| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tskwun | Structured version Visualization version GIF version | ||
| Description: A nonempty transitive Tarski class is a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| tskwun | ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅) → 𝑇 ∈ WUni) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1137 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅) → Tr 𝑇) | |
| 2 | simp3 1138 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅) → 𝑇 ≠ ∅) | |
| 3 | tskuni 10805 | . . . . . 6 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑥 ∈ 𝑇) → ∪ 𝑥 ∈ 𝑇) | |
| 4 | 3 | 3expa 1118 | . . . . 5 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥 ∈ 𝑇) → ∪ 𝑥 ∈ 𝑇) |
| 5 | 4 | 3adantl3 1168 | . . . 4 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅) ∧ 𝑥 ∈ 𝑇) → ∪ 𝑥 ∈ 𝑇) |
| 6 | tskpw 10775 | . . . . 5 ⊢ ((𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇) → 𝒫 𝑥 ∈ 𝑇) | |
| 7 | 6 | 3ad2antl1 1185 | . . . 4 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅) ∧ 𝑥 ∈ 𝑇) → 𝒫 𝑥 ∈ 𝑇) |
| 8 | tskpr 10792 | . . . . . . . 8 ⊢ ((𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇) → {𝑥, 𝑦} ∈ 𝑇) | |
| 9 | 8 | 3exp 1119 | . . . . . . 7 ⊢ (𝑇 ∈ Tarski → (𝑥 ∈ 𝑇 → (𝑦 ∈ 𝑇 → {𝑥, 𝑦} ∈ 𝑇))) |
| 10 | 9 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅) → (𝑥 ∈ 𝑇 → (𝑦 ∈ 𝑇 → {𝑥, 𝑦} ∈ 𝑇))) |
| 11 | 10 | imp31 417 | . . . . 5 ⊢ ((((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅) ∧ 𝑥 ∈ 𝑇) ∧ 𝑦 ∈ 𝑇) → {𝑥, 𝑦} ∈ 𝑇) |
| 12 | 11 | ralrimiva 3133 | . . . 4 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅) ∧ 𝑥 ∈ 𝑇) → ∀𝑦 ∈ 𝑇 {𝑥, 𝑦} ∈ 𝑇) |
| 13 | 5, 7, 12 | 3jca 1128 | . . 3 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅) ∧ 𝑥 ∈ 𝑇) → (∪ 𝑥 ∈ 𝑇 ∧ 𝒫 𝑥 ∈ 𝑇 ∧ ∀𝑦 ∈ 𝑇 {𝑥, 𝑦} ∈ 𝑇)) |
| 14 | 13 | ralrimiva 3133 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅) → ∀𝑥 ∈ 𝑇 (∪ 𝑥 ∈ 𝑇 ∧ 𝒫 𝑥 ∈ 𝑇 ∧ ∀𝑦 ∈ 𝑇 {𝑥, 𝑦} ∈ 𝑇)) |
| 15 | iswun 10726 | . . 3 ⊢ (𝑇 ∈ Tarski → (𝑇 ∈ WUni ↔ (Tr 𝑇 ∧ 𝑇 ≠ ∅ ∧ ∀𝑥 ∈ 𝑇 (∪ 𝑥 ∈ 𝑇 ∧ 𝒫 𝑥 ∈ 𝑇 ∧ ∀𝑦 ∈ 𝑇 {𝑥, 𝑦} ∈ 𝑇)))) | |
| 16 | 15 | 3ad2ant1 1133 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅) → (𝑇 ∈ WUni ↔ (Tr 𝑇 ∧ 𝑇 ≠ ∅ ∧ ∀𝑥 ∈ 𝑇 (∪ 𝑥 ∈ 𝑇 ∧ 𝒫 𝑥 ∈ 𝑇 ∧ ∀𝑦 ∈ 𝑇 {𝑥, 𝑦} ∈ 𝑇)))) |
| 17 | 1, 2, 14, 16 | mpbir3and 1342 | 1 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅) → 𝑇 ∈ WUni) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2107 ≠ wne 2931 ∀wral 3050 ∅c0 4313 𝒫 cpw 4580 {cpr 4608 ∪ cuni 4887 Tr wtr 5239 WUnicwun 10722 Tarskictsk 10770 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-inf2 9663 ax-ac2 10485 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-smo 8368 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-er 8727 df-map 8850 df-ixp 8920 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-oi 9532 df-har 9579 df-r1 9786 df-card 9961 df-aleph 9962 df-cf 9963 df-acn 9964 df-ac 10138 df-wina 10706 df-ina 10707 df-wun 10724 df-tsk 10771 |
| This theorem is referenced by: tskxp 10809 tskmap 10810 |
| Copyright terms: Public domain | W3C validator |