MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunex2 Structured version   Visualization version   GIF version

Theorem wunex2 10629
Description: Construct a weak universe from a given set. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wunex2.f 𝐹 = (rec((𝑧 ∈ V ↦ ((𝑧 𝑧) ∪ 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1o)) ↾ ω)
wunex2.u 𝑈 = ran 𝐹
Assertion
Ref Expression
wunex2 (𝐴𝑉 → (𝑈 ∈ WUni ∧ 𝐴𝑈))
Distinct variable group:   𝑥,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)   𝑈(𝑥,𝑦,𝑧)   𝐹(𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem wunex2
Dummy variables 𝑢 𝑎 𝑣 𝑤 𝑏 𝑚 𝑛 𝑖 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wunex2.u . . . . . . . 8 𝑈 = ran 𝐹
21eleq2i 2823 . . . . . . 7 (𝑎𝑈𝑎 ran 𝐹)
3 frfnom 8354 . . . . . . . . 9 (rec((𝑧 ∈ V ↦ ((𝑧 𝑧) ∪ 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1o)) ↾ ω) Fn ω
4 wunex2.f . . . . . . . . . 10 𝐹 = (rec((𝑧 ∈ V ↦ ((𝑧 𝑧) ∪ 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1o)) ↾ ω)
54fneq1i 6578 . . . . . . . . 9 (𝐹 Fn ω ↔ (rec((𝑧 ∈ V ↦ ((𝑧 𝑧) ∪ 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1o)) ↾ ω) Fn ω)
63, 5mpbir 231 . . . . . . . 8 𝐹 Fn ω
7 fnunirn 7187 . . . . . . . 8 (𝐹 Fn ω → (𝑎 ran 𝐹 ↔ ∃𝑚 ∈ ω 𝑎 ∈ (𝐹𝑚)))
86, 7ax-mp 5 . . . . . . 7 (𝑎 ran 𝐹 ↔ ∃𝑚 ∈ ω 𝑎 ∈ (𝐹𝑚))
92, 8bitri 275 . . . . . 6 (𝑎𝑈 ↔ ∃𝑚 ∈ ω 𝑎 ∈ (𝐹𝑚))
10 elssuni 4887 . . . . . . . . . . 11 (𝑎 ∈ (𝐹𝑚) → 𝑎 (𝐹𝑚))
1110ad2antll 729 . . . . . . . . . 10 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) → 𝑎 (𝐹𝑚))
12 ssun2 4126 . . . . . . . . . . 11 (𝐹𝑚) ⊆ ((𝐹𝑚) ∪ (𝐹𝑚))
13 ssun1 4125 . . . . . . . . . . 11 ((𝐹𝑚) ∪ (𝐹𝑚)) ⊆ (((𝐹𝑚) ∪ (𝐹𝑚)) ∪ 𝑢 ∈ (𝐹𝑚)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣})))
1412, 13sstri 3939 . . . . . . . . . 10 (𝐹𝑚) ⊆ (((𝐹𝑚) ∪ (𝐹𝑚)) ∪ 𝑢 ∈ (𝐹𝑚)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣})))
1511, 14sstrdi 3942 . . . . . . . . 9 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) → 𝑎 ⊆ (((𝐹𝑚) ∪ (𝐹𝑚)) ∪ 𝑢 ∈ (𝐹𝑚)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣}))))
16 simprl 770 . . . . . . . . . 10 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) → 𝑚 ∈ ω)
17 fvex 6835 . . . . . . . . . . . 12 (𝐹𝑚) ∈ V
1817uniex 7674 . . . . . . . . . . . 12 (𝐹𝑚) ∈ V
1917, 18unex 7677 . . . . . . . . . . 11 ((𝐹𝑚) ∪ (𝐹𝑚)) ∈ V
20 prex 5373 . . . . . . . . . . . . 13 {𝒫 𝑢, 𝑢} ∈ V
2117mptex 7157 . . . . . . . . . . . . . 14 (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣}) ∈ V
2221rnex 7840 . . . . . . . . . . . . 13 ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣}) ∈ V
2320, 22unex 7677 . . . . . . . . . . . 12 ({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣})) ∈ V
2417, 23iunex 7900 . . . . . . . . . . 11 𝑢 ∈ (𝐹𝑚)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣})) ∈ V
2519, 24unex 7677 . . . . . . . . . 10 (((𝐹𝑚) ∪ (𝐹𝑚)) ∪ 𝑢 ∈ (𝐹𝑚)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣}))) ∈ V
26 id 22 . . . . . . . . . . . . 13 (𝑤 = 𝑧𝑤 = 𝑧)
27 unieq 4867 . . . . . . . . . . . . 13 (𝑤 = 𝑧 𝑤 = 𝑧)
