| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tskwun | Structured version Visualization version GIF version | ||
| Description: A nonempty transitive Tarski class is a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| tskwun | ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅) → 𝑇 ∈ WUni) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1137 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅) → Tr 𝑇) | |
| 2 | simp3 1138 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅) → 𝑇 ≠ ∅) | |
| 3 | tskuni 10797 | . . . . . 6 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑥 ∈ 𝑇) → ∪ 𝑥 ∈ 𝑇) | |
| 4 | 3 | 3expa 1118 | . . . . 5 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥 ∈ 𝑇) → ∪ 𝑥 ∈ 𝑇) |
| 5 | 4 | 3adantl3 1169 | . . . 4 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅) ∧ 𝑥 ∈ 𝑇) → ∪ 𝑥 ∈ 𝑇) |
| 6 | tskpw 10767 | . . . . 5 ⊢ ((𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇) → 𝒫 𝑥 ∈ 𝑇) | |
| 7 | 6 | 3ad2antl1 1186 | . . . 4 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅) ∧ 𝑥 ∈ 𝑇) → 𝒫 𝑥 ∈ 𝑇) |
| 8 | tskpr 10784 | . . . . . . . 8 ⊢ ((𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇) → {𝑥, 𝑦} ∈ 𝑇) | |
| 9 | 8 | 3exp 1119 | . . . . . . 7 ⊢ (𝑇 ∈ Tarski → (𝑥 ∈ 𝑇 → (𝑦 ∈ 𝑇 → {𝑥, 𝑦} ∈ 𝑇))) |
| 10 | 9 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅) → (𝑥 ∈ 𝑇 → (𝑦 ∈ 𝑇 → {𝑥, 𝑦} ∈ 𝑇))) |
| 11 | 10 | imp31 417 | . . . . 5 ⊢ ((((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅) ∧ 𝑥 ∈ 𝑇) ∧ 𝑦 ∈ 𝑇) → {𝑥, 𝑦} ∈ 𝑇) |
| 12 | 11 | ralrimiva 3132 | . . . 4 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅) ∧ 𝑥 ∈ 𝑇) → ∀𝑦 ∈ 𝑇 {𝑥, 𝑦} ∈ 𝑇) |
| 13 | 5, 7, 12 | 3jca 1128 | . . 3 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅) ∧ 𝑥 ∈ 𝑇) → (∪ 𝑥 ∈ 𝑇 ∧ 𝒫 𝑥 ∈ 𝑇 ∧ ∀𝑦 ∈ 𝑇 {𝑥, 𝑦} ∈ 𝑇)) |
| 14 | 13 | ralrimiva 3132 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅) → ∀𝑥 ∈ 𝑇 (∪ 𝑥 ∈ 𝑇 ∧ 𝒫 𝑥 ∈ 𝑇 ∧ ∀𝑦 ∈ 𝑇 {𝑥, 𝑦} ∈ 𝑇)) |
| 15 | iswun 10718 | . . 3 ⊢ (𝑇 ∈ Tarski → (𝑇 ∈ WUni ↔ (Tr 𝑇 ∧ 𝑇 ≠ ∅ ∧ ∀𝑥 ∈ 𝑇 (∪ 𝑥 ∈ 𝑇 ∧ 𝒫 𝑥 ∈ 𝑇 ∧ ∀𝑦 ∈ 𝑇 {𝑥, 𝑦} ∈ 𝑇)))) | |
| 16 | 15 | 3ad2ant1 1133 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅) → (𝑇 ∈ WUni ↔ (Tr 𝑇 ∧ 𝑇 ≠ ∅ ∧ ∀𝑥 ∈ 𝑇 (∪ 𝑥 ∈ 𝑇 ∧ 𝒫 𝑥 ∈ 𝑇 ∧ ∀𝑦 ∈ 𝑇 {𝑥, 𝑦} ∈ 𝑇)))) |
| 17 | 1, 2, 14, 16 | mpbir3and 1343 | 1 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅) → 𝑇 ∈ WUni) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2108 ≠ wne 2932 ∀wral 3051 ∅c0 4308 𝒫 cpw 4575 {cpr 4603 ∪ cuni 4883 Tr wtr 5229 WUnicwun 10714 Tarskictsk 10762 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-ac2 10477 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-smo 8360 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-oi 9524 df-har 9571 df-r1 9778 df-card 9953 df-aleph 9954 df-cf 9955 df-acn 9956 df-ac 10130 df-wina 10698 df-ina 10699 df-wun 10716 df-tsk 10763 |
| This theorem is referenced by: tskxp 10801 tskmap 10802 |
| Copyright terms: Public domain | W3C validator |