| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reseq12d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for restrictions. (Contributed by NM, 21-Oct-2014.) |
| Ref | Expression |
|---|---|
| reseqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| reseqd.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| reseq12d | ⊢ (𝜑 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reseqd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | reseq1d 5933 | . 2 ⊢ (𝜑 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) |
| 3 | reseqd.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 4 | 3 | reseq2d 5934 | . 2 ⊢ (𝜑 → (𝐵 ↾ 𝐶) = (𝐵 ↾ 𝐷)) |
| 5 | 2, 4 | eqtrd 2764 | 1 ⊢ (𝜑 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ↾ cres 5625 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-in 3912 df-opab 5158 df-xp 5629 df-res 5635 |
| This theorem is referenced by: f1ossf1o 7066 csbfrecsg 8224 tfrlem3a 8306 oieq1 9423 oieq2 9424 ackbij2lem3 10153 setsvalg 17095 resfval 17817 resfval2 17818 resf2nd 17820 lubfval 18272 glbfval 18285 dpjfval 19954 znval 21460 psrval 21840 prdsdsf 24271 prdsxmet 24273 imasdsf1olem 24277 xpsxmetlem 24283 xpsmet 24286 isxms 24351 isms 24353 setsxms 24383 setsms 24384 ressxms 24429 ressms 24430 prdsxmslem2 24433 cphsscph 25167 iscms 25261 cmsss 25267 cssbn 25291 minveclem3a 25343 dvmptresicc 25833 dvcmulf 25864 efcvx 26375 issubgr 29234 ispth 29684 clwlknf1oclwwlkn 30046 eucrct2eupth 30207 padct 32676 ressply1evls1 33510 isrrext 33966 prdsbnd2 37774 cnpwstotbnd 37776 ldualset 39103 itgcoscmulx 45951 fourierdlem73 46161 sge0fodjrnlem 46398 vonval 46522 dfateq12d 47111 isisubgr 47846 rngchomrnghmresALTV 48251 fdivval 48512 |
| Copyright terms: Public domain | W3C validator |