MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmstopn Structured version   Visualization version   GIF version

Theorem xmstopn 24366
Description: The topology component of an extended metric space coincides with the topology generated by the metric component. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypotheses
Ref Expression
isms.j 𝐽 = (TopOpen‘𝐾)
isms.x 𝑋 = (Base‘𝐾)
isms.d 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
xmstopn (𝐾 ∈ ∞MetSp → 𝐽 = (MetOpen‘𝐷))

Proof of Theorem xmstopn
StepHypRef Expression
1 isms.j . . 3 𝐽 = (TopOpen‘𝐾)
2 isms.x . . 3 𝑋 = (Base‘𝐾)
3 isms.d . . 3 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋))
41, 2, 3isxms 24362 . 2 (𝐾 ∈ ∞MetSp ↔ (𝐾 ∈ TopSp ∧ 𝐽 = (MetOpen‘𝐷)))
54simprbi 496 1 (𝐾 ∈ ∞MetSp → 𝐽 = (MetOpen‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111   × cxp 5612  cres 5616  cfv 6481  Basecbs 17120  distcds 17170  TopOpenctopn 17325  MetOpencmopn 21281  TopSpctps 22847  ∞MetSpcxms 24232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-xp 5620  df-res 5626  df-iota 6437  df-fv 6489  df-xms 24235
This theorem is referenced by:  imasf1oxms  24404  ressxms  24440  prdsxmslem2  24444  tmsxpsmopn  24452  xmsusp  24484  cmetcusp1  25280  minveclem4a  25357  minveclem4  25359  qqhcn  34004  rrhcn  34010  rrexthaus  34020  dya2icoseg2  34291  sitmcl  34364
  Copyright terms: Public domain W3C validator