MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunex2 Structured version   Visualization version   GIF version

Theorem wunex2 9855
Description: Construct a weak universe from a given set. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wunex2.f 𝐹 = (rec((𝑧 ∈ V ↦ ((𝑧 𝑧) ∪ 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1𝑜)) ↾ ω)
wunex2.u 𝑈 = ran 𝐹
Assertion
Ref Expression
wunex2 (𝐴𝑉 → (𝑈 ∈ WUni ∧ 𝐴𝑈))
Distinct variable group:   𝑥,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)   𝑈(𝑥,𝑦,𝑧)   𝐹(𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem wunex2
Dummy variables 𝑢 𝑎 𝑣 𝑤 𝑏 𝑚 𝑛 𝑖 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wunex2.u . . . . . . . 8 𝑈 = ran 𝐹
21eleq2i 2888 . . . . . . 7 (𝑎𝑈𝑎 ran 𝐹)
3 frfnom 7776 . . . . . . . . 9 (rec((𝑧 ∈ V ↦ ((𝑧 𝑧) ∪ 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1𝑜)) ↾ ω) Fn ω
4 wunex2.f . . . . . . . . . 10 𝐹 = (rec((𝑧 ∈ V ↦ ((𝑧 𝑧) ∪ 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1𝑜)) ↾ ω)
54fneq1i 6206 . . . . . . . . 9 (𝐹 Fn ω ↔ (rec((𝑧 ∈ V ↦ ((𝑧 𝑧) ∪ 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1𝑜)) ↾ ω) Fn ω)
63, 5mpbir 222 . . . . . . . 8 𝐹 Fn ω
7 fnunirn 6745 . . . . . . . 8 (𝐹 Fn ω → (𝑎 ran 𝐹 ↔ ∃𝑚 ∈ ω 𝑎 ∈ (𝐹𝑚)))
86, 7ax-mp 5 . . . . . . 7 (𝑎 ran 𝐹 ↔ ∃𝑚 ∈ ω 𝑎 ∈ (𝐹𝑚))
92, 8bitri 266 . . . . . 6 (𝑎𝑈 ↔ ∃𝑚 ∈ ω 𝑎 ∈ (𝐹𝑚))
10 elssuni 4672 . . . . . . . . . . 11 (𝑎 ∈ (𝐹𝑚) → 𝑎 (𝐹𝑚))
1110ad2antll 711 . . . . . . . . . 10 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) → 𝑎 (𝐹𝑚))
12 ssun2 3987 . . . . . . . . . . 11 (𝐹𝑚) ⊆ ((𝐹𝑚) ∪ (𝐹𝑚))
13 ssun1 3986 . . . . . . . . . . 11 ((𝐹𝑚) ∪ (𝐹𝑚)) ⊆ (((𝐹𝑚) ∪ (𝐹𝑚)) ∪ 𝑢 ∈ (𝐹𝑚)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣})))
1412, 13sstri 3818 . . . . . . . . . 10 (𝐹𝑚) ⊆ (((𝐹𝑚) ∪ (𝐹𝑚)) ∪ 𝑢 ∈ (𝐹𝑚)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣})))
1511, 14syl6ss 3821 . . . . . . . . 9 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) → 𝑎 ⊆ (((𝐹𝑚) ∪ (𝐹𝑚)) ∪ 𝑢 ∈ (𝐹𝑚)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣}))))
16 simprl 778 . . . . . . . . . 10 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) → 𝑚 ∈ ω)
17 fvex 6431 . . . . . . . . . . . 12 (𝐹𝑚) ∈ V
1817uniex 7193 . . . . . . . . . . . 12 (𝐹𝑚) ∈ V
1917, 18unex 7196 . . . . . . . . . . 11 ((𝐹𝑚) ∪ (𝐹𝑚)) ∈ V
20 prex 5112 . . . . . . . . . . . . 13 {𝒫 𝑢, 𝑢} ∈ V
2117mptex 6721 . . . . . . . . . . . . . 14 (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣}) ∈ V
2221rnex 7340 . . . . . . . . . . . . 13 ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣}) ∈ V
2320, 22unex 7196 . . . . . . . . . . . 12 ({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣})) ∈ V
2417, 23iunex 7387 . . . . . . . . . . 11 𝑢 ∈ (𝐹𝑚)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣})) ∈ V
2519, 24unex 7196 . . . . . . . . . 10 (((𝐹𝑚) ∪ (𝐹𝑚)) ∪ 𝑢 ∈ (𝐹𝑚)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣}))) ∈ V
26 id 22 . . . . . . . . . . . . 13 (𝑤 = 𝑧𝑤 = 𝑧)
27 unieq 4649 . . . . . . . . . . . . 13 (𝑤 = 𝑧 𝑤 = 𝑧)
2826, 27uneq12d 3978 . . . . . . . . . . . 12 (𝑤 = 𝑧 → (𝑤 𝑤) = (𝑧 𝑧))
29 pweq 4365 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑥 → 𝒫 𝑢 = 𝒫 𝑥)
