MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskwun Structured version   Visualization version   GIF version

Theorem tskwun 10697
Description: A nonempty transitive Tarski class is a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
tskwun ((𝑇 ∈ Tarski ∧ Tr 𝑇𝑇 ≠ ∅) → 𝑇 ∈ WUni)

Proof of Theorem tskwun
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1137 . 2 ((𝑇 ∈ Tarski ∧ Tr 𝑇𝑇 ≠ ∅) → Tr 𝑇)
2 simp3 1138 . 2 ((𝑇 ∈ Tarski ∧ Tr 𝑇𝑇 ≠ ∅) → 𝑇 ≠ ∅)
3 tskuni 10696 . . . . . 6 ((𝑇 ∈ Tarski ∧ Tr 𝑇𝑥𝑇) → 𝑥𝑇)
433expa 1118 . . . . 5 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥𝑇) → 𝑥𝑇)
543adantl3 1169 . . . 4 (((𝑇 ∈ Tarski ∧ Tr 𝑇𝑇 ≠ ∅) ∧ 𝑥𝑇) → 𝑥𝑇)
6 tskpw 10666 . . . . 5 ((𝑇 ∈ Tarski ∧ 𝑥𝑇) → 𝒫 𝑥𝑇)
763ad2antl1 1186 . . . 4 (((𝑇 ∈ Tarski ∧ Tr 𝑇𝑇 ≠ ∅) ∧ 𝑥𝑇) → 𝒫 𝑥𝑇)
8 tskpr 10683 . . . . . . . 8 ((𝑇 ∈ Tarski ∧ 𝑥𝑇𝑦𝑇) → {𝑥, 𝑦} ∈ 𝑇)
983exp 1119 . . . . . . 7 (𝑇 ∈ Tarski → (𝑥𝑇 → (𝑦𝑇 → {𝑥, 𝑦} ∈ 𝑇)))
1093ad2ant1 1133 . . . . . 6 ((𝑇 ∈ Tarski ∧ Tr 𝑇𝑇 ≠ ∅) → (𝑥𝑇 → (𝑦𝑇 → {𝑥, 𝑦} ∈ 𝑇)))
1110imp31 417 . . . . 5 ((((𝑇 ∈ Tarski ∧ Tr 𝑇𝑇 ≠ ∅) ∧ 𝑥𝑇) ∧ 𝑦𝑇) → {𝑥, 𝑦} ∈ 𝑇)
1211ralrimiva 3121 . . . 4 (((𝑇 ∈ Tarski ∧ Tr 𝑇𝑇 ≠ ∅) ∧ 𝑥𝑇) → ∀𝑦𝑇 {𝑥, 𝑦} ∈ 𝑇)
135, 7, 123jca 1128 . . 3 (((𝑇 ∈ Tarski ∧ Tr 𝑇𝑇 ≠ ∅) ∧ 𝑥𝑇) → ( 𝑥𝑇 ∧ 𝒫 𝑥𝑇 ∧ ∀𝑦𝑇 {𝑥, 𝑦} ∈ 𝑇))
1413ralrimiva 3121 . 2 ((𝑇 ∈ Tarski ∧ Tr 𝑇𝑇 ≠ ∅) → ∀𝑥𝑇 ( 𝑥𝑇 ∧ 𝒫 𝑥𝑇 ∧ ∀𝑦𝑇 {𝑥, 𝑦} ∈ 𝑇))
15 iswun 10617 . . 3 (𝑇 ∈ Tarski → (𝑇 ∈ WUni ↔ (Tr 𝑇𝑇 ≠ ∅ ∧ ∀𝑥𝑇 ( 𝑥𝑇 ∧ 𝒫 𝑥𝑇 ∧ ∀𝑦𝑇 {𝑥, 𝑦} ∈ 𝑇))))
16153ad2ant1 1133 . 2 ((𝑇 ∈ Tarski ∧ Tr 𝑇𝑇 ≠ ∅) → (𝑇 ∈ WUni ↔ (Tr 𝑇𝑇 ≠ ∅ ∧ ∀𝑥𝑇 ( 𝑥𝑇 ∧ 𝒫 𝑥𝑇 ∧ ∀𝑦𝑇 {𝑥, 𝑦} ∈ 𝑇))))
171, 2, 14, 16mpbir3and 1343 1 ((𝑇 ∈ Tarski ∧ Tr 𝑇𝑇 ≠ ∅) → 𝑇 ∈ WUni)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2109  wne 2925  wral 3044  c0 4286  𝒫 cpw 4553  {cpr 4581   cuni 4861  Tr wtr 5202  WUnicwun 10613  Tarskictsk 10661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-ac2 10376
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-smo 8276  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-oi 9421  df-har 9468  df-r1 9679  df-card 9854  df-aleph 9855  df-cf 9856  df-acn 9857  df-ac 10029  df-wina 10597  df-ina 10598  df-wun 10615  df-tsk 10662
This theorem is referenced by:  tskxp  10700  tskmap  10701
  Copyright terms: Public domain W3C validator