| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tskwun | Structured version Visualization version GIF version | ||
| Description: A nonempty transitive Tarski class is a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| tskwun | ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅) → 𝑇 ∈ WUni) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1137 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅) → Tr 𝑇) | |
| 2 | simp3 1138 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅) → 𝑇 ≠ ∅) | |
| 3 | tskuni 10671 | . . . . . 6 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑥 ∈ 𝑇) → ∪ 𝑥 ∈ 𝑇) | |
| 4 | 3 | 3expa 1118 | . . . . 5 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥 ∈ 𝑇) → ∪ 𝑥 ∈ 𝑇) |
| 5 | 4 | 3adantl3 1169 | . . . 4 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅) ∧ 𝑥 ∈ 𝑇) → ∪ 𝑥 ∈ 𝑇) |
| 6 | tskpw 10641 | . . . . 5 ⊢ ((𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇) → 𝒫 𝑥 ∈ 𝑇) | |
| 7 | 6 | 3ad2antl1 1186 | . . . 4 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅) ∧ 𝑥 ∈ 𝑇) → 𝒫 𝑥 ∈ 𝑇) |
| 8 | tskpr 10658 | . . . . . . . 8 ⊢ ((𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇) → {𝑥, 𝑦} ∈ 𝑇) | |
| 9 | 8 | 3exp 1119 | . . . . . . 7 ⊢ (𝑇 ∈ Tarski → (𝑥 ∈ 𝑇 → (𝑦 ∈ 𝑇 → {𝑥, 𝑦} ∈ 𝑇))) |
| 10 | 9 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅) → (𝑥 ∈ 𝑇 → (𝑦 ∈ 𝑇 → {𝑥, 𝑦} ∈ 𝑇))) |
| 11 | 10 | imp31 417 | . . . . 5 ⊢ ((((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅) ∧ 𝑥 ∈ 𝑇) ∧ 𝑦 ∈ 𝑇) → {𝑥, 𝑦} ∈ 𝑇) |
| 12 | 11 | ralrimiva 3124 | . . . 4 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅) ∧ 𝑥 ∈ 𝑇) → ∀𝑦 ∈ 𝑇 {𝑥, 𝑦} ∈ 𝑇) |
| 13 | 5, 7, 12 | 3jca 1128 | . . 3 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅) ∧ 𝑥 ∈ 𝑇) → (∪ 𝑥 ∈ 𝑇 ∧ 𝒫 𝑥 ∈ 𝑇 ∧ ∀𝑦 ∈ 𝑇 {𝑥, 𝑦} ∈ 𝑇)) |
| 14 | 13 | ralrimiva 3124 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅) → ∀𝑥 ∈ 𝑇 (∪ 𝑥 ∈ 𝑇 ∧ 𝒫 𝑥 ∈ 𝑇 ∧ ∀𝑦 ∈ 𝑇 {𝑥, 𝑦} ∈ 𝑇)) |
| 15 | iswun 10592 | . . 3 ⊢ (𝑇 ∈ Tarski → (𝑇 ∈ WUni ↔ (Tr 𝑇 ∧ 𝑇 ≠ ∅ ∧ ∀𝑥 ∈ 𝑇 (∪ 𝑥 ∈ 𝑇 ∧ 𝒫 𝑥 ∈ 𝑇 ∧ ∀𝑦 ∈ 𝑇 {𝑥, 𝑦} ∈ 𝑇)))) | |
| 16 | 15 | 3ad2ant1 1133 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅) → (𝑇 ∈ WUni ↔ (Tr 𝑇 ∧ 𝑇 ≠ ∅ ∧ ∀𝑥 ∈ 𝑇 (∪ 𝑥 ∈ 𝑇 ∧ 𝒫 𝑥 ∈ 𝑇 ∧ ∀𝑦 ∈ 𝑇 {𝑥, 𝑦} ∈ 𝑇)))) |
| 17 | 1, 2, 14, 16 | mpbir3and 1343 | 1 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅) → 𝑇 ∈ WUni) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ∅c0 4283 𝒫 cpw 4550 {cpr 4578 ∪ cuni 4859 Tr wtr 5198 WUnicwun 10588 Tarskictsk 10636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-ac2 10351 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-smo 8266 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-oi 9396 df-har 9443 df-r1 9654 df-card 9829 df-aleph 9830 df-cf 9831 df-acn 9832 df-ac 10004 df-wina 10572 df-ina 10573 df-wun 10590 df-tsk 10637 |
| This theorem is referenced by: tskxp 10675 tskmap 10676 |
| Copyright terms: Public domain | W3C validator |