30 unieq 4649 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑥 𝑢 = 𝑥)
3129, 30preq12d 4478 . . . . . . . . . . . . . . 15 (𝑢 = 𝑥 → {𝒫 𝑢, 𝑢} = {𝒫 𝑥, 𝑥})
32 preq2 4471 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝑦 → {𝑢, 𝑣} = {𝑢, 𝑦})
3332cbvmptv 4955 . . . . . . . . . . . . . . . . 17 (𝑣𝑤 ↦ {𝑢, 𝑣}) = (𝑦𝑤 ↦ {𝑢, 𝑦})
34 preq1 4470 . . . . . . . . . . . . . . . . . 18 (𝑢 = 𝑥 → {𝑢, 𝑦} = {𝑥, 𝑦})
3534mpteq2dv 4950 . . . . . . . . . . . . . . . . 17 (𝑢 = 𝑥 → (𝑦𝑤 ↦ {𝑢, 𝑦}) = (𝑦𝑤 ↦ {𝑥, 𝑦}))
3633, 35syl5eq 2863 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑥 → (𝑣𝑤 ↦ {𝑢, 𝑣}) = (𝑦𝑤 ↦ {𝑥, 𝑦}))
3736rneqd 5568 . . . . . . . . . . . . . . 15 (𝑢 = 𝑥 → ran (𝑣𝑤 ↦ {𝑢, 𝑣}) = ran (𝑦𝑤 ↦ {𝑥, 𝑦}))
3831, 37uneq12d 3978 . . . . . . . . . . . . . 14 (𝑢 = 𝑥 → ({𝒫 𝑢, 𝑢} ∪ ran (𝑣𝑤 ↦ {𝑢, 𝑣})) = ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑤 ↦ {𝑥, 𝑦})))
3938cbviunv 4762 . . . . . . . . . . . . 13 𝑢𝑤 ({𝒫 𝑢, 𝑢} ∪ ran (𝑣𝑤 ↦ {𝑢, 𝑣})) = 𝑥𝑤 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑤 ↦ {𝑥, 𝑦}))
40 mpteq1 4942 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑧 → (𝑦𝑤 ↦ {𝑥, 𝑦}) = (𝑦𝑧 ↦ {𝑥, 𝑦}))
4140rneqd 5568 . . . . . . . . . . . . . . 15 (𝑤 = 𝑧 → ran (𝑦𝑤 ↦ {𝑥, 𝑦}) = ran (𝑦𝑧 ↦ {𝑥, 𝑦}))
4241uneq2d 3977 . . . . . . . . . . . . . 14 (𝑤 = 𝑧 → ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑤 ↦ {𝑥, 𝑦})) = ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))
4326, 42iuneq12d 4749 . . . . . . . . . . . . 13 (𝑤 = 𝑧 𝑥𝑤 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑤 ↦ {𝑥, 𝑦})) = 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))
4439, 43syl5eq 2863 . . . . . . . . . . . 12 (𝑤 = 𝑧 𝑢𝑤 ({𝒫 𝑢, 𝑢} ∪ ran (𝑣𝑤 ↦ {𝑢, 𝑣})) = 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))
4528, 44uneq12d 3978 . . . . . . . . . . 11 (𝑤 = 𝑧 → ((𝑤 𝑤) ∪ 𝑢𝑤 ({𝒫 𝑢, 𝑢} ∪ ran (𝑣𝑤 ↦ {𝑢, 𝑣}))) = ((𝑧 𝑧) ∪ 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦}))))
46 id 22 . . . . . . . . . . . . 13 (𝑤 = (𝐹𝑚) → 𝑤 = (𝐹𝑚))
47 unieq 4649 . . . . . . . . . . . . 13 (𝑤 = (𝐹𝑚) → 𝑤 = (𝐹𝑚))
4846, 47uneq12d 3978 . . . . . . . . . . . 12 (𝑤 = (𝐹𝑚) → (𝑤 𝑤) = ((𝐹𝑚) ∪ (𝐹𝑚)))
49 mpteq1 4942 . . . . . . . . . . . . . . 15 (𝑤 = (𝐹𝑚) → (𝑣𝑤 ↦ {𝑢, 𝑣}) = (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣}))
5049rneqd 5568 . . . . . . . . . . . . . 14 (𝑤 = (𝐹𝑚) → ran (𝑣𝑤 ↦ {𝑢, 𝑣}) = ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣}))
5150uneq2d 3977 . . . . . . . . . . . . 13 (𝑤 = (𝐹𝑚) → ({𝒫 𝑢, 𝑢} ∪ ran (𝑣𝑤 ↦ {𝑢, 𝑣})) = ({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣})))
5246, 51iuneq12d 4749 . . . . . . . . . . . 12 (𝑤 = (𝐹𝑚) → 𝑢𝑤 ({𝒫 𝑢, 𝑢} ∪ ran (𝑣𝑤 ↦ {𝑢, 𝑣})) = 𝑢 ∈ (𝐹𝑚)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣})))
5348, 52uneq12d 3978 . . . . . . . . . . 11 (𝑤 = (𝐹𝑚) → ((𝑤 𝑤) ∪ 𝑢𝑤 ({𝒫 𝑢, 𝑢} ∪ ran (𝑣𝑤 ↦ {𝑢, 𝑣}))) = (((𝐹𝑚) ∪ (𝐹𝑚)) ∪ 𝑢 ∈ (𝐹𝑚)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣}))))
544, 45, 53frsucmpt2 7781 . . . . . . . . . 10 ((𝑚 ∈ ω ∧ (((𝐹𝑚) ∪ (𝐹𝑚)) ∪ 𝑢 ∈ (𝐹𝑚)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣}))) ∈ V) → (𝐹‘suc 𝑚) = (((𝐹𝑚) ∪ (𝐹𝑚)) ∪ 𝑢 ∈ (𝐹𝑚)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣}))))