2826, 27uneq12d 4116 . . . . . . . . . . . 12 (𝑤 = 𝑧 → (𝑤 𝑤) = (𝑧 𝑧))
29 pweq 4561 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑥 → 𝒫 𝑢 = 𝒫 𝑥)
30 unieq 4867 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑥 𝑢 = 𝑥)
3129, 30preq12d 4691 . . . . . . . . . . . . . . 15 (𝑢 = 𝑥 → {𝒫 𝑢, 𝑢} = {𝒫 𝑥, 𝑥})
32 preq2 4684 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝑦 → {𝑢, 𝑣} = {𝑢, 𝑦})
3332cbvmptv 5193 . . . . . . . . . . . . . . . . 17 (𝑣𝑤 ↦ {𝑢, 𝑣}) = (𝑦𝑤 ↦ {𝑢, 𝑦})
34 preq1 4683 . . . . . . . . . . . . . . . . . 18 (𝑢 = 𝑥 → {𝑢, 𝑦} = {𝑥, 𝑦})
3534mpteq2dv 5183 . . . . . . . . . . . . . . . . 17 (𝑢 = 𝑥 → (𝑦𝑤 ↦ {𝑢, 𝑦}) = (𝑦𝑤 ↦ {𝑥, 𝑦}))
3633, 35eqtrid 2778 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑥 → (𝑣𝑤 ↦ {𝑢, 𝑣}) = (𝑦𝑤 ↦ {𝑥, 𝑦}))
3736rneqd 5877 . . . . . . . . . . . . . . 15 (𝑢 = 𝑥 → ran (𝑣𝑤 ↦ {𝑢, 𝑣}) = ran (𝑦𝑤 ↦ {𝑥, 𝑦}))
3831, 37uneq12d 4116 . . . . . . . . . . . . . 14 (𝑢 = 𝑥 → ({𝒫 𝑢, 𝑢} ∪ ran (𝑣𝑤 ↦ {𝑢, 𝑣})) = ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑤 ↦ {𝑥, 𝑦})))
3938cbviunv 4987 . . . . . . . . . . . . 13 𝑢𝑤 ({𝒫 𝑢, 𝑢} ∪ ran (𝑣𝑤 ↦ {𝑢, 𝑣})) = 𝑥𝑤 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑤 ↦ {𝑥, 𝑦}))
40 mpteq1 5178 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑧 → (𝑦𝑤 ↦ {𝑥, 𝑦}) = (𝑦𝑧 ↦ {𝑥, 𝑦}))
4140rneqd 5877 . . . . . . . . . . . . . . 15 (𝑤 = 𝑧 → ran (𝑦𝑤 ↦ {𝑥, 𝑦}) = ran (𝑦𝑧 ↦ {𝑥, 𝑦}))
4241uneq2d 4115 . . . . . . . . . . . . . 14 (𝑤 = 𝑧 → ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑤 ↦ {𝑥, 𝑦})) = ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))
4326, 42iuneq12d 4969 . . . . . . . . . . . . 13 (𝑤 = 𝑧 𝑥𝑤 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑤 ↦ {𝑥, 𝑦})) = 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))
4439, 43eqtrid 2778 . . . . . . . . . . . 12 (𝑤 = 𝑧 𝑢𝑤 ({𝒫 𝑢, 𝑢} ∪ ran (𝑣𝑤 ↦ {𝑢, 𝑣})) = 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))
4528, 44uneq12d 4116 . . . . . . . . . . 11 (𝑤 = 𝑧 → ((𝑤 𝑤) ∪ 𝑢𝑤 ({𝒫 𝑢, 𝑢} ∪ ran (𝑣𝑤 ↦ {𝑢, 𝑣}))) = ((𝑧 𝑧) ∪ 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦}))))
46 id 22 . . . . . . . . . . . . 13 (𝑤 = (𝐹𝑚) → 𝑤 = (𝐹𝑚))
47 unieq 4867 . . . . . . . . . . . . 13 (𝑤 = (𝐹𝑚) → 𝑤 = (𝐹𝑚))
4846, 47uneq12d 4116 . . . . . . . . . . . 12 (𝑤 = (𝐹𝑚) → (𝑤 𝑤) = ((𝐹𝑚) ∪ (𝐹𝑚)))
49 mpteq1 5178 . . . . . . . . . . . . . . 15 (𝑤 = (𝐹𝑚) → (𝑣𝑤 ↦ {𝑢, 𝑣}) = (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣}))
5049rneqd 5877 . . . . . . . . . . . . . 14 (𝑤 = (𝐹𝑚) → ran (𝑣𝑤 ↦ {𝑢, 𝑣}) = ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣}))
5150uneq2d 4115 . . . . . . . . . . . . 13 (𝑤 = (𝐹𝑚) → ({𝒫 𝑢, 𝑢} ∪ ran (𝑣𝑤 ↦ {𝑢, 𝑣})) = ({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣})))
5246, 51iuneq12d 4969 . . . . . . . . . . . 12 (𝑤 = (𝐹𝑚) → 𝑢𝑤 ({𝒫 𝑢, 𝑢} ∪ ran (𝑣𝑤 ↦ {𝑢, 𝑣})) = 𝑢 ∈ (𝐹𝑚)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣})))
5348, 52uneq12d 4116 . . . . . . . . . . 11 (𝑤 = (𝐹𝑚) → ((𝑤 𝑤) ∪ 𝑢𝑤 ({𝒫 𝑢, 𝑢} ∪ ran (𝑣𝑤 ↦ {𝑢, 𝑣}))) = (((𝐹𝑚) ∪ (𝐹𝑚)) ∪ 𝑢 ∈ (𝐹𝑚)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣}))))
