| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xmstopn | Structured version Visualization version GIF version | ||
| Description: The topology component of an extended metric space coincides with the topology generated by the metric component. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| Ref | Expression |
|---|---|
| isms.j | ⊢ 𝐽 = (TopOpen‘𝐾) |
| isms.x | ⊢ 𝑋 = (Base‘𝐾) |
| isms.d | ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) |
| Ref | Expression |
|---|---|
| xmstopn | ⊢ (𝐾 ∈ ∞MetSp → 𝐽 = (MetOpen‘𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isms.j | . . 3 ⊢ 𝐽 = (TopOpen‘𝐾) | |
| 2 | isms.x | . . 3 ⊢ 𝑋 = (Base‘𝐾) | |
| 3 | isms.d | . . 3 ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) | |
| 4 | 1, 2, 3 | isxms 24311 | . 2 ⊢ (𝐾 ∈ ∞MetSp ↔ (𝐾 ∈ TopSp ∧ 𝐽 = (MetOpen‘𝐷))) |
| 5 | 4 | simprbi 496 | 1 ⊢ (𝐾 ∈ ∞MetSp → 𝐽 = (MetOpen‘𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 × cxp 5629 ↾ cres 5633 ‘cfv 6499 Basecbs 17155 distcds 17205 TopOpenctopn 17360 MetOpencmopn 21230 TopSpctps 22795 ∞MetSpcxms 24181 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-xp 5637 df-res 5643 df-iota 6452 df-fv 6507 df-xms 24184 |
| This theorem is referenced by: imasf1oxms 24353 ressxms 24389 prdsxmslem2 24393 tmsxpsmopn 24401 xmsusp 24433 cmetcusp1 25229 minveclem4a 25306 minveclem4 25308 qqhcn 33954 rrhcn 33960 rrexthaus 33970 dya2icoseg2 34242 sitmcl 34315 |
| Copyright terms: Public domain | W3C validator |