝑛)))
116115sseq2d 3919 . . . . . . . . . . . . . . . . . 18 (𝑘 = (𝑚𝑛) → ((𝐹𝑚) ⊆ (𝐹𝑘) ↔ (𝐹𝑚) ⊆ (𝐹‘(𝑚𝑛))))
117 ssidd 3910 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ω → (𝐹𝑚) ⊆ (𝐹𝑚))
118 fveq2 6695 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = 𝑖 → (𝐹𝑚) = (𝐹𝑖))
119 suceq 6256 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 = 𝑖 → suc 𝑚 = suc 𝑖)
120119fveq2d 6699 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = 𝑖 → (𝐹‘suc 𝑚) = (𝐹‘suc 𝑖))
121118, 120sseq12d 3920 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = 𝑖 → ((𝐹𝑚) ⊆ (𝐹‘suc 𝑚) ↔ (𝐹𝑖) ⊆ (𝐹‘suc 𝑖)))
122 ssun1 4072 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹𝑚) ⊆ ((𝐹𝑚) ∪ (𝐹𝑚))
123122, 13sstri 3896 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹𝑚) ⊆ (((𝐹𝑚) ∪ (𝐹𝑚)) ∪ 𝑢 ∈ (𝐹𝑚)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣})))
12425, 54mpan2 691 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 ∈ ω → (𝐹‘suc 𝑚) = (((𝐹𝑚) ∪ (𝐹𝑚)) ∪ 𝑢 ∈ (𝐹𝑚)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣}))))
125123, 124sseqtrrid 3940 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ ω → (𝐹𝑚) ⊆ (𝐹‘suc 𝑚))
126121, 125vtoclga 3479 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ ω → (𝐹𝑖) ⊆ (𝐹‘suc 𝑖))
127126ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝑖 ∈ ω ∧ 𝑚 ∈ ω) ∧ 𝑚𝑖) → (𝐹𝑖) ⊆ (𝐹‘suc 𝑖))
128 sstr2 3894 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑚) ⊆ (𝐹𝑖) → ((𝐹𝑖) ⊆ (𝐹‘suc 𝑖) → (𝐹𝑚) ⊆ (𝐹‘suc 𝑖)))
129127, 128syl5com 31 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ω ∧ 𝑚 ∈ ω) ∧ 𝑚𝑖) → ((𝐹𝑚) ⊆ (𝐹𝑖) → (𝐹𝑚) ⊆ (𝐹‘suc 𝑖)))
130110, 112, 114, 116, 117, 129findsg 7655 . . . . . . . . . . . . . . . . 17 ((((𝑚𝑛) ∈ ω ∧ 𝑚 ∈ ω) ∧ 𝑚 ⊆ (𝑚𝑛)) → (𝐹𝑚) ⊆ (𝐹‘(𝑚𝑛)))
131108, 130mpan2 691 . . . . . . . . . . . . . . . 16 (((𝑚𝑛) ∈ ω ∧ 𝑚 ∈ ω) → (𝐹𝑚) ⊆ (𝐹‘(𝑚𝑛)))
132107, 104, 131syl2anc 587 . . . . . . . . . . . . . . 15 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹𝑛))) → (𝐹𝑚) ⊆ (𝐹‘(𝑚𝑛)))
133 simplrr 778 . . . . . . . . . . . . . . 15 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹𝑛))) → 𝑎 ∈ (𝐹𝑚))
134132, 133sseldd 3888 . . . . . . . . . . . . . 14 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹𝑛))) → 𝑎 ∈ (𝐹‘(𝑚𝑛)))
13582mpteq2dv 5136 . . . . . . . . . . . . . . . . 17 (𝑢 = 𝑎 → (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣}) = (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑎, 𝑣}))