544, 45, 53frsucmpt2 8359 . . . . . . . . . 10 ((𝑚 ∈ ω ∧ (((𝐹𝑚) ∪ (𝐹𝑚)) ∪ 𝑢 ∈ (𝐹𝑚)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣}))) ∈ V) → (𝐹‘suc 𝑚) = (((𝐹𝑚) ∪ (𝐹𝑚)) ∪ 𝑢 ∈ (𝐹𝑚)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣}))))
5516, 25, 54sylancl 586 . . . . . . . . 9 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) → (𝐹‘suc 𝑚) = (((𝐹𝑚) ∪ (𝐹𝑚)) ∪ 𝑢 ∈ (𝐹𝑚)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣}))))
5615, 55sseqtrrd 3967 . . . . . . . 8 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) → 𝑎 ⊆ (𝐹‘suc 𝑚))
57 fvssunirn 6853 . . . . . . . . 9 (𝐹‘suc 𝑚) ⊆ ran 𝐹
5857, 1sseqtrri 3979 . . . . . . . 8 (𝐹‘suc 𝑚) ⊆ 𝑈
5956, 58sstrdi 3942 . . . . . . 7 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) → 𝑎𝑈)
6059rexlimdvaa 3134 . . . . . 6 (𝐴𝑉 → (∃𝑚 ∈ ω 𝑎 ∈ (𝐹𝑚) → 𝑎𝑈))
619, 60biimtrid 242 . . . . 5 (𝐴𝑉 → (𝑎𝑈𝑎𝑈))
6261ralrimiv 3123 . . . 4 (𝐴𝑉 → ∀𝑎𝑈 𝑎𝑈)
63 dftr3 5201 . . . 4 (Tr 𝑈 ↔ ∀𝑎𝑈 𝑎𝑈)
6462, 63sylibr 234 . . 3 (𝐴𝑉 → Tr 𝑈)
65 1on 8397 . . . . . . . 8 1o ∈ On
66 unexg 7676 . . . . . . . 8 ((𝐴𝑉 ∧ 1o ∈ On) → (𝐴 ∪ 1o) ∈ V)
6765, 66mpan2 691 . . . . . . 7 (𝐴𝑉 → (𝐴 ∪ 1o) ∈ V)
684fveq1i 6823 . . . . . . . 8 (𝐹‘∅) = ((rec((𝑧 ∈ V ↦ ((𝑧 𝑧) ∪ 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1o)) ↾ ω)‘∅)
69 fr0g 8355 . . . . . . . 8 ((𝐴 ∪ 1o) ∈ V → ((rec((𝑧 ∈ V ↦ ((𝑧 𝑧) ∪ 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1o)) ↾ ω)‘∅) = (𝐴 ∪ 1o))
7068, 69eqtrid 2778 . . . . . . 7 ((𝐴 ∪ 1o) ∈ V → (𝐹‘∅) = (𝐴 ∪ 1o))
7167, 70syl 17 . . . . . 6 (𝐴𝑉 → (𝐹‘∅) = (𝐴 ∪ 1o))
72 fvssunirn 6853 . . . . . . 7 (𝐹‘∅) ⊆ ran 𝐹
7372, 1sseqtrri 3979 . . . . . 6 (𝐹‘∅) ⊆ 𝑈
7471, 73eqsstrrdi 3975 . . . . 5 (𝐴𝑉 → (𝐴 ∪ 1o) ⊆ 𝑈)
7574unssbd 4141 . . . 4 (𝐴𝑉 → 1o𝑈)
76 1n0 8403 . . . 4 1o ≠ ∅
77 ssn0 4351 . . . 4 ((1o𝑈 ∧ 1o ≠ ∅) → 𝑈 ≠ ∅)
7875, 76, 77sylancl 586 . . 3 (𝐴𝑉𝑈 ≠ ∅)
79 pweq 4561 . . . . . . . . . . . . . . 15 (𝑢 = 𝑎 → 𝒫 𝑢 = 𝒫 𝑎)
80 unieq 4867 . . . . . . . . . . . . . . 15 (𝑢 = 𝑎 𝑢 = 𝑎)
8179, 80preq12d 4691 . . . . . . . . . . . . . 14 (𝑢 = 𝑎 → {𝒫 𝑢, 𝑢} = {𝒫 𝑎, 𝑎})
82 preq1 4683 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑎 → {𝑢, 𝑣} = {𝑎, 𝑣})
8382mpteq2dv 5183 . . . . . . . . . . . . . . 15 (𝑢 = 𝑎 → (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣}) = (𝑣 ∈ (𝐹𝑚) ↦ {𝑎, 𝑣}))
8483rneqd 5877 . . . . . . . . . . . . . 14 (𝑢 = 𝑎 → ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣}) = ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑎, 𝑣}))
8581, 84uneq12d 4116 . . . . . . . . . . . . 13 (𝑢 = 𝑎 → ({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣})) = ({𝒫 𝑎, 𝑎} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑎, 𝑣})))
8685ssiun2s 4995 . . . . . . . . . . . 12 (𝑎 ∈ (𝐹𝑚) → ({𝒫 𝑎, 𝑎} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑎, 𝑣})) ⊆ 𝑢 ∈ (𝐹𝑚)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣})))
8786ad2antll 729 . . . . . . . . . . 11 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) → ({𝒫 𝑎, 𝑎} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑎, 𝑣})) ⊆ 𝑢 ∈ (𝐹𝑚)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣})))
