Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reseq12d | Structured version Visualization version GIF version |
Description: Equality deduction for restrictions. (Contributed by NM, 21-Oct-2014.) |
Ref | Expression |
---|---|
reseqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
reseqd.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
reseq12d | ⊢ (𝜑 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reseqd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | reseq1d 5879 | . 2 ⊢ (𝜑 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) |
3 | reseqd.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
4 | 3 | reseq2d 5880 | . 2 ⊢ (𝜑 → (𝐵 ↾ 𝐶) = (𝐵 ↾ 𝐷)) |
5 | 2, 4 | eqtrd 2778 | 1 ⊢ (𝜑 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ↾ cres 5582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-in 3890 df-opab 5133 df-xp 5586 df-res 5592 |
This theorem is referenced by: f1ossf1o 6982 csbfrecsg 8071 tfrlem3a 8179 oieq1 9201 oieq2 9202 ackbij2lem3 9928 setsvalg 16795 resfval 17523 resfval2 17524 resf2nd 17526 lubfval 17983 glbfval 17996 dpjfval 19573 znval 20651 psrval 21028 prdsdsf 23428 prdsxmet 23430 imasdsf1olem 23434 xpsxmetlem 23440 xpsmet 23443 isxms 23508 isms 23510 setsxms 23540 setsms 23541 ressxms 23587 ressms 23588 prdsxmslem2 23591 cphsscph 24320 iscms 24414 cmsss 24420 cssbn 24444 minveclem3a 24496 dvmptresicc 24985 dvcmulf 25014 efcvx 25513 issubgr 27541 ispth 27992 clwlknf1oclwwlkn 28349 eucrct2eupth 28510 padct 30956 isrrext 31850 prdsbnd2 35880 cnpwstotbnd 35882 ldualset 37066 itgcoscmulx 43400 fourierdlem73 43610 sge0fodjrnlem 43844 vonval 43968 dfateq12d 44505 rngchomrnghmresALTV 45442 fdivval 45773 |
Copyright terms: Public domain | W3C validator |