136135rneqd 5792 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑎 → ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣}) = ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑎, 𝑣}))
13781, 136uneq12d 4064 . . . . . . . . . . . . . . 15 (𝑢 = 𝑎 → ({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣})) = ({𝒫 𝑎, 𝑎} ∪ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑎, 𝑣})))
138137ssiun2s 4943 . . . . . . . . . . . . . 14 (𝑎 ∈ (𝐹‘(𝑚𝑛)) → ({𝒫 𝑎, 𝑎} ∪ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑎, 𝑣})) ⊆ 𝑢 ∈ (𝐹‘(𝑚𝑛))({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣})))
139134, 138syl 17 . . . . . . . . . . . . 13 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹𝑛))) → ({𝒫 𝑎, 𝑎} ∪ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑎, 𝑣})) ⊆ 𝑢 ∈ (𝐹‘(𝑚𝑛))({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣})))
140 ssun2 4073 . . . . . . . . . . . . . . 15 𝑢 ∈ (𝐹‘(𝑚𝑛))({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣})) ⊆ (((𝐹‘(𝑚𝑛)) ∪ (𝐹‘(𝑚𝑛))) ∪ 𝑢 ∈ (𝐹‘(𝑚𝑛))({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣})))
141 fvex 6708 . . . . . . . . . . . . . . . . . 18 (𝐹‘(𝑚𝑛)) ∈ V
142141uniex 7507 . . . . . . . . . . . . . . . . . 18 (𝐹‘(𝑚𝑛)) ∈ V
143141, 142unex 7509 . . . . . . . . . . . . . . . . 17 ((𝐹‘(𝑚𝑛)) ∪ (𝐹‘(𝑚𝑛))) ∈ V
144141mptex 7017 . . . . . . . . . . . . . . . . . . . 20 (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣}) ∈ V
145144rnex 7668 . . . . . . . . . . . . . . . . . . 19 ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣}) ∈ V
14620, 145unex 7509 . . . . . . . . . . . . . . . . . 18 ({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣})) ∈ V
147141, 146iunex 7719 . . . . . . . . . . . . . . . . 17 𝑢 ∈ (𝐹‘(𝑚𝑛))({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣})) ∈ V
148143, 147unex 7509 . . . . . . . . . . . . . . . 16 (((𝐹‘(𝑚𝑛)) ∪ (𝐹‘(𝑚𝑛))) ∪ 𝑢 ∈ (𝐹‘(𝑚𝑛))({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣}))) ∈ V
149 id 22 . . . . . . . . . . . . . . . . . . 19 (𝑤 = (𝐹‘(𝑚𝑛)) → 𝑤 = (𝐹‘(𝑚𝑛)))
150 unieq 4816 . . . . . . . . . . . . . . . . . . 19 (𝑤 = (𝐹‘(𝑚𝑛)) → 𝑤 = (𝐹‘(𝑚𝑛)))
151149, 150uneq12d 4064 . . . . . . . . . . . . . . . . . 18 (𝑤 = (𝐹‘(𝑚𝑛)) → (𝑤 𝑤) = ((𝐹‘(𝑚𝑛)) ∪ (𝐹‘(𝑚𝑛))))
152 mpteq1 5128 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 = (𝐹‘(𝑚𝑛)) → (𝑣𝑤 ↦ {𝑢, 𝑣}) = (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣}))
153152rneqd 5792 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = (𝐹‘(𝑚𝑛)) → ran (𝑣𝑤 ↦ {𝑢, 𝑣}) = ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣}))
