MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmstps Structured version   Visualization version   GIF version

Theorem xmstps 24389
Description: An extended metric space is a topological space. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
xmstps (𝑀 ∈ ∞MetSp → 𝑀 ∈ TopSp)

Proof of Theorem xmstps
StepHypRef Expression
1 eqid 2725 . . 3 (TopOpen‘𝑀) = (TopOpen‘𝑀)
2 eqid 2725 . . 3 (Base‘𝑀) = (Base‘𝑀)
3 eqid 2725 . . 3 ((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀))) = ((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀)))
41, 2, 3isxms 24383 . 2 (𝑀 ∈ ∞MetSp ↔ (𝑀 ∈ TopSp ∧ (TopOpen‘𝑀) = (MetOpen‘((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀))))))
54simplbi 496 1 (𝑀 ∈ ∞MetSp → 𝑀 ∈ TopSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098   × cxp 5675  cres 5679  cfv 6547  Basecbs 17179  distcds 17241  TopOpenctopn 17402  MetOpencmopn 21273  TopSpctps 22864  ∞MetSpcxms 24253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-rab 3420  df-v 3465  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-xp 5683  df-res 5689  df-iota 6499  df-fv 6555  df-xms 24256
This theorem is referenced by:  mstps  24391  ressxms  24464  prdsxmslem2  24468  tmsxpsmopn  24476  minveclem4a  25388  rrhcn  33668  rrhf  33669  rrexttps  33677  sitmcl  34041
  Copyright terms: Public domain W3C validator