88 ssun2 4126 . . . . . . . . . . . . 13 𝑢 ∈ (𝐹𝑚)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣})) ⊆ (((𝐹𝑚) ∪ (𝐹𝑚)) ∪ 𝑢 ∈ (𝐹𝑚)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣})))
8988, 55sseqtrrid 3973 . . . . . . . . . . . 12 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) → 𝑢 ∈ (𝐹𝑚)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣})) ⊆ (𝐹‘suc 𝑚))
9089, 58sstrdi 3942 . . . . . . . . . . 11 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) → 𝑢 ∈ (𝐹𝑚)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣})) ⊆ 𝑈)
9187, 90sstrd 3940 . . . . . . . . . 10 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) → ({𝒫 𝑎, 𝑎} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑎, 𝑣})) ⊆ 𝑈)
9291unssad 4140 . . . . . . . . 9 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) → {𝒫 𝑎, 𝑎} ⊆ 𝑈)
93 vpwex 5313 . . . . . . . . . 10 𝒫 𝑎 ∈ V
94 vuniex 7672 . . . . . . . . . 10 𝑎 ∈ V
9593, 94prss 4769 . . . . . . . . 9 ((𝒫 𝑎𝑈 𝑎𝑈) ↔ {𝒫 𝑎, 𝑎} ⊆ 𝑈)
9692, 95sylibr 234 . . . . . . . 8 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) → (𝒫 𝑎𝑈 𝑎𝑈))
9796simprd 495 . . . . . . 7 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) → 𝑎𝑈)
9896simpld 494 . . . . . . 7 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) → 𝒫 𝑎𝑈)
991eleq2i 2823 . . . . . . . . . 10 (𝑏𝑈𝑏 ran 𝐹)
100 fnunirn 7187 . . . . . . . . . . 11 (𝐹 Fn ω → (𝑏 ran 𝐹 ↔ ∃𝑛 ∈ ω 𝑏 ∈ (𝐹𝑛)))
1016, 100ax-mp 5 . . . . . . . . . 10 (𝑏 ran 𝐹 ↔ ∃𝑛 ∈ ω 𝑏 ∈ (𝐹𝑛))
10299, 101bitri 275 . . . . . . . . 9 (𝑏𝑈 ↔ ∃𝑛 ∈ ω 𝑏 ∈ (𝐹𝑛))
103 ordom 7806 . . . . . . . . . . . . . . . . 17 Ord ω
104 simplrl 776 . . . . . . . . . . . . . . . . 17 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹𝑛))) → 𝑚 ∈ ω)
105 simprl 770 . . . . . . . . . . . . . . . . 17 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹𝑛))) → 𝑛 ∈ ω)
106 ordunel 7757 . . . . . . . . . . . . . . . . 17 ((Ord ω ∧ 𝑚 ∈ ω ∧ 𝑛 ∈ ω) → (𝑚𝑛) ∈ ω)
107103, 104, 105, 106mp3an2i 1468 . . . . . . . . . . . . . . . 16 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹𝑛))) → (𝑚𝑛) ∈ ω)
108 ssun1 4125 . . . . . . . . . . . . . . . . 17 𝑚 ⊆ (𝑚𝑛)
109 fveq2 6822 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑚 → (𝐹𝑘) = (𝐹𝑚))
110109sseq2d 3962 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑚 → ((𝐹𝑚) ⊆ (𝐹𝑘) ↔ (𝐹𝑚) ⊆ (𝐹𝑚)))
111 fveq2 6822 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑖 → (𝐹𝑘) = (𝐹𝑖))
112111sseq2d 3962 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑖 → ((𝐹𝑚) ⊆ (𝐹𝑘) ↔ (𝐹𝑚) ⊆ (𝐹𝑖)))
113 fveq2 6822 . . . . . . . . . . . . . . . . . . 19 (𝑘 = suc 𝑖 → (𝐹𝑘) = (𝐹‘suc 𝑖))
114113sseq2d 3962 . . . . . . . . . . . . . . . . . 18 (𝑘 = suc 𝑖 → ((𝐹𝑚) ⊆ (𝐹𝑘) ↔ (𝐹𝑚) ⊆ (𝐹‘suc 𝑖)))
115 fveq2 6822 . . . . . . . . . . . . . . . . . . 19 (𝑘 = (𝑚𝑛) → (𝐹𝑘) = (𝐹‘(𝑚𝑛)))
116115sseq2d 3962 . . . . . . . . . . . . . . . . . 18 (𝑘 = (𝑚𝑛) → ((𝐹𝑚) ⊆ (𝐹𝑘) ↔ (𝐹𝑚) ⊆ (𝐹‘(𝑚𝑛))))
