MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmstps Structured version   Visualization version   GIF version

Theorem xmstps 24484
Description: An extended metric space is a topological space. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
xmstps (𝑀 ∈ ∞MetSp → 𝑀 ∈ TopSp)

Proof of Theorem xmstps
StepHypRef Expression
1 eqid 2740 . . 3 (TopOpen‘𝑀) = (TopOpen‘𝑀)
2 eqid 2740 . . 3 (Base‘𝑀) = (Base‘𝑀)
3 eqid 2740 . . 3 ((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀))) = ((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀)))
41, 2, 3isxms 24478 . 2 (𝑀 ∈ ∞MetSp ↔ (𝑀 ∈ TopSp ∧ (TopOpen‘𝑀) = (MetOpen‘((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀))))))
54simplbi 497 1 (𝑀 ∈ ∞MetSp → 𝑀 ∈ TopSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108   × cxp 5698  cres 5702  cfv 6573  Basecbs 17258  distcds 17320  TopOpenctopn 17481  MetOpencmopn 21377  TopSpctps 22959  ∞MetSpcxms 24348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-xp 5706  df-res 5712  df-iota 6525  df-fv 6581  df-xms 24351
This theorem is referenced by:  mstps  24486  ressxms  24559  prdsxmslem2  24563  tmsxpsmopn  24571  minveclem4a  25483  rrhcn  33943  rrhf  33944  rrexttps  33952  sitmcl  34316
  Copyright terms: Public domain W3C validator