![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xmstps | Structured version Visualization version GIF version |
Description: An extended metric space is a topological space. (Contributed by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
xmstps | ⊢ (𝑀 ∈ ∞MetSp → 𝑀 ∈ TopSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . 3 ⊢ (TopOpen‘𝑀) = (TopOpen‘𝑀) | |
2 | eqid 2736 | . . 3 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
3 | eqid 2736 | . . 3 ⊢ ((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀))) = ((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀))) | |
4 | 1, 2, 3 | isxms 24479 | . 2 ⊢ (𝑀 ∈ ∞MetSp ↔ (𝑀 ∈ TopSp ∧ (TopOpen‘𝑀) = (MetOpen‘((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀)))))) |
5 | 4 | simplbi 497 | 1 ⊢ (𝑀 ∈ ∞MetSp → 𝑀 ∈ TopSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2107 × cxp 5688 ↾ cres 5692 ‘cfv 6566 Basecbs 17251 distcds 17313 TopOpenctopn 17474 MetOpencmopn 21378 TopSpctps 22960 ∞MetSpcxms 24349 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-rab 3435 df-v 3481 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-nul 4341 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-br 5150 df-opab 5212 df-xp 5696 df-res 5702 df-iota 6519 df-fv 6574 df-xms 24352 |
This theorem is referenced by: mstps 24487 ressxms 24560 prdsxmslem2 24564 tmsxpsmopn 24572 minveclem4a 25486 rrhcn 33973 rrhf 33974 rrexttps 33982 sitmcl 34346 |
Copyright terms: Public domain | W3C validator |