| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xmstopn | Structured version Visualization version GIF version | ||
| Description: The topology component of an extended metric space coincides with the topology generated by the metric component. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| Ref | Expression |
|---|---|
| isms.j | ⊢ 𝐽 = (TopOpen‘𝐾) |
| isms.x | ⊢ 𝑋 = (Base‘𝐾) |
| isms.d | ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) |
| Ref | Expression |
|---|---|
| xmstopn | ⊢ (𝐾 ∈ ∞MetSp → 𝐽 = (MetOpen‘𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isms.j | . . 3 ⊢ 𝐽 = (TopOpen‘𝐾) | |
| 2 | isms.x | . . 3 ⊢ 𝑋 = (Base‘𝐾) | |
| 3 | isms.d | . . 3 ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) | |
| 4 | 1, 2, 3 | isxms 24386 | . 2 ⊢ (𝐾 ∈ ∞MetSp ↔ (𝐾 ∈ TopSp ∧ 𝐽 = (MetOpen‘𝐷))) |
| 5 | 4 | simprbi 496 | 1 ⊢ (𝐾 ∈ ∞MetSp → 𝐽 = (MetOpen‘𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 × cxp 5652 ↾ cres 5656 ‘cfv 6531 Basecbs 17228 distcds 17280 TopOpenctopn 17435 MetOpencmopn 21305 TopSpctps 22870 ∞MetSpcxms 24256 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-xp 5660 df-res 5666 df-iota 6484 df-fv 6539 df-xms 24259 |
| This theorem is referenced by: imasf1oxms 24428 ressxms 24464 prdsxmslem2 24468 tmsxpsmopn 24476 xmsusp 24508 cmetcusp1 25305 minveclem4a 25382 minveclem4 25384 qqhcn 34022 rrhcn 34028 rrexthaus 34038 dya2icoseg2 34310 sitmcl 34383 |
| Copyright terms: Public domain | W3C validator |