5516, 25, 54sylancl 576 . . . . . . . . 9 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) → (𝐹‘suc 𝑚) = (((𝐹𝑚) ∪ (𝐹𝑚)) ∪ 𝑢 ∈ (𝐹𝑚)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣}))))
5615, 55sseqtr4d 3850 . . . . . . . 8 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) → 𝑎 ⊆ (𝐹‘suc 𝑚))
57 fvssunirn 6447 . . . . . . . . 9 (𝐹‘suc 𝑚) ⊆ ran 𝐹
5857, 1sseqtr4i 3846 . . . . . . . 8 (𝐹‘suc 𝑚) ⊆ 𝑈
5956, 58syl6ss 3821 . . . . . . 7 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) → 𝑎𝑈)
6059rexlimdvaa 3231 . . . . . 6 (𝐴𝑉 → (∃𝑚 ∈ ω 𝑎 ∈ (𝐹𝑚) → 𝑎𝑈))
619, 60syl5bi 233 . . . . 5 (𝐴𝑉 → (𝑎𝑈𝑎𝑈))
6261ralrimiv 3164 . . . 4 (𝐴𝑉 → ∀𝑎𝑈 𝑎𝑈)
63 dftr3 4961 . . . 4 (Tr 𝑈 ↔ ∀𝑎𝑈 𝑎𝑈)
6462, 63sylibr 225 . . 3 (𝐴𝑉 → Tr 𝑈)
65 1on 7813 . . . . . . . 8 1𝑜 ∈ On
66 unexg 7199 . . . . . . . 8 ((𝐴𝑉 ∧ 1𝑜 ∈ On) → (𝐴 ∪ 1𝑜) ∈ V)
6765, 66mpan2 674 . . . . . . 7 (𝐴𝑉 → (𝐴 ∪ 1𝑜) ∈ V)
684fveq1i 6419 . . . . . . . 8 (𝐹‘∅) = ((rec((𝑧 ∈ V ↦ ((𝑧 𝑧) ∪ 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1𝑜)) ↾ ω)‘∅)
69 fr0g 7777 . . . . . . . 8 ((𝐴 ∪ 1𝑜) ∈ V → ((rec((𝑧 ∈ V ↦ ((𝑧 𝑧) ∪ 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1𝑜)) ↾ ω)‘∅) = (𝐴 ∪ 1𝑜))
7068, 69syl5eq 2863 . . . . . . 7 ((𝐴 ∪ 1𝑜) ∈ V → (𝐹‘∅) = (𝐴 ∪ 1𝑜))
7167, 70syl 17 . . . . . 6 (𝐴𝑉 → (𝐹‘∅) = (𝐴 ∪ 1𝑜))
72 fvssunirn 6447 . . . . . . 7 (𝐹‘∅) ⊆ ran 𝐹
7372, 1sseqtr4i 3846 . . . . . 6 (𝐹‘∅) ⊆ 𝑈
7471, 73syl6eqssr 3864 . . . . 5 (𝐴𝑉 → (𝐴 ∪ 1𝑜) ⊆ 𝑈)
7574unssbd 4001 . . . 4 (𝐴𝑉 → 1𝑜𝑈)
76 1n0 7822 . . . 4 1𝑜 ≠ ∅
77 ssn0 4185 . . . 4 ((1𝑜𝑈 ∧ 1𝑜 ≠ ∅) → 𝑈 ≠ ∅)
7875, 76, 77sylancl 576 . . 3 (𝐴𝑉𝑈 ≠ ∅)
79 pweq 4365 . . . . . . . . . . . . . . 15 (𝑢 = 𝑎 → 𝒫 𝑢 = 𝒫 𝑎)
80 unieq 4649 . . . . . . . . . . . . . . 15 (𝑢 = 𝑎 𝑢 = 𝑎)
8179, 80preq12d 4478 . . . . . . . . . . . . . 14 (𝑢 = 𝑎 → {𝒫 𝑢, 𝑢} = {𝒫 𝑎, 𝑎})
82 preq1 4470 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑎 → {𝑢, 𝑣} = {𝑎, 𝑣})
8382mpteq2dv 4950 . . . . . . . . . . . . . . 15 (𝑢 = 𝑎 → (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣}) = (𝑣 ∈ (𝐹𝑚) ↦ {𝑎, 𝑣}))
8483rneqd 5568 . . . . . . . . . . . . . 14 (𝑢 = 𝑎 → ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣}) = ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑎, 𝑣}))
8581, 84uneq12d 3978 . . . . . . . . . . . . 13 (𝑢 = 𝑎 → ({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣})) = ({𝒫 𝑎, 𝑎} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑎, 𝑣})))
8685ssiun2s 4767 . . . . . . . . . . . 12 (𝑎 ∈ (𝐹𝑚) → ({𝒫 𝑎, 𝑎} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑎, 𝑣})) ⊆ 𝑢 ∈ (𝐹𝑚)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣})))
8786ad2antll 711 . . . . . . . . . . 11 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) → ({𝒫 𝑎, 𝑎} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑎, 𝑣})) ⊆ 𝑢 ∈ (𝐹𝑚)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣})))
88 ssun2 3987 . . . . . . . . . . . . 13 𝑢 ∈ (𝐹𝑚)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣})) ⊆ (((𝐹𝑚) ∪ (𝐹𝑚)) ∪ 𝑢 ∈ (𝐹𝑚)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣})))
8988, 55syl5sseqr 3862 . . . . . . . . . . . 12 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) → 𝑢 ∈ (𝐹𝑚)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣})) ⊆ (𝐹‘suc 𝑚))