117 ssidd 3953 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ω → (𝐹𝑚) ⊆ (𝐹𝑚))
118 fveq2 6822 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = 𝑖 → (𝐹𝑚) = (𝐹𝑖))
119 suceq 6374 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 = 𝑖 → suc 𝑚 = suc 𝑖)
120119fveq2d 6826 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = 𝑖 → (𝐹‘suc 𝑚) = (𝐹‘suc 𝑖))
121118, 120sseq12d 3963 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = 𝑖 → ((𝐹𝑚) ⊆ (𝐹‘suc 𝑚) ↔ (𝐹𝑖) ⊆ (𝐹‘suc 𝑖)))
122 ssun1 4125 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹𝑚) ⊆ ((𝐹𝑚) ∪ (𝐹𝑚))
123122, 13sstri 3939 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹𝑚) ⊆ (((𝐹𝑚) ∪ (𝐹𝑚)) ∪ 𝑢 ∈ (𝐹𝑚)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣})))
12425, 54mpan2 691 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 ∈ ω → (𝐹‘suc 𝑚) = (((𝐹𝑚) ∪ (𝐹𝑚)) ∪ 𝑢 ∈ (𝐹𝑚)({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹𝑚) ↦ {𝑢, 𝑣}))))
125123, 124sseqtrrid 3973 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ ω → (𝐹𝑚) ⊆ (𝐹‘suc 𝑚))
126121, 125vtoclga 3528 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ ω → (𝐹𝑖) ⊆ (𝐹‘suc 𝑖))
127126ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝑖 ∈ ω ∧ 𝑚 ∈ ω) ∧ 𝑚𝑖) → (𝐹𝑖) ⊆ (𝐹‘suc 𝑖))
128 sstr2 3936 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑚) ⊆ (𝐹𝑖) → ((𝐹𝑖) ⊆ (𝐹‘suc 𝑖) → (𝐹𝑚) ⊆ (𝐹‘suc 𝑖)))
129127, 128syl5com 31 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ω ∧ 𝑚 ∈ ω) ∧ 𝑚𝑖) → ((𝐹𝑚) ⊆ (𝐹𝑖) → (𝐹𝑚) ⊆ (𝐹‘suc 𝑖)))
130110, 112, 114, 116, 117, 129findsg 7827 . . . . . . . . . . . . . . . . 17 ((((𝑚𝑛) ∈ ω ∧ 𝑚 ∈ ω) ∧ 𝑚 ⊆ (𝑚𝑛)) → (𝐹𝑚) ⊆ (𝐹‘(𝑚𝑛)))
131108, 130mpan2 691 . . . . . . . . . . . . . . . 16 (((𝑚𝑛) ∈ ω ∧ 𝑚 ∈ ω) → (𝐹𝑚) ⊆ (𝐹‘(𝑚𝑛)))
132107, 104, 131syl2anc 584 . . . . . . . . . . . . . . 15 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹𝑛))) → (𝐹𝑚) ⊆ (𝐹‘(𝑚𝑛)))
133 simplrr 777 . . . . . . . . . . . . . . 15 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹𝑛))) → 𝑎 ∈ (𝐹𝑚))
134132, 133sseldd 3930 . . . . . . . . . . . . . 14 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹𝑛))) → 𝑎 ∈ (𝐹‘(𝑚𝑛)))
13582mpteq2dv 5183 . . . . . . . . . . . . . . . . 17 (𝑢 = 𝑎 → (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣}) = (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑎, 𝑣}))
136135rneqd 5877 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑎 → ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣}) = ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑎, 𝑣}))
13781, 136uneq12d 4116 . . . . . . . . . . . . . . 15 (𝑢 = 𝑎 → ({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣})) = ({𝒫 𝑎, 𝑎} ∪ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑎, 𝑣})))
138137ssiun2s 4995 . . . . . . . . . . . . . 14 (𝑎 ∈ (𝐹‘(𝑚𝑛)) → ({𝒫 𝑎, 𝑎} ∪ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑎, 𝑣})) ⊆ 𝑢 ∈ (𝐹‘(𝑚𝑛))({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣})))
139134, 138syl 17 . . . . . . . . . . . . 13 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹𝑛))) → ({𝒫 𝑎, 𝑎} ∪ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑎, 𝑣})) ⊆ 𝑢 ∈ (𝐹‘(𝑚𝑛))({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣})))