154153uneq2d 4063 . . . . . . . . . . . . . . . . . . 19 (𝑤 = (𝐹‘(𝑚𝑛)) → ({𝒫 𝑢, 𝑢} ∪ ran (𝑣𝑤 ↦ {𝑢, 𝑣})) = ({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣})))
155149, 154iuneq12d 4918 . . . . . . . . . . . . . . . . . 18 (𝑤 = (𝐹‘(𝑚𝑛)) → 𝑢𝑤 ({𝒫 𝑢, 𝑢} ∪ ran (𝑣𝑤 ↦ {𝑢, 𝑣})) = 𝑢 ∈ (𝐹‘(𝑚𝑛))({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣})))
156151, 155uneq12d 4064 . . . . . . . . . . . . . . . . 17 (𝑤 = (𝐹‘(𝑚𝑛)) → ((𝑤 𝑤) ∪ 𝑢𝑤 ({𝒫 𝑢, 𝑢} ∪ ran (𝑣𝑤 ↦ {𝑢, 𝑣}))) = (((𝐹‘(𝑚𝑛)) ∪ (𝐹‘(𝑚𝑛))) ∪ 𝑢 ∈ (𝐹‘(𝑚𝑛))({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣}))))
1574, 45, 156frsucmpt2w 8153 . . . . . . . . . . . . . . . 16 (((𝑚𝑛) ∈ ω ∧ (((𝐹‘(𝑚𝑛)) ∪ (𝐹‘(𝑚𝑛))) ∪ 𝑢 ∈ (𝐹‘(𝑚𝑛))({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣}))) ∈ V) → (𝐹‘suc (𝑚𝑛)) = (((𝐹‘(𝑚𝑛)) ∪ (𝐹‘(𝑚𝑛))) ∪ 𝑢 ∈ (𝐹‘(𝑚𝑛))({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣}))))
158107, 148, 157sylancl 589 . . . . . . . . . . . . . . 15 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹𝑛))) → (𝐹‘suc (𝑚𝑛)) = (((𝐹‘(𝑚𝑛)) ∪ (𝐹‘(𝑚𝑛))) ∪ 𝑢 ∈ (𝐹‘(𝑚𝑛))({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣}))))
159140, 158sseqtrrid 3940 . . . . . . . . . . . . . 14 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹𝑛))) → 𝑢 ∈ (𝐹‘(𝑚𝑛))({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣})) ⊆ (𝐹‘suc (𝑚𝑛)))
160 fvssunirn 6724 . . . . . . . . . . . . . . 15 (𝐹‘suc (𝑚𝑛)) ⊆ ran 𝐹
161160, 1sseqtrri 3924 . . . . . . . . . . . . . 14 (𝐹‘suc (𝑚𝑛)) ⊆ 𝑈
162159, 161sstrdi 3899 . . . . . . . . . . . . 13 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹𝑛))) → 𝑢 ∈ (𝐹‘(𝑚𝑛))({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣})) ⊆ 𝑈)
163139, 162sstrd 3897 . . . . . . . . . . . 12 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹𝑛))) → ({𝒫 𝑎, 𝑎} ∪ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑎, 𝑣})) ⊆ 𝑈)
164163unssbd 4088 . . . . . . . . . . 11 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹𝑛))) → ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑎, 𝑣}) ⊆ 𝑈)
165 ssun2 4073 . . . . . . . . . . . . . . . . . . 19 𝑛 ⊆ (𝑚𝑛)
166 id 22 . . . . . . . . . . . . . . . . . . 19 (𝑖 = (𝑚𝑛) → 𝑖 = (𝑚𝑛))
167165, 166sseqtrrid 3940 . . . . . . . . . . . . . . . . . 18 (𝑖 = (𝑚𝑛) → 𝑛𝑖)
168167biantrud 535 . . . . . . . . . . . . . . . . 17 (𝑖 = (𝑚𝑛) → (𝑛 ∈ ω ↔ (𝑛 ∈ ω ∧ 𝑛𝑖)))
169168bicomd 226 . . . . . . . . . . . . . . . 16 (𝑖 = (𝑚𝑛) → ((𝑛 ∈ ω ∧ 𝑛𝑖) ↔ 𝑛 ∈ ω))
170 fveq2 6695 . . . . . . . . . . . . . . . . 17 (𝑖 = (𝑚𝑛) → (𝐹𝑖) = (𝐹‘(𝑚𝑛)))
