Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xmstopn | Structured version Visualization version GIF version |
Description: The topology component of an extended metric space coincides with the topology generated by the metric component. (Contributed by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
isms.j | ⊢ 𝐽 = (TopOpen‘𝐾) |
isms.x | ⊢ 𝑋 = (Base‘𝐾) |
isms.d | ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) |
Ref | Expression |
---|---|
xmstopn | ⊢ (𝐾 ∈ ∞MetSp → 𝐽 = (MetOpen‘𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isms.j | . . 3 ⊢ 𝐽 = (TopOpen‘𝐾) | |
2 | isms.x | . . 3 ⊢ 𝑋 = (Base‘𝐾) | |
3 | isms.d | . . 3 ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) | |
4 | 1, 2, 3 | isxms 23610 | . 2 ⊢ (𝐾 ∈ ∞MetSp ↔ (𝐾 ∈ TopSp ∧ 𝐽 = (MetOpen‘𝐷))) |
5 | 4 | simprbi 497 | 1 ⊢ (𝐾 ∈ ∞MetSp → 𝐽 = (MetOpen‘𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 × cxp 5582 ↾ cres 5586 ‘cfv 6426 Basecbs 16922 distcds 16981 TopOpenctopn 17142 MetOpencmopn 20597 TopSpctps 22091 ∞MetSpcxms 23480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3431 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5074 df-opab 5136 df-xp 5590 df-res 5596 df-iota 6384 df-fv 6434 df-xms 23483 |
This theorem is referenced by: imasf1oxms 23655 ressxms 23691 prdsxmslem2 23695 tmsxpsmopn 23703 xmsusp 23735 cmetcusp1 24527 minveclem4a 24604 minveclem4 24606 qqhcn 31949 rrhcn 31955 rrexthaus 31965 dya2icoseg2 32253 sitmcl 32326 |
Copyright terms: Public domain | W3C validator |