![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reseq12d | Structured version Visualization version GIF version |
Description: Equality deduction for restrictions. (Contributed by NM, 21-Oct-2014.) |
Ref | Expression |
---|---|
reseqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
reseqd.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
reseq12d | ⊢ (𝜑 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reseqd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | reseq1d 5998 | . 2 ⊢ (𝜑 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) |
3 | reseqd.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
4 | 3 | reseq2d 5999 | . 2 ⊢ (𝜑 → (𝐵 ↾ 𝐶) = (𝐵 ↾ 𝐷)) |
5 | 2, 4 | eqtrd 2774 | 1 ⊢ (𝜑 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ↾ cres 5690 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-in 3969 df-opab 5210 df-xp 5694 df-res 5700 |
This theorem is referenced by: f1ossf1o 7147 csbfrecsg 8307 tfrlem3a 8415 oieq1 9549 oieq2 9550 ackbij2lem3 10277 setsvalg 17199 resfval 17942 resfval2 17943 resf2nd 17945 lubfval 18407 glbfval 18420 dpjfval 20089 znval 21567 psrval 21952 prdsdsf 24392 prdsxmet 24394 imasdsf1olem 24398 xpsxmetlem 24404 xpsmet 24407 isxms 24472 isms 24474 setsxms 24506 setsms 24507 ressxms 24553 ressms 24554 prdsxmslem2 24557 cphsscph 25298 iscms 25392 cmsss 25398 cssbn 25422 minveclem3a 25474 dvmptresicc 25965 dvcmulf 25996 efcvx 26507 issubgr 29302 ispth 29755 clwlknf1oclwwlkn 30112 eucrct2eupth 30273 padct 32736 isrrext 33962 prdsbnd2 37781 cnpwstotbnd 37783 ldualset 39106 itgcoscmulx 45924 fourierdlem73 46134 sge0fodjrnlem 46371 vonval 46495 dfateq12d 47075 isisubgr 47785 rngchomrnghmresALTV 48122 fdivval 48388 |
Copyright terms: Public domain | W3C validator |