171170sseq2d 3919 . . . . . . . . . . . . . . . 16 (𝑖 = (𝑚𝑛) → ((𝐹𝑛) ⊆ (𝐹𝑖) ↔ (𝐹𝑛) ⊆ (𝐹‘(𝑚𝑛))))
172169, 171imbi12d 348 . . . . . . . . . . . . . . 15 (𝑖 = (𝑚𝑛) → (((𝑛 ∈ ω ∧ 𝑛𝑖) → (𝐹𝑛) ⊆ (𝐹𝑖)) ↔ (𝑛 ∈ ω → (𝐹𝑛) ⊆ (𝐹‘(𝑚𝑛)))))
173 eleq1w 2813 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = 𝑛 → (𝑚 ∈ ω ↔ 𝑛 ∈ ω))
174173anbi2d 632 . . . . . . . . . . . . . . . . . . 19 (𝑚 = 𝑛 → ((𝑖 ∈ ω ∧ 𝑚 ∈ ω) ↔ (𝑖 ∈ ω ∧ 𝑛 ∈ ω)))
175 sseq1 3912 . . . . . . . . . . . . . . . . . . 19 (𝑚 = 𝑛 → (𝑚𝑖𝑛𝑖))
176174, 175anbi12d 634 . . . . . . . . . . . . . . . . . 18 (𝑚 = 𝑛 → (((𝑖 ∈ ω ∧ 𝑚 ∈ ω) ∧ 𝑚𝑖) ↔ ((𝑖 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑛𝑖)))
177 fveq2 6695 . . . . . . . . . . . . . . . . . . 19 (𝑚 = 𝑛 → (𝐹𝑚) = (𝐹𝑛))
178177sseq1d 3918 . . . . . . . . . . . . . . . . . 18 (𝑚 = 𝑛 → ((𝐹𝑚) ⊆ (𝐹𝑖) ↔ (𝐹𝑛) ⊆ (𝐹𝑖)))
179176, 178imbi12d 348 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑛 → ((((𝑖 ∈ ω ∧ 𝑚 ∈ ω) ∧ 𝑚𝑖) → (𝐹𝑚) ⊆ (𝐹𝑖)) ↔ (((𝑖 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑛𝑖) → (𝐹𝑛) ⊆ (𝐹𝑖))))
180110, 112, 114, 112, 117, 129findsg 7655 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ ω ∧ 𝑚 ∈ ω) ∧ 𝑚𝑖) → (𝐹𝑚) ⊆ (𝐹𝑖))
181179, 180chvarvv 2008 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑛𝑖) → (𝐹𝑛) ⊆ (𝐹𝑖))
182181expl 461 . . . . . . . . . . . . . . 15 (𝑖 ∈ ω → ((𝑛 ∈ ω ∧ 𝑛𝑖) → (𝐹𝑛) ⊆ (𝐹𝑖)))
183172, 182vtoclga 3479 . . . . . . . . . . . . . 14 ((𝑚𝑛) ∈ ω → (𝑛 ∈ ω → (𝐹𝑛) ⊆ (𝐹‘(𝑚𝑛))))
184107, 105, 183sylc 65 . . . . . . . . . . . . 13 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹𝑛))) → (𝐹𝑛) ⊆ (𝐹‘(𝑚𝑛)))
185 simprr 773 . . . . . . . . . . . . 13 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹𝑛))) → 𝑏 ∈ (𝐹𝑛))
186184, 185sseldd 3888 . . . . . . . . . . . 12 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹𝑛))) → 𝑏 ∈ (𝐹‘(𝑚𝑛)))
187 prex 5310 . . . . . . . . . . . 12 {𝑎, 𝑏} ∈ V
188 eqid 2736 . . . . . . . . . . . . 13 (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑎, 𝑣}) = (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑎, 𝑣})
189 preq2 4636 . . . . . . . . . . . . 13 (𝑣 = 𝑏 → {𝑎, 𝑣} = {𝑎, 𝑏})
190188, 189elrnmpt1s 5811 . . . . . . . . . . . 12 ((𝑏 ∈ (𝐹‘(𝑚𝑛)) ∧ {𝑎, 𝑏} ∈ V) → {𝑎, 𝑏} ∈ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑎, 𝑣}))
191186, 187, 190sylancl 589 . . . . . . . . . . 11 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹𝑛))) → {𝑎, 𝑏} ∈ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑎, 𝑣}))