140 ssun2 4126 . . . . . . . . . . . . . . 15 𝑢 ∈ (𝐹‘(𝑚𝑛))({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣})) ⊆ (((𝐹‘(𝑚𝑛)) ∪ (𝐹‘(𝑚𝑛))) ∪ 𝑢 ∈ (𝐹‘(𝑚𝑛))({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣})))
141 fvex 6835 . . . . . . . . . . . . . . . . . 18 (𝐹‘(𝑚𝑛)) ∈ V
142141uniex 7674 . . . . . . . . . . . . . . . . . 18 (𝐹‘(𝑚𝑛)) ∈ V
143141, 142unex 7677 . . . . . . . . . . . . . . . . 17 ((𝐹‘(𝑚𝑛)) ∪ (𝐹‘(𝑚𝑛))) ∈ V
144141mptex 7157 . . . . . . . . . . . . . . . . . . . 20 (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣}) ∈ V
145144rnex 7840 . . . . . . . . . . . . . . . . . . 19 ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣}) ∈ V
14620, 145unex 7677 . . . . . . . . . . . . . . . . . 18 ({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣})) ∈ V
147141, 146iunex 7900 . . . . . . . . . . . . . . . . 17 𝑢 ∈ (𝐹‘(𝑚𝑛))({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣})) ∈ V
148143, 147unex 7677 . . . . . . . . . . . . . . . 16 (((𝐹‘(𝑚𝑛)) ∪ (𝐹‘(𝑚𝑛))) ∪ 𝑢 ∈ (𝐹‘(𝑚𝑛))({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣}))) ∈ V
149 id 22 . . . . . . . . . . . . . . . . . . 19 (𝑤 = (𝐹‘(𝑚𝑛)) → 𝑤 = (𝐹‘(𝑚𝑛)))
150 unieq 4867 . . . . . . . . . . . . . . . . . . 19 (𝑤 = (𝐹‘(𝑚𝑛)) → 𝑤 = (𝐹‘(𝑚𝑛)))
151149, 150uneq12d 4116 . . . . . . . . . . . . . . . . . 18 (𝑤 = (𝐹‘(𝑚𝑛)) → (𝑤 𝑤) = ((𝐹‘(𝑚𝑛)) ∪ (𝐹‘(𝑚𝑛))))
152 mpteq1 5178 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 = (𝐹‘(𝑚𝑛)) → (𝑣𝑤 ↦ {𝑢, 𝑣}) = (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣}))
153152rneqd 5877 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = (𝐹‘(𝑚𝑛)) → ran (𝑣𝑤 ↦ {𝑢, 𝑣}) = ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣}))
154153uneq2d 4115 . . . . . . . . . . . . . . . . . . 19 (𝑤 = (𝐹‘(𝑚𝑛)) → ({𝒫 𝑢, 𝑢} ∪ ran (𝑣𝑤 ↦ {𝑢, 𝑣})) = ({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣})))
155149, 154iuneq12d 4969 . . . . . . . . . . . . . . . . . 18 (𝑤 = (𝐹‘(𝑚𝑛)) → 𝑢𝑤 ({𝒫 𝑢, 𝑢} ∪ ran (𝑣𝑤 ↦ {𝑢, 𝑣})) = 𝑢 ∈ (𝐹‘(𝑚𝑛))({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣})))
156151, 155uneq12d 4116 . . . . . . . . . . . . . . . . 17 (𝑤 = (𝐹‘(𝑚𝑛)) → ((𝑤 𝑤) ∪ 𝑢𝑤 ({𝒫 𝑢, 𝑢} ∪ ran (𝑣𝑤 ↦ {𝑢, 𝑣}))) = (((𝐹‘(𝑚𝑛)) ∪ (𝐹‘(𝑚𝑛))) ∪ 𝑢 ∈ (𝐹‘(𝑚𝑛))({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣}))))
1574, 45, 156frsucmpt2 8359 . . . . . . . . . . . . . . . 16 (((𝑚𝑛) ∈ ω ∧ (((𝐹‘(𝑚𝑛)) ∪ (𝐹‘(𝑚𝑛))) ∪ 𝑢 ∈ (𝐹‘(𝑚𝑛))({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣}))) ∈ V) → (𝐹‘suc (𝑚𝑛)) = (((𝐹‘(𝑚𝑛)) ∪ (𝐹‘(𝑚𝑛))) ∪ 𝑢 ∈ (𝐹‘(𝑚𝑛))({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣}))))
158107, 148, 157sylancl 586 . . . . . . . . . . . . . . 15 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹𝑛))) → (𝐹‘suc (𝑚𝑛)) = (((𝐹‘(𝑚𝑛)) ∪ (𝐹‘(𝑚𝑛))) ∪ 𝑢 ∈ (𝐹‘(𝑚𝑛))({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣}))))
