| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xmstps | Structured version Visualization version GIF version | ||
| Description: An extended metric space is a topological space. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| Ref | Expression |
|---|---|
| xmstps | ⊢ (𝑀 ∈ ∞MetSp → 𝑀 ∈ TopSp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . 3 ⊢ (TopOpen‘𝑀) = (TopOpen‘𝑀) | |
| 2 | eqid 2734 | . . 3 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 3 | eqid 2734 | . . 3 ⊢ ((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀))) = ((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀))) | |
| 4 | 1, 2, 3 | isxms 24417 | . 2 ⊢ (𝑀 ∈ ∞MetSp ↔ (𝑀 ∈ TopSp ∧ (TopOpen‘𝑀) = (MetOpen‘((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀)))))) |
| 5 | 4 | simplbi 497 | 1 ⊢ (𝑀 ∈ ∞MetSp → 𝑀 ∈ TopSp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 × cxp 5665 ↾ cres 5669 ‘cfv 6542 Basecbs 17230 distcds 17283 TopOpenctopn 17438 MetOpencmopn 21317 TopSpctps 22901 ∞MetSpcxms 24287 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-xp 5673 df-res 5679 df-iota 6495 df-fv 6550 df-xms 24290 |
| This theorem is referenced by: mstps 24425 ressxms 24497 prdsxmslem2 24501 tmsxpsmopn 24509 minveclem4a 25415 rrhcn 33935 rrhf 33936 rrexttps 33944 sitmcl 34290 |
| Copyright terms: Public domain | W3C validator |