192164, 191sseldd 3888 . . . . . . . . . 10 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹𝑛))) → {𝑎, 𝑏} ∈ 𝑈)
193192rexlimdvaa 3194 . . . . . . . . 9 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) → (∃𝑛 ∈ ω 𝑏 ∈ (𝐹𝑛) → {𝑎, 𝑏} ∈ 𝑈))
194102, 193syl5bi 245 . . . . . . . 8 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) → (𝑏𝑈 → {𝑎, 𝑏} ∈ 𝑈))
195194ralrimiv 3094 . . . . . . 7 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) → ∀𝑏𝑈 {𝑎, 𝑏} ∈ 𝑈)
19697, 98, 1953jca 1130 . . . . . 6 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) → ( 𝑎𝑈 ∧ 𝒫 𝑎𝑈 ∧ ∀𝑏𝑈 {𝑎, 𝑏} ∈ 𝑈))
197196rexlimdvaa 3194 . . . . 5 (𝐴𝑉 → (∃𝑚 ∈ ω 𝑎 ∈ (𝐹𝑚) → ( 𝑎𝑈 ∧ 𝒫 𝑎𝑈 ∧ ∀𝑏𝑈 {𝑎, 𝑏} ∈ 𝑈)))
1989, 197syl5bi 245 . . . 4 (𝐴𝑉 → (𝑎𝑈 → ( 𝑎𝑈 ∧ 𝒫 𝑎𝑈 ∧ ∀𝑏𝑈 {𝑎, 𝑏} ∈ 𝑈)))
199198ralrimiv 3094 . . 3 (𝐴𝑉 → ∀𝑎𝑈 ( 𝑎𝑈 ∧ 𝒫 𝑎𝑈 ∧ ∀𝑏𝑈 {𝑎, 𝑏} ∈ 𝑈))
200 rdgfun 8130 . . . . . . . . 9 Fun rec((𝑧 ∈ V ↦ ((𝑧 𝑧) ∪ 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1o))
201 omex 9236 . . . . . . . . 9 ω ∈ V
202 resfunexg 7009 . . . . . . . . 9 ((Fun rec((𝑧 ∈ V ↦ ((𝑧 𝑧) ∪ 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1o)) ∧ ω ∈ V) → (rec((𝑧 ∈ V ↦ ((𝑧 𝑧) ∪ 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1o)) ↾ ω) ∈ V)
203200, 201, 202mp2an 692 . . . . . . . 8 (rec((𝑧 ∈ V ↦ ((𝑧 𝑧) ∪ 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1o)) ↾ ω) ∈ V
2044, 203eqeltri 2827 . . . . . . 7 𝐹 ∈ V
205204rnex 7668 . . . . . 6 ran 𝐹 ∈ V
206205uniex 7507 . . . . 5 ran 𝐹 ∈ V
2071, 206eqeltri 2827 . . . 4 𝑈 ∈ V
208 iswun 10283 . . . 4 (𝑈 ∈ V → (𝑈 ∈ WUni ↔ (Tr 𝑈𝑈 ≠ ∅ ∧ ∀𝑎𝑈 ( 𝑎𝑈 ∧ 𝒫 𝑎𝑈 ∧ ∀𝑏𝑈 {𝑎, 𝑏} ∈ 𝑈))))
209207, 208ax-mp 5 . . 3 (𝑈 ∈ WUni ↔ (Tr 𝑈𝑈 ≠ ∅ ∧ ∀𝑎𝑈 ( 𝑎𝑈 ∧ 𝒫 𝑎𝑈 ∧ ∀𝑏𝑈 {𝑎, 𝑏} ∈ 𝑈)))
21064, 78, 199, 209syl3anbrc 1345 . 2 (𝐴𝑉𝑈 ∈ WUni)
21174unssad 4087 . 2 (𝐴𝑉𝐴𝑈)
212210, 211jca 515 1 (𝐴𝑉 → (𝑈 ∈ WUni ∧ 𝐴𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2112  wne 2932  wral 3051  wrex 3052  Vcvv 3398  cun 3851  wss 3853  c0 4223  𝒫 cpw 4499  {cpr 4529   cuni 4805   ciun 4890  cmpt 5120  Tr wtr 5146  ran crn 5537  cres 5538  Ord word 6190  Oncon0 6191  suc csuc 6193  Fun wfun 6352   Fn wfn 6353  cfv 6358  ωcom 7622  reccrdg 8123  1oc1o 8173  WUnicwun 10279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-inf2 9234
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-om 7623  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-wun 10281
This theorem is referenced by:  wunex  10318  wuncval2  10326
  Copyright terms: Public domain W3C validator