9089, 58syl6ss 3821 . . . . . . . . . . 11 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) → 𝑢 ∈ (𝐹𝑚)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣})) ⊆ 𝑈)
9187, 90sstrd 3819 . . . . . . . . . 10 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) → ({𝒫 𝑎, 𝑎} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑎, 𝑣})) ⊆ 𝑈)
9291unssad 4000 . . . . . . . . 9 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) → {𝒫 𝑎, 𝑎} ⊆ 𝑈)
93 vpwex 5060 . . . . . . . . . 10 𝒫 𝑎 ∈ V
94 vuniex 7194 . . . . . . . . . 10 𝑎 ∈ V
9593, 94prss 4552 . . . . . . . . 9 ((𝒫 𝑎𝑈 𝑎𝑈) ↔ {𝒫 𝑎, 𝑎} ⊆ 𝑈)
9692, 95sylibr 225 . . . . . . . 8 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) → (𝒫 𝑎𝑈 𝑎𝑈))
9796simprd 485 . . . . . . 7 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) → 𝑎𝑈)
9896simpld 484 . . . . . . 7 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) → 𝒫 𝑎𝑈)
991eleq2i 2888 . . . . . . . . . 10 (𝑏𝑈𝑏 ran 𝐹)
100 fnunirn 6745 . . . . . . . . . . 11 (𝐹 Fn ω → (𝑏 ran 𝐹 ↔ ∃𝑛 ∈ ω 𝑏 ∈ (𝐹𝑛)))
1016, 100ax-mp 5 . . . . . . . . . 10 (𝑏 ran 𝐹 ↔ ∃𝑛 ∈ ω 𝑏 ∈ (𝐹𝑛))
10299, 101bitri 266 . . . . . . . . 9 (𝑏𝑈 ↔ ∃𝑛 ∈ ω 𝑏 ∈ (𝐹𝑛))
103 simplrl 786 . . . . . . . . . . . . . . . . 17 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹𝑛))) → 𝑚 ∈ ω)
104 simprl 778 . . . . . . . . . . . . . . . . 17 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹𝑛))) → 𝑛 ∈ ω)
105 ordom 7314 . . . . . . . . . . . . . . . . . 18 Ord ω
106 ordunel 7267 . . . . . . . . . . . . . . . . . 18 ((Ord ω ∧ 𝑚 ∈ ω ∧ 𝑛 ∈ ω) → (𝑚𝑛) ∈ ω)
107105, 106mp3an1 1565 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ ω ∧ 𝑛 ∈ ω) → (𝑚𝑛) ∈ ω)
108103, 104, 107syl2anc 575 . . . . . . . . . . . . . . . 16 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹𝑛))) → (𝑚𝑛) ∈ ω)
109 ssun1 3986 . . . . . . . . . . . . . . . . 17 𝑚 ⊆ (𝑚𝑛)
110 fveq2 6418 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑚 → (𝐹𝑘) = (𝐹𝑚))
111110sseq2d 3841 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑚 → ((𝐹𝑚) ⊆ (𝐹𝑘) ↔ (𝐹𝑚) ⊆ (𝐹𝑚)))
112 fveq2 6418 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑖 → (𝐹𝑘) = (𝐹𝑖))
113112sseq2d 3841 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑖 → ((𝐹𝑚) ⊆ (𝐹𝑘) ↔ (𝐹𝑚) ⊆ (𝐹𝑖)))
114 fveq2 6418 . . . . . . . . . . . . . . . . . . 19 (𝑘 = suc 𝑖 → (𝐹𝑘) = (𝐹‘suc 𝑖))
115114sseq2d 3841 . . . . . . . . . . . . . . . . . 18 (𝑘 = suc 𝑖 → ((𝐹𝑚) ⊆ (𝐹𝑘) ↔ (𝐹𝑚) ⊆ (𝐹‘suc 𝑖)))
116 fveq2 6418 . . . . . . . . . . . . . . . . . . 19 (𝑘 = (𝑚𝑛) → (𝐹𝑘) = (𝐹‘(𝑚𝑛)))
117116sseq2d 3841 . . . . . . . . . . . . . . . . . 18 (𝑘 = (𝑚𝑛) → ((𝐹𝑚) ⊆ (𝐹𝑘) ↔ (𝐹𝑚) ⊆ (𝐹‘(𝑚𝑛))))
118 ssidd 3832 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ω → (𝐹𝑚) ⊆ (𝐹𝑚))
119 fveq2 6418 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = 𝑖 → (𝐹𝑚) = (𝐹𝑖))
120 suceq 6016 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 = 𝑖 → suc 𝑚 = suc 𝑖)
121120fveq2d 6422 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = 𝑖 → (𝐹‘suc 𝑚) = (𝐹‘suc 𝑖))
122119, 121sseq12d 3842 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = 𝑖 → ((𝐹𝑚) ⊆ (𝐹‘suc 𝑚) ↔ (𝐹𝑖) ⊆ (𝐹‘suc 𝑖)))