159140, 158sseqtrrid 3973 . . . . . . . . . . . . . 14 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹𝑛))) → 𝑢 ∈ (𝐹‘(𝑚𝑛))({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣})) ⊆ (𝐹‘suc (𝑚𝑛)))
160 fvssunirn 6853 . . . . . . . . . . . . . . 15 (𝐹‘suc (𝑚𝑛)) ⊆ ran 𝐹
161160, 1sseqtrri 3979 . . . . . . . . . . . . . 14 (𝐹‘suc (𝑚𝑛)) ⊆ 𝑈
162159, 161sstrdi 3942 . . . . . . . . . . . . 13 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹𝑛))) → 𝑢 ∈ (𝐹‘(𝑚𝑛))({𝒫 𝑢, 𝑢} ∪ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑢, 𝑣})) ⊆ 𝑈)
163139, 162sstrd 3940 . . . . . . . . . . . 12 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹𝑛))) → ({𝒫 𝑎, 𝑎} ∪ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑎, 𝑣})) ⊆ 𝑈)
164163unssbd 4141 . . . . . . . . . . 11 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹𝑛))) → ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑎, 𝑣}) ⊆ 𝑈)
165 ssun2 4126 . . . . . . . . . . . . . . . . . . 19 𝑛 ⊆ (𝑚𝑛)
166 id 22 . . . . . . . . . . . . . . . . . . 19 (𝑖 = (𝑚𝑛) → 𝑖 = (𝑚𝑛))
167165, 166sseqtrrid 3973 . . . . . . . . . . . . . . . . . 18 (𝑖 = (𝑚𝑛) → 𝑛𝑖)
168167biantrud 531 . . . . . . . . . . . . . . . . 17 (𝑖 = (𝑚𝑛) → (𝑛 ∈ ω ↔ (𝑛 ∈ ω ∧ 𝑛𝑖)))
169168bicomd 223 . . . . . . . . . . . . . . . 16 (𝑖 = (𝑚𝑛) → ((𝑛 ∈ ω ∧ 𝑛𝑖) ↔ 𝑛 ∈ ω))
170 fveq2 6822 . . . . . . . . . . . . . . . . 17 (𝑖 = (𝑚𝑛) → (𝐹𝑖) = (𝐹‘(𝑚𝑛)))
171170sseq2d 3962 . . . . . . . . . . . . . . . 16 (𝑖 = (𝑚𝑛) → ((𝐹𝑛) ⊆ (𝐹𝑖) ↔ (𝐹𝑛) ⊆ (𝐹‘(𝑚𝑛))))
172169, 171imbi12d 344 . . . . . . . . . . . . . . 15 (𝑖 = (𝑚𝑛) → (((𝑛 ∈ ω ∧ 𝑛𝑖) → (𝐹𝑛) ⊆ (𝐹𝑖)) ↔ (𝑛 ∈ ω → (𝐹𝑛) ⊆ (𝐹‘(𝑚𝑛)))))
173 eleq1w 2814 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = 𝑛 → (𝑚 ∈ ω ↔ 𝑛 ∈ ω))
174173anbi2d 630 . . . . . . . . . . . . . . . . . . 19 (𝑚 = 𝑛 → ((𝑖 ∈ ω ∧ 𝑚 ∈ ω) ↔ (𝑖 ∈ ω ∧ 𝑛 ∈ ω)))
175 sseq1 3955 . . . . . . . . . . . . . . . . . . 19 (𝑚 = 𝑛 → (𝑚𝑖𝑛𝑖))
176174, 175anbi12d 632 . . . . . . . . . . . . . . . . . 18 (𝑚 = 𝑛 → (((𝑖 ∈ ω ∧ 𝑚 ∈ ω) ∧ 𝑚𝑖) ↔ ((𝑖 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑛𝑖)))
177 fveq2 6822 . . . . . . . . . . . . . . . . . . 19 (𝑚 = 𝑛 → (𝐹𝑚) = (𝐹𝑛))
178177sseq1d 3961 . . . . . . . . . . . . . . . . . 18 (𝑚 = 𝑛 → ((𝐹𝑚) ⊆ (𝐹𝑖) ↔ (𝐹𝑛) ⊆ (𝐹𝑖)))
179176, 178imbi12d 344 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑛 → ((((𝑖 ∈ ω ∧ 𝑚 ∈ ω) ∧ 𝑚𝑖) → (𝐹𝑚) ⊆ (𝐹𝑖)) ↔ (((𝑖 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑛𝑖) → (𝐹𝑛) ⊆ (𝐹𝑖))))
180110, 112, 114, 112, 117, 129findsg 7827 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ ω ∧ 𝑚 ∈ ω) ∧ 𝑚𝑖) → (𝐹𝑚) ⊆ (𝐹𝑖))
181179, 180chvarvv 1990 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑛𝑖) → (𝐹𝑛) ⊆ (𝐹𝑖))
182181expl 457 . . . . . . . . . . . . . . 15 (𝑖 ∈ ω → ((𝑛 ∈ ω ∧ 𝑛𝑖) → (𝐹𝑛) ⊆ (𝐹𝑖)))
183172, 182vtoclga 3528 . . . . . . . . . . . . . 14 ((𝑚𝑛) ∈ ω → (𝑛 ∈ ω → (𝐹𝑛) ⊆ (𝐹‘(𝑚𝑛))))
184107, 105, 183sylc 65 . . . . . . . . . . . . 13 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹𝑛))) → (𝐹𝑛) ⊆ (𝐹‘(𝑚𝑛)))
185 simprr 772 . . . . . . . . . . . . 13 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹𝑛))) → 𝑏 ∈ (𝐹𝑛))
