| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reseq12d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for restrictions. (Contributed by NM, 21-Oct-2014.) |
| Ref | Expression |
|---|---|
| reseqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| reseqd.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| reseq12d | ⊢ (𝜑 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reseqd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | reseq1d 5934 | . 2 ⊢ (𝜑 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) |
| 3 | reseqd.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 4 | 3 | reseq2d 5935 | . 2 ⊢ (𝜑 → (𝐵 ↾ 𝐶) = (𝐵 ↾ 𝐷)) |
| 5 | 2, 4 | eqtrd 2768 | 1 ⊢ (𝜑 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ↾ cres 5623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3398 df-in 3906 df-opab 5158 df-xp 5627 df-res 5633 |
| This theorem is referenced by: f1ossf1o 7070 csbfrecsg 8223 tfrlem3a 8305 oieq1 9408 oieq2 9409 ackbij2lem3 10141 setsvalg 17087 resfval 17809 resfval2 17810 resf2nd 17812 lubfval 18264 glbfval 18277 dpjfval 19979 znval 21482 psrval 21862 prdsdsf 24292 prdsxmet 24294 imasdsf1olem 24298 xpsxmetlem 24304 xpsmet 24307 isxms 24372 isms 24374 setsxms 24404 setsms 24405 ressxms 24450 ressms 24451 prdsxmslem2 24454 cphsscph 25188 iscms 25282 cmsss 25288 cssbn 25312 minveclem3a 25364 dvmptresicc 25854 dvcmulf 25885 efcvx 26396 issubgr 29260 ispth 29710 clwlknf1oclwwlkn 30075 eucrct2eupth 30236 padct 32712 ressply1evls1 33539 isrrext 34024 prdsbnd2 37845 cnpwstotbnd 37847 ldualset 39234 itgcoscmulx 46081 fourierdlem73 46291 sge0fodjrnlem 46528 vonval 46652 dfateq12d 47240 isisubgr 47976 rngchomrnghmresALTV 48393 fdivval 48654 |
| Copyright terms: Public domain | W3C validator |