123 ssun1 3986 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹𝑚) ⊆ ((𝐹𝑚) ∪ (𝐹𝑚))
124123, 13sstri 3818 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹𝑚) ⊆ (((𝐹𝑚) ∪ (𝐹𝑚)) ∪ 𝑢 ∈ (𝐹𝑚)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣})))
12525, 54mpan2 674 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 ∈ ω → (𝐹‘suc 𝑚) = (((𝐹𝑚) ∪ (𝐹𝑚)) ∪ 𝑢 ∈ (𝐹𝑚)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣}))))
126124, 125syl5sseqr 3862 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ ω → (𝐹𝑚) ⊆ (𝐹‘suc 𝑚))
127122, 126vtoclga 3476 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ ω → (𝐹𝑖) ⊆ (𝐹‘suc 𝑖))
128127ad2antrr 708 . . . . . . . . . . . . . . . . . . 19 (((𝑖 ∈ ω ∧ 𝑚 ∈ ω) ∧ 𝑚𝑖) → (𝐹𝑖) ⊆ (𝐹‘suc 𝑖))
129 sstr2 3816 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑚) ⊆ (𝐹𝑖) → ((𝐹𝑖) ⊆ (𝐹‘suc 𝑖) → (𝐹𝑚) ⊆ (𝐹‘suc 𝑖)))
130128, 129syl5com 31 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ω ∧ 𝑚 ∈ ω) ∧ 𝑚𝑖) → ((𝐹𝑚) ⊆ (𝐹𝑖) → (𝐹𝑚) ⊆ (𝐹‘suc 𝑖)))
131111, 113, 115, 117, 118, 130findsg 7333 . . . . . . . . . . . . . . . . 17 ((((𝑚𝑛) ∈ ω ∧ 𝑚 ∈ ω) ∧ 𝑚 ⊆ (𝑚𝑛)) → (𝐹𝑚) ⊆ (𝐹‘(𝑚𝑛)))
132109, 131mpan2 674 . . . . . . . . . . . . . . . 16 (((𝑚𝑛) ∈ ω ∧ 𝑚 ∈ ω) → (𝐹𝑚) ⊆ (𝐹‘(𝑚𝑛)))
133108, 103, 132syl2anc 575 . . . . . . . . . . . . . . 15 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹𝑛))) → (𝐹𝑚) ⊆ (𝐹‘(𝑚𝑛)))
134 simplrr 787 . . . . . . . . . . . . . . 15 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹𝑛))) → 𝑎 ∈ (𝐹𝑚))
135133, 134sseldd 3810 . . . . . . . . . . . . . 14 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹𝑛))) → 𝑎 ∈ (𝐹‘(𝑚𝑛)))
13682mpteq2dv 4950 . . . . . . . . . . . . . . . . 17 (𝑢 = 𝑎 → (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣}) = (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑎, 𝑣}))
137136rneqd 5568 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑎 → ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣}) = ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑎, 𝑣}))
13881, 137uneq12d 3978 . . . . . . . . . . . . . . 15 (𝑢 = 𝑎 → ({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣})) = ({𝒫 𝑎, 𝑎} ∪ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑎, 𝑣})))
139138ssiun2s 4767 . . . . . . . . . . . . . 14 (𝑎 ∈ (𝐹‘(𝑚𝑛)) → ({𝒫 𝑎, 𝑎} ∪ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑎, 𝑣})) ⊆ 𝑢 ∈ (𝐹‘(𝑚𝑛))({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣})))
140135, 139syl 17 . . . . . . . . . . . . 13 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹𝑛))) → ({𝒫 𝑎, 𝑎} ∪ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑎, 𝑣})) ⊆ 𝑢 ∈ (𝐹‘(𝑚𝑛))({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣})))
141 ssun2 3987 . . . . . . . . . . . . . . 15 𝑢 ∈ (𝐹‘(𝑚𝑛))({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣})) ⊆ (((𝐹‘(𝑚𝑛)) ∪ (𝐹‘(𝑚𝑛))) ∪ 𝑢 ∈ (𝐹‘(𝑚𝑛))({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣})))
142 fvex 6431 . . . . . . . . . . . . . . . . . 18 (𝐹‘(𝑚𝑛)) ∈ V
143142uniex 7193 . . . . . . . . . . . . . . . . . 18 (𝐹‘(𝑚𝑛)) ∈ V
144142, 143unex 7196 . . . . . . . . . . . . . . . . 17 ((𝐹‘(𝑚𝑛)) ∪ (𝐹‘(𝑚𝑛))) ∈ V
