Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reseq12d | Structured version Visualization version GIF version |
Description: Equality deduction for restrictions. (Contributed by NM, 21-Oct-2014.) |
Ref | Expression |
---|---|
reseqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
reseqd.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
reseq12d | ⊢ (𝜑 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reseqd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | reseq1d 5910 | . 2 ⊢ (𝜑 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) |
3 | reseqd.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
4 | 3 | reseq2d 5911 | . 2 ⊢ (𝜑 → (𝐵 ↾ 𝐶) = (𝐵 ↾ 𝐷)) |
5 | 2, 4 | eqtrd 2777 | 1 ⊢ (𝜑 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ↾ cres 5610 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-rab 3405 df-in 3904 df-opab 5150 df-xp 5614 df-res 5620 |
This theorem is referenced by: f1ossf1o 7040 csbfrecsg 8149 tfrlem3a 8257 oieq1 9348 oieq2 9349 ackbij2lem3 10077 setsvalg 16944 resfval 17684 resfval2 17685 resf2nd 17687 lubfval 18145 glbfval 18158 dpjfval 19733 znval 20822 psrval 21201 prdsdsf 23603 prdsxmet 23605 imasdsf1olem 23609 xpsxmetlem 23615 xpsmet 23618 isxms 23683 isms 23685 setsxms 23717 setsms 23718 ressxms 23764 ressms 23765 prdsxmslem2 23768 cphsscph 24498 iscms 24592 cmsss 24598 cssbn 24622 minveclem3a 24674 dvmptresicc 25163 dvcmulf 25192 efcvx 25691 issubgr 27774 ispth 28227 clwlknf1oclwwlkn 28584 eucrct2eupth 28745 padct 31189 isrrext 32090 prdsbnd2 36025 cnpwstotbnd 36027 ldualset 37359 itgcoscmulx 43760 fourierdlem73 43970 sge0fodjrnlem 44205 vonval 44329 dfateq12d 44883 rngchomrnghmresALTV 45819 fdivval 46150 |
Copyright terms: Public domain | W3C validator |