MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskwun Structured version   Visualization version   GIF version

Theorem tskwun 10737
Description: A nonempty transitive Tarski class is a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
tskwun ((𝑇 ∈ Tarski ∧ Tr 𝑇𝑇 ≠ ∅) → 𝑇 ∈ WUni)

Proof of Theorem tskwun
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1137 . 2 ((𝑇 ∈ Tarski ∧ Tr 𝑇𝑇 ≠ ∅) → Tr 𝑇)
2 simp3 1138 . 2 ((𝑇 ∈ Tarski ∧ Tr 𝑇𝑇 ≠ ∅) → 𝑇 ≠ ∅)
3 tskuni 10736 . . . . . 6 ((𝑇 ∈ Tarski ∧ Tr 𝑇𝑥𝑇) → 𝑥𝑇)
433expa 1118 . . . . 5 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥𝑇) → 𝑥𝑇)
543adantl3 1169 . . . 4 (((𝑇 ∈ Tarski ∧ Tr 𝑇𝑇 ≠ ∅) ∧ 𝑥𝑇) → 𝑥𝑇)
6 tskpw 10706 . . . . 5 ((𝑇 ∈ Tarski ∧ 𝑥𝑇) → 𝒫 𝑥𝑇)
763ad2antl1 1186 . . . 4 (((𝑇 ∈ Tarski ∧ Tr 𝑇𝑇 ≠ ∅) ∧ 𝑥𝑇) → 𝒫 𝑥𝑇)
8 tskpr 10723 . . . . . . . 8 ((𝑇 ∈ Tarski ∧ 𝑥𝑇𝑦𝑇) → {𝑥, 𝑦} ∈ 𝑇)
983exp 1119 . . . . . . 7 (𝑇 ∈ Tarski → (𝑥𝑇 → (𝑦𝑇 → {𝑥, 𝑦} ∈ 𝑇)))
1093ad2ant1 1133 . . . . . 6 ((𝑇 ∈ Tarski ∧ Tr 𝑇𝑇 ≠ ∅) → (𝑥𝑇 → (𝑦𝑇 → {𝑥, 𝑦} ∈ 𝑇)))
1110imp31 417 . . . . 5 ((((𝑇 ∈ Tarski ∧ Tr 𝑇𝑇 ≠ ∅) ∧ 𝑥𝑇) ∧ 𝑦𝑇) → {𝑥, 𝑦} ∈ 𝑇)
1211ralrimiva 3125 . . . 4 (((𝑇 ∈ Tarski ∧ Tr 𝑇𝑇 ≠ ∅) ∧ 𝑥𝑇) → ∀𝑦𝑇 {𝑥, 𝑦} ∈ 𝑇)
135, 7, 123jca 1128 . . 3 (((𝑇 ∈ Tarski ∧ Tr 𝑇𝑇 ≠ ∅) ∧ 𝑥𝑇) → ( 𝑥𝑇 ∧ 𝒫 𝑥𝑇 ∧ ∀𝑦𝑇 {𝑥, 𝑦} ∈ 𝑇))
1413ralrimiva 3125 . 2 ((𝑇 ∈ Tarski ∧ Tr 𝑇𝑇 ≠ ∅) → ∀𝑥𝑇 ( 𝑥𝑇 ∧ 𝒫 𝑥𝑇 ∧ ∀𝑦𝑇 {𝑥, 𝑦} ∈ 𝑇))
15 iswun 10657 . . 3 (𝑇 ∈ Tarski → (𝑇 ∈ WUni ↔ (Tr 𝑇𝑇 ≠ ∅ ∧ ∀𝑥𝑇 ( 𝑥𝑇 ∧ 𝒫 𝑥𝑇 ∧ ∀𝑦𝑇 {𝑥, 𝑦} ∈ 𝑇))))
16153ad2ant1 1133 . 2 ((𝑇 ∈ Tarski ∧ Tr 𝑇𝑇 ≠ ∅) → (𝑇 ∈ WUni ↔ (Tr 𝑇𝑇 ≠ ∅ ∧ ∀𝑥𝑇 ( 𝑥𝑇 ∧ 𝒫 𝑥𝑇 ∧ ∀𝑦𝑇 {𝑥, 𝑦} ∈ 𝑇))))
171, 2, 14, 16mpbir3and 1343 1 ((𝑇 ∈ Tarski ∧ Tr 𝑇𝑇 ≠ ∅) → 𝑇 ∈ WUni)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2109  wne 2925  wral 3044  c0 4296  𝒫 cpw 4563  {cpr 4591   cuni 4871  Tr wtr 5214  WUnicwun 10653  Tarskictsk 10701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-ac2 10416
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-smo 8315  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-oi 9463  df-har 9510  df-r1 9717  df-card 9892  df-aleph 9893  df-cf 9894  df-acn 9895  df-ac 10069  df-wina 10637  df-ina 10638  df-wun 10655  df-tsk 10702
This theorem is referenced by:  tskxp  10740  tskmap  10741
  Copyright terms: Public domain W3C validator