145142mptex 6721 . . . . . . . . . . . . . . . . . . . 20 (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣}) ∈ V
146145rnex 7340 . . . . . . . . . . . . . . . . . . 19 ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣}) ∈ V
14720, 146unex 7196 . . . . . . . . . . . . . . . . . 18 ({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣})) ∈ V
148142, 147iunex 7387 . . . . . . . . . . . . . . . . 17 𝑢 ∈ (𝐹‘(𝑚𝑛))({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣})) ∈ V
149144, 148unex 7196 . . . . . . . . . . . . . . . 16 (((𝐹‘(𝑚𝑛)) ∪ (𝐹‘(𝑚𝑛))) ∪ 𝑢 ∈ (𝐹‘(𝑚𝑛))({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣}))) ∈ V
150 id 22 . . . . . . . . . . . . . . . . . . 19 (𝑤 = (𝐹‘(𝑚𝑛)) → 𝑤 = (𝐹‘(𝑚𝑛)))
151 unieq 4649 . . . . . . . . . . . . . . . . . . 19 (𝑤 = (𝐹‘(𝑚𝑛)) → 𝑤 = (𝐹‘(𝑚𝑛)))
152150, 151uneq12d 3978 . . . . . . . . . . . . . . . . . 18 (𝑤 = (𝐹‘(𝑚𝑛)) → (𝑤 𝑤) = ((𝐹‘(𝑚𝑛)) ∪ (𝐹‘(𝑚𝑛))))
153 mpteq1 4942 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 = (𝐹‘(𝑚𝑛)) → (𝑣𝑤 ↦ {𝑢, 𝑣}) = (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣}))
154153rneqd 5568 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = (𝐹‘(𝑚𝑛)) → ran (𝑣𝑤 ↦ {𝑢, 𝑣}) = ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣}))
155154uneq2d 3977 . . . . . . . . . . . . . . . . . . 19 (𝑤 = (𝐹‘(𝑚𝑛)) → ({𝒫 𝑢, 𝑢} ∪ ran (𝑣𝑤 ↦ {𝑢, 𝑣})) = ({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣})))
156150, 155iuneq12d 4749 . . . . . . . . . . . . . . . . . 18 (𝑤 = (𝐹‘(𝑚𝑛)) → 𝑢𝑤 ({𝒫 𝑢, 𝑢} ∪ ran (𝑣𝑤 ↦ {𝑢, 𝑣})) = 𝑢 ∈ (𝐹‘(𝑚𝑛))({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣})))
157152, 156uneq12d 3978 . . . . . . . . . . . . . . . . 17 (𝑤 = (𝐹‘(𝑚𝑛)) → ((𝑤 𝑤) ∪ 𝑢𝑤 ({𝒫 𝑢, 𝑢} ∪ ran (𝑣𝑤 ↦ {𝑢, 𝑣}))) = (((𝐹‘(𝑚𝑛)) ∪ (𝐹‘(𝑚𝑛))) ∪ 𝑢 ∈ (𝐹‘(𝑚𝑛))({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣}))))
1584, 45, 157frsucmpt2 7781 . . . . . . . . . . . . . . . 16 (((𝑚𝑛) ∈ ω ∧ (((𝐹‘(𝑚𝑛)) ∪ (𝐹‘(𝑚𝑛))) ∪ 𝑢 ∈ (𝐹‘(𝑚𝑛))({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣}))) ∈ V) → (𝐹‘suc (𝑚𝑛)) = (((𝐹‘(𝑚𝑛)) ∪ (𝐹‘(𝑚𝑛))) ∪ 𝑢 ∈ (𝐹‘(𝑚𝑛))({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣}))))
159108, 149, 158sylancl 576 . . . . . . . . . . . . . . 15 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹𝑛))) → (𝐹‘suc (𝑚𝑛)) = (((𝐹‘(𝑚𝑛)) ∪ (𝐹‘(𝑚𝑛))) ∪ 𝑢 ∈ (𝐹‘(𝑚𝑛))({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣}))))
160141, 159syl5sseqr 3862 . . . . . . . . . . . . . 14 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹𝑛))) → 𝑢 ∈ (𝐹‘(𝑚𝑛))({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣})) ⊆ (𝐹‘suc (𝑚𝑛)))
161 fvssunirn 6447 . . . . . . . . . . . . . . 15 (𝐹‘suc (𝑚𝑛)) ⊆ ran 𝐹
162161, 1sseqtr4i 3846 . . . . . . . . . . . . . 14 (𝐹‘suc (𝑚𝑛)) ⊆ 𝑈
163160, 162syl6ss 3821 . . . . . . . . . . . . 13 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹𝑛))) → 𝑢 ∈ (𝐹‘(𝑚𝑛))({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣})) ⊆ 𝑈)
164140, 163sstrd 3819 . . . . . . . . . . . 12 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹𝑛))) → ({𝒫 𝑎, 𝑎} ∪ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑎, 𝑣})) ⊆ 𝑈)
165164unssbd 4001 . . . . . . . . . . 11 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹𝑛))) → ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑎, 𝑣}) ⊆ 𝑈)
