![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xmstps | Structured version Visualization version GIF version |
Description: An extended metric space is a topological space. (Contributed by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
xmstps | ⊢ (𝑀 ∈ ∞MetSp → 𝑀 ∈ TopSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2727 | . . 3 ⊢ (TopOpen‘𝑀) = (TopOpen‘𝑀) | |
2 | eqid 2727 | . . 3 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
3 | eqid 2727 | . . 3 ⊢ ((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀))) = ((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀))) | |
4 | 1, 2, 3 | isxms 24340 | . 2 ⊢ (𝑀 ∈ ∞MetSp ↔ (𝑀 ∈ TopSp ∧ (TopOpen‘𝑀) = (MetOpen‘((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀)))))) |
5 | 4 | simplbi 497 | 1 ⊢ (𝑀 ∈ ∞MetSp → 𝑀 ∈ TopSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 × cxp 5670 ↾ cres 5674 ‘cfv 6542 Basecbs 17171 distcds 17233 TopOpenctopn 17394 MetOpencmopn 21256 TopSpctps 22821 ∞MetSpcxms 24210 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-xp 5678 df-res 5684 df-iota 6494 df-fv 6550 df-xms 24213 |
This theorem is referenced by: mstps 24348 ressxms 24421 prdsxmslem2 24425 tmsxpsmopn 24433 minveclem4a 25345 rrhcn 33534 rrhf 33535 rrexttps 33543 sitmcl 33907 |
Copyright terms: Public domain | W3C validator |