MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmstopn Structured version   Visualization version   GIF version

Theorem xmstopn 24315
Description: The topology component of an extended metric space coincides with the topology generated by the metric component. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypotheses
Ref Expression
isms.j 𝐽 = (TopOpen‘𝐾)
isms.x 𝑋 = (Base‘𝐾)
isms.d 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
xmstopn (𝐾 ∈ ∞MetSp → 𝐽 = (MetOpen‘𝐷))

Proof of Theorem xmstopn
StepHypRef Expression
1 isms.j . . 3 𝐽 = (TopOpen‘𝐾)
2 isms.x . . 3 𝑋 = (Base‘𝐾)
3 isms.d . . 3 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋))
41, 2, 3isxms 24311 . 2 (𝐾 ∈ ∞MetSp ↔ (𝐾 ∈ TopSp ∧ 𝐽 = (MetOpen‘𝐷)))
54simprbi 496 1 (𝐾 ∈ ∞MetSp → 𝐽 = (MetOpen‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109   × cxp 5629  cres 5633  cfv 6499  Basecbs 17155  distcds 17205  TopOpenctopn 17360  MetOpencmopn 21230  TopSpctps 22795  ∞MetSpcxms 24181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-xp 5637  df-res 5643  df-iota 6452  df-fv 6507  df-xms 24184
This theorem is referenced by:  imasf1oxms  24353  ressxms  24389  prdsxmslem2  24393  tmsxpsmopn  24401  xmsusp  24433  cmetcusp1  25229  minveclem4a  25306  minveclem4  25308  qqhcn  33954  rrhcn  33960  rrexthaus  33970  dya2icoseg2  34242  sitmcl  34315
  Copyright terms: Public domain W3C validator