| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tskwun | Structured version Visualization version GIF version | ||
| Description: A nonempty transitive Tarski class is a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| tskwun | ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅) → 𝑇 ∈ WUni) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1137 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅) → Tr 𝑇) | |
| 2 | simp3 1138 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅) → 𝑇 ≠ ∅) | |
| 3 | tskuni 10681 | . . . . . 6 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑥 ∈ 𝑇) → ∪ 𝑥 ∈ 𝑇) | |
| 4 | 3 | 3expa 1118 | . . . . 5 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥 ∈ 𝑇) → ∪ 𝑥 ∈ 𝑇) |
| 5 | 4 | 3adantl3 1169 | . . . 4 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅) ∧ 𝑥 ∈ 𝑇) → ∪ 𝑥 ∈ 𝑇) |
| 6 | tskpw 10651 | . . . . 5 ⊢ ((𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇) → 𝒫 𝑥 ∈ 𝑇) | |
| 7 | 6 | 3ad2antl1 1186 | . . . 4 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅) ∧ 𝑥 ∈ 𝑇) → 𝒫 𝑥 ∈ 𝑇) |
| 8 | tskpr 10668 | . . . . . . . 8 ⊢ ((𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇) → {𝑥, 𝑦} ∈ 𝑇) | |
| 9 | 8 | 3exp 1119 | . . . . . . 7 ⊢ (𝑇 ∈ Tarski → (𝑥 ∈ 𝑇 → (𝑦 ∈ 𝑇 → {𝑥, 𝑦} ∈ 𝑇))) |
| 10 | 9 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅) → (𝑥 ∈ 𝑇 → (𝑦 ∈ 𝑇 → {𝑥, 𝑦} ∈ 𝑇))) |
| 11 | 10 | imp31 417 | . . . . 5 ⊢ ((((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅) ∧ 𝑥 ∈ 𝑇) ∧ 𝑦 ∈ 𝑇) → {𝑥, 𝑦} ∈ 𝑇) |
| 12 | 11 | ralrimiva 3125 | . . . 4 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅) ∧ 𝑥 ∈ 𝑇) → ∀𝑦 ∈ 𝑇 {𝑥, 𝑦} ∈ 𝑇) |
| 13 | 5, 7, 12 | 3jca 1128 | . . 3 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅) ∧ 𝑥 ∈ 𝑇) → (∪ 𝑥 ∈ 𝑇 ∧ 𝒫 𝑥 ∈ 𝑇 ∧ ∀𝑦 ∈ 𝑇 {𝑥, 𝑦} ∈ 𝑇)) |
| 14 | 13 | ralrimiva 3125 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅) → ∀𝑥 ∈ 𝑇 (∪ 𝑥 ∈ 𝑇 ∧ 𝒫 𝑥 ∈ 𝑇 ∧ ∀𝑦 ∈ 𝑇 {𝑥, 𝑦} ∈ 𝑇)) |
| 15 | iswun 10602 | . . 3 ⊢ (𝑇 ∈ Tarski → (𝑇 ∈ WUni ↔ (Tr 𝑇 ∧ 𝑇 ≠ ∅ ∧ ∀𝑥 ∈ 𝑇 (∪ 𝑥 ∈ 𝑇 ∧ 𝒫 𝑥 ∈ 𝑇 ∧ ∀𝑦 ∈ 𝑇 {𝑥, 𝑦} ∈ 𝑇)))) | |
| 16 | 15 | 3ad2ant1 1133 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅) → (𝑇 ∈ WUni ↔ (Tr 𝑇 ∧ 𝑇 ≠ ∅ ∧ ∀𝑥 ∈ 𝑇 (∪ 𝑥 ∈ 𝑇 ∧ 𝒫 𝑥 ∈ 𝑇 ∧ ∀𝑦 ∈ 𝑇 {𝑥, 𝑦} ∈ 𝑇)))) |
| 17 | 1, 2, 14, 16 | mpbir3and 1343 | 1 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅) → 𝑇 ∈ WUni) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2113 ≠ wne 2929 ∀wral 3048 ∅c0 4282 𝒫 cpw 4549 {cpr 4577 ∪ cuni 4858 Tr wtr 5200 WUnicwun 10598 Tarskictsk 10646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 ax-ac2 10361 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-smo 8272 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-oi 9403 df-har 9450 df-r1 9664 df-card 9839 df-aleph 9840 df-cf 9841 df-acn 9842 df-ac 10014 df-wina 10582 df-ina 10583 df-wun 10600 df-tsk 10647 |
| This theorem is referenced by: tskxp 10685 tskmap 10686 |
| Copyright terms: Public domain | W3C validator |