MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskwun Structured version   Visualization version   GIF version

Theorem tskwun 10682
Description: A nonempty transitive Tarski class is a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
tskwun ((𝑇 ∈ Tarski ∧ Tr 𝑇𝑇 ≠ ∅) → 𝑇 ∈ WUni)

Proof of Theorem tskwun
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1137 . 2 ((𝑇 ∈ Tarski ∧ Tr 𝑇𝑇 ≠ ∅) → Tr 𝑇)
2 simp3 1138 . 2 ((𝑇 ∈ Tarski ∧ Tr 𝑇𝑇 ≠ ∅) → 𝑇 ≠ ∅)
3 tskuni 10681 . . . . . 6 ((𝑇 ∈ Tarski ∧ Tr 𝑇𝑥𝑇) → 𝑥𝑇)
433expa 1118 . . . . 5 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥𝑇) → 𝑥𝑇)
543adantl3 1169 . . . 4 (((𝑇 ∈ Tarski ∧ Tr 𝑇𝑇 ≠ ∅) ∧ 𝑥𝑇) → 𝑥𝑇)
6 tskpw 10651 . . . . 5 ((𝑇 ∈ Tarski ∧ 𝑥𝑇) → 𝒫 𝑥𝑇)
763ad2antl1 1186 . . . 4 (((𝑇 ∈ Tarski ∧ Tr 𝑇𝑇 ≠ ∅) ∧ 𝑥𝑇) → 𝒫 𝑥𝑇)
8 tskpr 10668 . . . . . . . 8 ((𝑇 ∈ Tarski ∧ 𝑥𝑇𝑦𝑇) → {𝑥, 𝑦} ∈ 𝑇)
983exp 1119 . . . . . . 7 (𝑇 ∈ Tarski → (𝑥𝑇 → (𝑦𝑇 → {𝑥, 𝑦} ∈ 𝑇)))
1093ad2ant1 1133 . . . . . 6 ((𝑇 ∈ Tarski ∧ Tr 𝑇𝑇 ≠ ∅) → (𝑥𝑇 → (𝑦𝑇 → {𝑥, 𝑦} ∈ 𝑇)))
1110imp31 417 . . . . 5 ((((𝑇 ∈ Tarski ∧ Tr 𝑇𝑇 ≠ ∅) ∧ 𝑥𝑇) ∧ 𝑦𝑇) → {𝑥, 𝑦} ∈ 𝑇)
1211ralrimiva 3125 . . . 4 (((𝑇 ∈ Tarski ∧ Tr 𝑇𝑇 ≠ ∅) ∧ 𝑥𝑇) → ∀𝑦𝑇 {𝑥, 𝑦} ∈ 𝑇)
135, 7, 123jca 1128 . . 3 (((𝑇 ∈ Tarski ∧ Tr 𝑇𝑇 ≠ ∅) ∧ 𝑥𝑇) → ( 𝑥𝑇 ∧ 𝒫 𝑥𝑇 ∧ ∀𝑦𝑇 {𝑥, 𝑦} ∈ 𝑇))
1413ralrimiva 3125 . 2 ((𝑇 ∈ Tarski ∧ Tr 𝑇𝑇 ≠ ∅) → ∀𝑥𝑇 ( 𝑥𝑇 ∧ 𝒫 𝑥𝑇 ∧ ∀𝑦𝑇 {𝑥, 𝑦} ∈ 𝑇))
15 iswun 10602 . . 3 (𝑇 ∈ Tarski → (𝑇 ∈ WUni ↔ (Tr 𝑇𝑇 ≠ ∅ ∧ ∀𝑥𝑇 ( 𝑥𝑇 ∧ 𝒫 𝑥𝑇 ∧ ∀𝑦𝑇 {𝑥, 𝑦} ∈ 𝑇))))
16153ad2ant1 1133 . 2 ((𝑇 ∈ Tarski ∧ Tr 𝑇𝑇 ≠ ∅) → (𝑇 ∈ WUni ↔ (Tr 𝑇𝑇 ≠ ∅ ∧ ∀𝑥𝑇 ( 𝑥𝑇 ∧ 𝒫 𝑥𝑇 ∧ ∀𝑦𝑇 {𝑥, 𝑦} ∈ 𝑇))))
171, 2, 14, 16mpbir3and 1343 1 ((𝑇 ∈ Tarski ∧ Tr 𝑇𝑇 ≠ ∅) → 𝑇 ∈ WUni)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2113  wne 2929  wral 3048  c0 4282  𝒫 cpw 4549  {cpr 4577   cuni 4858  Tr wtr 5200  WUnicwun 10598  Tarskictsk 10646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-ac2 10361
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-smo 8272  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-oi 9403  df-har 9450  df-r1 9664  df-card 9839  df-aleph 9840  df-cf 9841  df-acn 9842  df-ac 10014  df-wina 10582  df-ina 10583  df-wun 10600  df-tsk 10647
This theorem is referenced by:  tskxp  10685  tskmap  10686
  Copyright terms: Public domain W3C validator