| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xmstopn | Structured version Visualization version GIF version | ||
| Description: The topology component of an extended metric space coincides with the topology generated by the metric component. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| Ref | Expression |
|---|---|
| isms.j | ⊢ 𝐽 = (TopOpen‘𝐾) |
| isms.x | ⊢ 𝑋 = (Base‘𝐾) |
| isms.d | ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) |
| Ref | Expression |
|---|---|
| xmstopn | ⊢ (𝐾 ∈ ∞MetSp → 𝐽 = (MetOpen‘𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isms.j | . . 3 ⊢ 𝐽 = (TopOpen‘𝐾) | |
| 2 | isms.x | . . 3 ⊢ 𝑋 = (Base‘𝐾) | |
| 3 | isms.d | . . 3 ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) | |
| 4 | 1, 2, 3 | isxms 24362 | . 2 ⊢ (𝐾 ∈ ∞MetSp ↔ (𝐾 ∈ TopSp ∧ 𝐽 = (MetOpen‘𝐷))) |
| 5 | 4 | simprbi 496 | 1 ⊢ (𝐾 ∈ ∞MetSp → 𝐽 = (MetOpen‘𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 × cxp 5612 ↾ cres 5616 ‘cfv 6481 Basecbs 17120 distcds 17170 TopOpenctopn 17325 MetOpencmopn 21281 TopSpctps 22847 ∞MetSpcxms 24232 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-xp 5620 df-res 5626 df-iota 6437 df-fv 6489 df-xms 24235 |
| This theorem is referenced by: imasf1oxms 24404 ressxms 24440 prdsxmslem2 24444 tmsxpsmopn 24452 xmsusp 24484 cmetcusp1 25280 minveclem4a 25357 minveclem4 25359 qqhcn 34004 rrhcn 34010 rrexthaus 34020 dya2icoseg2 34291 sitmcl 34364 |
| Copyright terms: Public domain | W3C validator |