| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reseq12d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for restrictions. (Contributed by NM, 21-Oct-2014.) |
| Ref | Expression |
|---|---|
| reseqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| reseqd.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| reseq12d | ⊢ (𝜑 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reseqd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | reseq1d 5952 | . 2 ⊢ (𝜑 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) |
| 3 | reseqd.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 4 | 3 | reseq2d 5953 | . 2 ⊢ (𝜑 → (𝐵 ↾ 𝐶) = (𝐵 ↾ 𝐷)) |
| 5 | 2, 4 | eqtrd 2765 | 1 ⊢ (𝜑 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ↾ cres 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-in 3924 df-opab 5173 df-xp 5647 df-res 5653 |
| This theorem is referenced by: f1ossf1o 7103 csbfrecsg 8266 tfrlem3a 8348 oieq1 9472 oieq2 9473 ackbij2lem3 10200 setsvalg 17143 resfval 17861 resfval2 17862 resf2nd 17864 lubfval 18316 glbfval 18329 dpjfval 19994 znval 21452 psrval 21831 prdsdsf 24262 prdsxmet 24264 imasdsf1olem 24268 xpsxmetlem 24274 xpsmet 24277 isxms 24342 isms 24344 setsxms 24374 setsms 24375 ressxms 24420 ressms 24421 prdsxmslem2 24424 cphsscph 25158 iscms 25252 cmsss 25258 cssbn 25282 minveclem3a 25334 dvmptresicc 25824 dvcmulf 25855 efcvx 26366 issubgr 29205 ispth 29658 clwlknf1oclwwlkn 30020 eucrct2eupth 30181 padct 32650 ressply1evls1 33541 isrrext 33997 prdsbnd2 37796 cnpwstotbnd 37798 ldualset 39125 itgcoscmulx 45974 fourierdlem73 46184 sge0fodjrnlem 46421 vonval 46545 dfateq12d 47131 isisubgr 47866 rngchomrnghmresALTV 48271 fdivval 48532 |
| Copyright terms: Public domain | W3C validator |