| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reseq12d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for restrictions. (Contributed by NM, 21-Oct-2014.) |
| Ref | Expression |
|---|---|
| reseqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| reseqd.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| reseq12d | ⊢ (𝜑 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reseqd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | reseq1d 5970 | . 2 ⊢ (𝜑 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) |
| 3 | reseqd.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 4 | 3 | reseq2d 5971 | . 2 ⊢ (𝜑 → (𝐵 ↾ 𝐶) = (𝐵 ↾ 𝐷)) |
| 5 | 2, 4 | eqtrd 2771 | 1 ⊢ (𝜑 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ↾ cres 5661 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-in 3938 df-opab 5187 df-xp 5665 df-res 5671 |
| This theorem is referenced by: f1ossf1o 7123 csbfrecsg 8288 tfrlem3a 8396 oieq1 9531 oieq2 9532 ackbij2lem3 10259 setsvalg 17190 resfval 17910 resfval2 17911 resf2nd 17913 lubfval 18365 glbfval 18378 dpjfval 20043 znval 21501 psrval 21880 prdsdsf 24311 prdsxmet 24313 imasdsf1olem 24317 xpsxmetlem 24323 xpsmet 24326 isxms 24391 isms 24393 setsxms 24423 setsms 24424 ressxms 24469 ressms 24470 prdsxmslem2 24473 cphsscph 25208 iscms 25302 cmsss 25308 cssbn 25332 minveclem3a 25384 dvmptresicc 25874 dvcmulf 25905 efcvx 26416 issubgr 29255 ispth 29708 clwlknf1oclwwlkn 30070 eucrct2eupth 30231 padct 32702 ressply1evls1 33583 isrrext 34036 prdsbnd2 37824 cnpwstotbnd 37826 ldualset 39148 itgcoscmulx 45965 fourierdlem73 46175 sge0fodjrnlem 46412 vonval 46536 dfateq12d 47122 isisubgr 47842 rngchomrnghmresALTV 48221 fdivval 48486 |
| Copyright terms: Public domain | W3C validator |