| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reseq12d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for restrictions. (Contributed by NM, 21-Oct-2014.) |
| Ref | Expression |
|---|---|
| reseqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| reseqd.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| reseq12d | ⊢ (𝜑 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reseqd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | reseq1d 5924 | . 2 ⊢ (𝜑 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) |
| 3 | reseqd.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 4 | 3 | reseq2d 5925 | . 2 ⊢ (𝜑 → (𝐵 ↾ 𝐶) = (𝐵 ↾ 𝐷)) |
| 5 | 2, 4 | eqtrd 2765 | 1 ⊢ (𝜑 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ↾ cres 5616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3394 df-in 3907 df-opab 5152 df-xp 5620 df-res 5626 |
| This theorem is referenced by: f1ossf1o 7056 csbfrecsg 8209 tfrlem3a 8291 oieq1 9393 oieq2 9394 ackbij2lem3 10123 setsvalg 17069 resfval 17791 resfval2 17792 resf2nd 17794 lubfval 18246 glbfval 18259 dpjfval 19962 znval 21465 psrval 21845 prdsdsf 24275 prdsxmet 24277 imasdsf1olem 24281 xpsxmetlem 24287 xpsmet 24290 isxms 24355 isms 24357 setsxms 24387 setsms 24388 ressxms 24433 ressms 24434 prdsxmslem2 24437 cphsscph 25171 iscms 25265 cmsss 25271 cssbn 25295 minveclem3a 25347 dvmptresicc 25837 dvcmulf 25868 efcvx 26379 issubgr 29242 ispth 29692 clwlknf1oclwwlkn 30054 eucrct2eupth 30215 padct 32691 ressply1evls1 33518 isrrext 34003 prdsbnd2 37814 cnpwstotbnd 37816 ldualset 39143 itgcoscmulx 45986 fourierdlem73 46196 sge0fodjrnlem 46433 vonval 46557 dfateq12d 47136 isisubgr 47872 rngchomrnghmresALTV 48289 fdivval 48550 |
| Copyright terms: Public domain | W3C validator |