| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reseq12d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for restrictions. (Contributed by NM, 21-Oct-2014.) |
| Ref | Expression |
|---|---|
| reseqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| reseqd.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| reseq12d | ⊢ (𝜑 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reseqd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | reseq1d 5949 | . 2 ⊢ (𝜑 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) |
| 3 | reseqd.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 4 | 3 | reseq2d 5950 | . 2 ⊢ (𝜑 → (𝐵 ↾ 𝐶) = (𝐵 ↾ 𝐷)) |
| 5 | 2, 4 | eqtrd 2764 | 1 ⊢ (𝜑 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ↾ cres 5640 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-in 3921 df-opab 5170 df-xp 5644 df-res 5650 |
| This theorem is referenced by: f1ossf1o 7100 csbfrecsg 8263 tfrlem3a 8345 oieq1 9465 oieq2 9466 ackbij2lem3 10193 setsvalg 17136 resfval 17854 resfval2 17855 resf2nd 17857 lubfval 18309 glbfval 18322 dpjfval 19987 znval 21445 psrval 21824 prdsdsf 24255 prdsxmet 24257 imasdsf1olem 24261 xpsxmetlem 24267 xpsmet 24270 isxms 24335 isms 24337 setsxms 24367 setsms 24368 ressxms 24413 ressms 24414 prdsxmslem2 24417 cphsscph 25151 iscms 25245 cmsss 25251 cssbn 25275 minveclem3a 25327 dvmptresicc 25817 dvcmulf 25848 efcvx 26359 issubgr 29198 ispth 29651 clwlknf1oclwwlkn 30013 eucrct2eupth 30174 padct 32643 ressply1evls1 33534 isrrext 33990 prdsbnd2 37789 cnpwstotbnd 37791 ldualset 39118 itgcoscmulx 45967 fourierdlem73 46177 sge0fodjrnlem 46414 vonval 46538 dfateq12d 47127 isisubgr 47862 rngchomrnghmresALTV 48267 fdivval 48528 |
| Copyright terms: Public domain | W3C validator |