Proof of Theorem xmspropd
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | xmspropd.1 | . . . . 5
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | 
| 2 |  | xmspropd.2 | . . . . 5
⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | 
| 3 | 1, 2 | eqtr3d 2778 | . . . 4
⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) | 
| 4 |  | xmspropd.4 | . . . 4
⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿)) | 
| 5 | 3, 4 | tpspropd 22945 | . . 3
⊢ (𝜑 → (𝐾 ∈ TopSp ↔ 𝐿 ∈ TopSp)) | 
| 6 |  | xmspropd.3 | . . . . . . 7
⊢ (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ (𝐵 × 𝐵))) | 
| 7 | 1 | sqxpeqd 5716 | . . . . . . . 8
⊢ (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐾) × (Base‘𝐾))) | 
| 8 | 7 | reseq2d 5996 | . . . . . . 7
⊢ (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) | 
| 9 | 6, 8 | eqtr3d 2778 | . . . . . 6
⊢ (𝜑 → ((dist‘𝐿) ↾ (𝐵 × 𝐵)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) | 
| 10 | 2 | sqxpeqd 5716 | . . . . . . 7
⊢ (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐿) × (Base‘𝐿))) | 
| 11 | 10 | reseq2d 5996 | . . . . . 6
⊢ (𝜑 → ((dist‘𝐿) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))) | 
| 12 | 9, 11 | eqtr3d 2778 | . . . . 5
⊢ (𝜑 → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))) | 
| 13 | 12 | fveq2d 6909 | . . . 4
⊢ (𝜑 →
(MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) = (MetOpen‘((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))))) | 
| 14 | 4, 13 | eqeq12d 2752 | . . 3
⊢ (𝜑 → ((TopOpen‘𝐾) =
(MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) ↔ (TopOpen‘𝐿) = (MetOpen‘((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))))) | 
| 15 | 5, 14 | anbi12d 632 | . 2
⊢ (𝜑 → ((𝐾 ∈ TopSp ∧ (TopOpen‘𝐾) =
(MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))) ↔ (𝐿 ∈ TopSp ∧ (TopOpen‘𝐿) =
(MetOpen‘((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))))))) | 
| 16 |  | eqid 2736 | . . 3
⊢
(TopOpen‘𝐾) =
(TopOpen‘𝐾) | 
| 17 |  | eqid 2736 | . . 3
⊢
(Base‘𝐾) =
(Base‘𝐾) | 
| 18 |  | eqid 2736 | . . 3
⊢
((dist‘𝐾)
↾ ((Base‘𝐾)
× (Base‘𝐾))) =
((dist‘𝐾) ↾
((Base‘𝐾) ×
(Base‘𝐾))) | 
| 19 | 16, 17, 18 | isxms 24458 | . 2
⊢ (𝐾 ∈ ∞MetSp ↔
(𝐾 ∈ TopSp ∧
(TopOpen‘𝐾) =
(MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))))) | 
| 20 |  | eqid 2736 | . . 3
⊢
(TopOpen‘𝐿) =
(TopOpen‘𝐿) | 
| 21 |  | eqid 2736 | . . 3
⊢
(Base‘𝐿) =
(Base‘𝐿) | 
| 22 |  | eqid 2736 | . . 3
⊢
((dist‘𝐿)
↾ ((Base‘𝐿)
× (Base‘𝐿))) =
((dist‘𝐿) ↾
((Base‘𝐿) ×
(Base‘𝐿))) | 
| 23 | 20, 21, 22 | isxms 24458 | . 2
⊢ (𝐿 ∈ ∞MetSp ↔
(𝐿 ∈ TopSp ∧
(TopOpen‘𝐿) =
(MetOpen‘((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))))) | 
| 24 | 15, 19, 23 | 3bitr4g 314 | 1
⊢ (𝜑 → (𝐾 ∈ ∞MetSp ↔ 𝐿 ∈
∞MetSp)) |