MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reseq12d Structured version   Visualization version   GIF version

Theorem reseq12d 5982
Description: Equality deduction for restrictions. (Contributed by NM, 21-Oct-2014.)
Hypotheses
Ref Expression
reseqd.1 (𝜑𝐴 = 𝐵)
reseqd.2 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
reseq12d (𝜑 → (𝐴𝐶) = (𝐵𝐷))

Proof of Theorem reseq12d
StepHypRef Expression
1 reseqd.1 . . 3 (𝜑𝐴 = 𝐵)
21reseq1d 5980 . 2 (𝜑 → (𝐴𝐶) = (𝐵𝐶))
3 reseqd.2 . . 3 (𝜑𝐶 = 𝐷)
43reseq2d 5981 . 2 (𝜑 → (𝐵𝐶) = (𝐵𝐷))
52, 4eqtrd 2771 1 (𝜑 → (𝐴𝐶) = (𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  cres 5678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-rab 3432  df-in 3955  df-opab 5211  df-xp 5682  df-res 5688
This theorem is referenced by:  f1ossf1o  7128  csbfrecsg  8273  tfrlem3a  8381  oieq1  9511  oieq2  9512  ackbij2lem3  10240  setsvalg  17104  resfval  17847  resfval2  17848  resf2nd  17850  lubfval  18308  glbfval  18321  dpjfval  19967  znval  21307  psrval  21688  prdsdsf  24094  prdsxmet  24096  imasdsf1olem  24100  xpsxmetlem  24106  xpsmet  24109  isxms  24174  isms  24176  setsxms  24208  setsms  24209  ressxms  24255  ressms  24256  prdsxmslem2  24259  cphsscph  25000  iscms  25094  cmsss  25100  cssbn  25124  minveclem3a  25176  dvmptresicc  25666  dvcmulf  25697  efcvx  26198  issubgr  28796  ispth  29248  clwlknf1oclwwlkn  29605  eucrct2eupth  29766  padct  32212  isrrext  33279  prdsbnd2  36967  cnpwstotbnd  36969  ldualset  38299  itgcoscmulx  44984  fourierdlem73  45194  sge0fodjrnlem  45431  vonval  45555  dfateq12d  46133  rngchomrnghmresALTV  46983  fdivval  47313
  Copyright terms: Public domain W3C validator