166 ssun2 3987 . . . . . . . . . . . . . . . . . . 19 𝑛 ⊆ (𝑚𝑛)
167 id 22 . . . . . . . . . . . . . . . . . . 19 (𝑖 = (𝑚𝑛) → 𝑖 = (𝑚𝑛))
168166, 167syl5sseqr 3862 . . . . . . . . . . . . . . . . . 18 (𝑖 = (𝑚𝑛) → 𝑛𝑖)
169168biantrud 523 . . . . . . . . . . . . . . . . 17 (𝑖 = (𝑚𝑛) → (𝑛 ∈ ω ↔ (𝑛 ∈ ω ∧ 𝑛𝑖)))
170169bicomd 214 . . . . . . . . . . . . . . . 16 (𝑖 = (𝑚𝑛) → ((𝑛 ∈ ω ∧ 𝑛𝑖) ↔ 𝑛 ∈ ω))
171 fveq2 6418 . . . . . . . . . . . . . . . . 17 (𝑖 = (𝑚𝑛) → (𝐹𝑖) = (𝐹‘(𝑚𝑛)))
172171sseq2d 3841 . . . . . . . . . . . . . . . 16 (𝑖 = (𝑚𝑛) → ((𝐹𝑛) ⊆ (𝐹𝑖) ↔ (𝐹𝑛) ⊆ (𝐹‘(𝑚𝑛))))
173170, 172imbi12d 335 . . . . . . . . . . . . . . 15 (𝑖 = (𝑚𝑛) → (((𝑛 ∈ ω ∧ 𝑛𝑖) → (𝐹𝑛) ⊆ (𝐹𝑖)) ↔ (𝑛 ∈ ω → (𝐹𝑛) ⊆ (𝐹‘(𝑚𝑛)))))
174 eleq1w 2879 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = 𝑛 → (𝑚 ∈ ω ↔ 𝑛 ∈ ω))
175174anbi2d 616 . . . . . . . . . . . . . . . . . . 19 (𝑚 = 𝑛 → ((𝑖 ∈ ω ∧ 𝑚 ∈ ω) ↔ (𝑖 ∈ ω ∧ 𝑛 ∈ ω)))
176 sseq1 3834 . . . . . . . . . . . . . . . . . . 19 (𝑚 = 𝑛 → (𝑚𝑖𝑛𝑖))
177175, 176anbi12d 618 . . . . . . . . . . . . . . . . . 18 (𝑚 = 𝑛 → (((𝑖 ∈ ω ∧ 𝑚 ∈ ω) ∧ 𝑚𝑖) ↔ ((𝑖 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑛𝑖)))
178 fveq2 6418 . . . . . . . . . . . . . . . . . . 19 (𝑚 = 𝑛 → (𝐹𝑚) = (𝐹𝑛))
179178sseq1d 3840 . . . . . . . . . . . . . . . . . 18 (𝑚 = 𝑛 → ((𝐹𝑚) ⊆ (𝐹𝑖) ↔ (𝐹𝑛) ⊆ (𝐹𝑖)))
180177, 179imbi12d 335 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑛 → ((((𝑖 ∈ ω ∧ 𝑚 ∈ ω) ∧ 𝑚𝑖) → (𝐹𝑚) ⊆ (𝐹𝑖)) ↔ (((𝑖 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑛𝑖) → (𝐹𝑛) ⊆ (𝐹𝑖))))
181111, 113, 115, 113, 118, 130findsg 7333 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ ω ∧ 𝑚 ∈ ω) ∧ 𝑚𝑖) → (𝐹𝑚) ⊆ (𝐹𝑖))
182180, 181chvarv 2439 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑛𝑖) → (𝐹𝑛) ⊆ (𝐹𝑖))
183182expl 447 . . . . . . . . . . . . . . 15 (𝑖 ∈ ω → ((𝑛 ∈ ω ∧ 𝑛𝑖) → (𝐹𝑛) ⊆ (𝐹𝑖)))
184173, 183vtoclga 3476 . . . . . . . . . . . . . 14 ((𝑚𝑛) ∈ ω → (𝑛 ∈ ω → (𝐹𝑛) ⊆ (𝐹‘(𝑚𝑛))))
185108, 104, 184sylc 65 . . . . . . . . . . . . 13 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹𝑛))) → (𝐹𝑛) ⊆ (𝐹‘(𝑚𝑛)))
186 simprr 780 . . . . . . . . . . . . 13 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹𝑛))) → 𝑏 ∈ (𝐹𝑛))
187185, 186sseldd 3810 . . . . . . . . . . . 12 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹𝑛))) → 𝑏 ∈ (𝐹‘(𝑚𝑛)))
188 prex 5112 . . . . . . . . . . . 12 {𝑎, 𝑏} ∈ V
189 eqid 2817 . . . . . . . . . . . . 13 (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑎, 𝑣}) = (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑎, 𝑣})
190 preq2 4471 . . . . . . . . . . . . 13 (𝑣 = 𝑏 → {𝑎, 𝑣} = {𝑎, 𝑏})
191189, 190elrnmpt1s 5588 . . . . . . . . . . . 12 ((𝑏 ∈ (𝐹‘(𝑚𝑛)) ∧ {𝑎, 𝑏} ∈ V) → {𝑎, 𝑏} ∈ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑎, 𝑣}))
192187, 188, 191sylancl 576 . . . . . . . . . . 11 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹𝑛))) → {𝑎, 𝑏} ∈ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑎, 𝑣}))
193165, 192sseldd 3810 . . . . . . . . . 10 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹𝑛))) → {𝑎, 𝑏} ∈ 𝑈)