186184, 185sseldd 3930 . . . . . . . . . . . 12 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹𝑛))) → 𝑏 ∈ (𝐹‘(𝑚𝑛)))
187 prex 5373 . . . . . . . . . . . 12 {𝑎, 𝑏} ∈ V
188 eqid 2731 . . . . . . . . . . . . 13 (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑎, 𝑣}) = (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑎, 𝑣})
189 preq2 4684 . . . . . . . . . . . . 13 (𝑣 = 𝑏 → {𝑎, 𝑣} = {𝑎, 𝑏})
190188, 189elrnmpt1s 5898 . . . . . . . . . . . 12 ((𝑏 ∈ (𝐹‘(𝑚𝑛)) ∧ {𝑎, 𝑏} ∈ V) → {𝑎, 𝑏} ∈ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑎, 𝑣}))
191186, 187, 190sylancl 586 . . . . . . . . . . 11 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹𝑛))) → {𝑎, 𝑏} ∈ ran (𝑣 ∈ (𝐹‘(𝑚𝑛)) ↦ {𝑎, 𝑣}))
192164, 191sseldd 3930 . . . . . . . . . 10 (((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) ∧ (𝑛 ∈ ω ∧ 𝑏 ∈ (𝐹𝑛))) → {𝑎, 𝑏} ∈ 𝑈)
193192rexlimdvaa 3134 . . . . . . . . 9 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) → (∃𝑛 ∈ ω 𝑏 ∈ (𝐹𝑛) → {𝑎, 𝑏} ∈ 𝑈))
194102, 193biimtrid 242 . . . . . . . 8 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) → (𝑏𝑈 → {𝑎, 𝑏} ∈ 𝑈))
195194ralrimiv 3123 . . . . . . 7 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) → ∀𝑏𝑈 {𝑎, 𝑏} ∈ 𝑈)
19697, 98, 1953jca 1128 . . . . . 6 ((𝐴𝑉 ∧ (𝑚 ∈ ω ∧ 𝑎 ∈ (𝐹𝑚))) → ( 𝑎𝑈 ∧ 𝒫 𝑎𝑈 ∧ ∀𝑏𝑈 {𝑎, 𝑏} ∈ 𝑈))
197196rexlimdvaa 3134 . . . . 5 (𝐴𝑉 → (∃𝑚 ∈ ω 𝑎 ∈ (𝐹𝑚) → ( 𝑎𝑈 ∧ 𝒫 𝑎𝑈 ∧ ∀𝑏𝑈 {𝑎, 𝑏} ∈ 𝑈)))
1989, 197biimtrid 242 . . . 4 (𝐴𝑉 → (𝑎𝑈 → ( 𝑎𝑈 ∧ 𝒫 𝑎𝑈 ∧ ∀𝑏𝑈 {𝑎, 𝑏} ∈ 𝑈)))
199198ralrimiv 3123 . . 3 (𝐴𝑉 → ∀𝑎𝑈 ( 𝑎𝑈 ∧ 𝒫 𝑎𝑈 ∧ ∀𝑏𝑈 {𝑎, 𝑏} ∈ 𝑈))
200 rdgfun 8335 . . . . . . . . 9 Fun rec((𝑧 ∈ V ↦ ((𝑧 𝑧) ∪ 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1o))
201 omex 9533 . . . . . . . . 9 ω ∈ V
202 resfunexg 7149 . . . . . . . . 9 ((Fun rec((𝑧 ∈ V ↦ ((𝑧 𝑧) ∪ 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1o)) ∧ ω ∈ V) → (rec((𝑧 ∈ V ↦ ((𝑧 𝑧) ∪ 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1o)) ↾ ω) ∈ V)
203200, 201, 202mp2an 692 . . . . . . . 8 (rec((𝑧 ∈ V ↦ ((𝑧 𝑧) ∪ 𝑥𝑧 ({𝒫 𝑥, 𝑥} ∪ ran (𝑦𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1o)) ↾ ω) ∈ V
2044, 203eqeltri 2827 . . . . . . 7 𝐹 ∈ V
205204rnex 7840 . . . . . 6 ran 𝐹 ∈ V
206205uniex 7674 . . . . 5 ran 𝐹 ∈ V
2071, 206eqeltri 2827 . . . 4 𝑈 ∈ V
208 iswun 10595 . . . 4 (𝑈 ∈ V → (𝑈 ∈ WUni ↔ (Tr 𝑈𝑈 ≠ ∅ ∧ ∀𝑎𝑈 ( 𝑎𝑈 ∧ 𝒫 𝑎𝑈 ∧ ∀𝑏𝑈 {𝑎, 𝑏} ∈ 𝑈))))
209207, 208ax-mp 5 . . 3 (𝑈 ∈ WUni ↔ (Tr 𝑈𝑈 ≠ ∅ ∧ ∀𝑎𝑈 ( 𝑎𝑈 ∧ 𝒫 𝑎𝑈 ∧ ∀𝑏𝑈 {𝑎, 𝑏} ∈ 𝑈)))
21064, 78, 199, 209syl3anbrc 1344 . 2 (𝐴𝑉𝑈 ∈ WUni)
21174unssad 4140 . 2 (𝐴𝑉𝐴𝑈)
212210, 211jca 511 1 (𝐴𝑉 → (𝑈 ∈ WUni ∧ 𝐴𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  Vcvv 3436  cun 3895  wss 3897  c0 4280  𝒫 cpw 4547  {cpr 4575   cuni 4856   ciun 4939  cmpt 5170  Tr wtr 5196  ran crn 5615  cres 5616  Ord word 6305  Oncon0 6306  suc csuc 6308  Fun wfun 6475   Fn wfn 6476  cfv 6481  ωcom 7796  reccrdg 8328  1oc1o 8378  WUnicwun 10591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-wun 10593
This theorem is referenced by:  wunex  10630  wuncval2  10638
  Copyright terms: Public domain W3C validator