194193rexlimdvaa 3231 . . . . . . . . 9 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) → (∃𝑛 ∈ ω 𝑏 ∈ (𝐹𝑛) → {𝑎, 𝑏} ∈ 𝑈))
195102, 194syl5bi 233 . . . . . . . 8 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) → (𝑏𝑈 → {𝑎, 𝑏} ∈ 𝑈))
196195ralrimiv 3164 . . . . . . 7 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) → ∀𝑏𝑈 {𝑎, 𝑏} ∈ 𝑈)
19797, 98, 1963jca 1151 . . . . . 6 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) → ( 𝑎𝑈 ∧ 𝒫 𝑎𝑈 ∧ ∀𝑏𝑈 {𝑎, 𝑏} ∈ 𝑈))
198197rexlimdvaa 3231 . . . . 5 (𝐴𝑉 → (∃𝑚 ∈ ω 𝑎 ∈ (𝐹𝑚) → ( 𝑎𝑈 ∧ 𝒫 𝑎𝑈 ∧ ∀𝑏𝑈 {𝑎, 𝑏} ∈ 𝑈)))
1999, 198syl5bi 233 . . . 4 (𝐴𝑉 → (𝑎𝑈 → ( 𝑎𝑈 ∧ 𝒫 𝑎𝑈 ∧ ∀𝑏𝑈 {𝑎, 𝑏} ∈ 𝑈)))
200199ralrimiv 3164 . . 3 (𝐴𝑉 → ∀𝑎𝑈 ( 𝑎𝑈 ∧ 𝒫 𝑎𝑈 ∧ ∀𝑏𝑈 {𝑎, 𝑏} ∈ 𝑈))
201 rdgfun 7758 . . . . . . . . 9 Fun rec((𝑧 ∈ V ↦ ((𝑧 𝑧) ∪ 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1𝑜))
202 omex 8797 . . . . . . . . 9 ω ∈ V
203 resfunexg 6714 . . . . . . . . 9 ((Fun rec((𝑧 ∈ V ↦ ((𝑧 𝑧) ∪ 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1𝑜)) ∧ ω ∈ V) → (rec((𝑧 ∈ V ↦ ((𝑧 𝑧) ∪ 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1𝑜)) ↾ ω) ∈ V)
204201, 202, 203mp2an 675 . . . . . . . 8 (rec((𝑧 ∈ V ↦ ((𝑧 𝑧) ∪ 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1𝑜)) ↾ ω) ∈ V
2054, 204eqeltri 2892 . . . . . . 7 𝐹 ∈ V
206205rnex 7340 . . . . . 6 ran 𝐹 ∈ V
207206uniex 7193 . . . . 5 ran 𝐹 ∈ V
2081, 207eqeltri 2892 . . . 4 𝑈 ∈ V
209 iswun 9821 . . . 4 (𝑈 ∈ V → (𝑈 ∈ WUni ↔ (Tr 𝑈𝑈 ≠ ∅ ∧ ∀𝑎𝑈 ( 𝑎𝑈 ∧ 𝒫 𝑎𝑈 ∧ ∀𝑏𝑈 {𝑎, 𝑏} ∈ 𝑈))))
210208, 209ax-mp 5 . . 3 (𝑈 ∈ WUni ↔ (Tr 𝑈𝑈 ≠ ∅ ∧ ∀𝑎𝑈 ( 𝑎𝑈 ∧ 𝒫 𝑎𝑈 ∧ ∀𝑏𝑈 {𝑎, 𝑏} ∈ 𝑈)))
21164, 78, 200, 210syl3anbrc 1436 . 2 (𝐴𝑉𝑈 ∈ WUni)
21274unssad 4000 . 2 (𝐴𝑉𝐴𝑈)
213211, 212jca 503 1 (𝐴𝑉 → (𝑈 ∈ WUni ∧ 𝐴𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1100   = wceq 1637  wcel 2157  wne 2989  wral 3107  wrex 3108  Vcvv 3402  cun 3778  wss 3780  c0 4127  𝒫 cpw 4362  {cpr 4383   cuni 4641   ciun 4723  cmpt 4934  Tr wtr 4957  ran crn 5325  cres 5326  Ord word 5949  Oncon0 5950  suc csuc 5952  Fun wfun 6105   Fn wfn 6106  cfv 6111  ωcom 7305  reccrdg 7751  1𝑜c1o 7799  WUnicwun 9817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2795  ax-rep 4977  ax-sep 4988  ax-nul 4996  ax-pow 5048  ax-pr 5109  ax-un 7189  ax-inf2 8795
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2642  df-clab 2804  df-cleq 2810  df-clel 2813  df-nfc 2948  df-ne 2990  df-ral 3112  df-rex 3113  df-reu 3114  df-rab 3116  df-v 3404  df-sbc 3645  df-csb 3740  df-dif 3783  df-un 3785  df-in 3787  df-ss 3794  df-pss 3796  df-nul 4128  df-if 4291  df-pw 4364  df-sn 4382  df-pr 4384  df-tp 4386  df-op 4388  df-uni 4642  df-iun 4725  df-br 4856  df-opab 4918  df-mpt 4935  df-tr 4958  df-id 5232  df-eprel 5237  df-po 5245  df-so 5246  df-fr 5283  df-we 5285  df-xp 5330  df-rel 5331  df-cnv 5332  df-co 5333  df-dm 5334  df-rn 5335  df-res 5336  df-ima 5337  df-pred 5907  df-ord 5953  df-on 5954  df-lim 5955  df-suc 5956  df-iota 6074  df-fun 6113  df-fn 6114  df-f 6115  df-f1 6116  df-fo 6117  df-f1o 6118  df-fv 6119  df-om 7306  df-wrecs 7652  df-recs 7714  df-rdg 7752  df-1o 7806  df-wun 9819
This theorem is referenced by:  wunex  9856  wuncval2  9864
  Copyright terms: Public domain W3C validator