MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmspropd Structured version   Visualization version   GIF version

Theorem xmspropd 24361
Description: Property deduction for an extended metric space. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
xmspropd.1 (𝜑𝐵 = (Base‘𝐾))
xmspropd.2 (𝜑𝐵 = (Base‘𝐿))
xmspropd.3 (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ (𝐵 × 𝐵)))
xmspropd.4 (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿))
Assertion
Ref Expression
xmspropd (𝜑 → (𝐾 ∈ ∞MetSp ↔ 𝐿 ∈ ∞MetSp))

Proof of Theorem xmspropd
StepHypRef Expression
1 xmspropd.1 . . . . 5 (𝜑𝐵 = (Base‘𝐾))
2 xmspropd.2 . . . . 5 (𝜑𝐵 = (Base‘𝐿))
31, 2eqtr3d 2766 . . . 4 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
4 xmspropd.4 . . . 4 (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿))
53, 4tpspropd 22825 . . 3 (𝜑 → (𝐾 ∈ TopSp ↔ 𝐿 ∈ TopSp))
6 xmspropd.3 . . . . . . 7 (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ (𝐵 × 𝐵)))
71sqxpeqd 5670 . . . . . . . 8 (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐾) × (Base‘𝐾)))
87reseq2d 5950 . . . . . . 7 (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))
96, 8eqtr3d 2766 . . . . . 6 (𝜑 → ((dist‘𝐿) ↾ (𝐵 × 𝐵)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))
102sqxpeqd 5670 . . . . . . 7 (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐿) × (Base‘𝐿)))
1110reseq2d 5950 . . . . . 6 (𝜑 → ((dist‘𝐿) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))))
129, 11eqtr3d 2766 . . . . 5 (𝜑 → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))))
1312fveq2d 6862 . . . 4 (𝜑 → (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) = (MetOpen‘((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))))
144, 13eqeq12d 2745 . . 3 (𝜑 → ((TopOpen‘𝐾) = (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) ↔ (TopOpen‘𝐿) = (MetOpen‘((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))))))
155, 14anbi12d 632 . 2 (𝜑 → ((𝐾 ∈ TopSp ∧ (TopOpen‘𝐾) = (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))) ↔ (𝐿 ∈ TopSp ∧ (TopOpen‘𝐿) = (MetOpen‘((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))))))
16 eqid 2729 . . 3 (TopOpen‘𝐾) = (TopOpen‘𝐾)
17 eqid 2729 . . 3 (Base‘𝐾) = (Base‘𝐾)
18 eqid 2729 . . 3 ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))
1916, 17, 18isxms 24335 . 2 (𝐾 ∈ ∞MetSp ↔ (𝐾 ∈ TopSp ∧ (TopOpen‘𝐾) = (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))))
20 eqid 2729 . . 3 (TopOpen‘𝐿) = (TopOpen‘𝐿)
21 eqid 2729 . . 3 (Base‘𝐿) = (Base‘𝐿)
22 eqid 2729 . . 3 ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))
2320, 21, 22isxms 24335 . 2 (𝐿 ∈ ∞MetSp ↔ (𝐿 ∈ TopSp ∧ (TopOpen‘𝐿) = (MetOpen‘((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))))))
2415, 19, 233bitr4g 314 1 (𝜑 → (𝐾 ∈ ∞MetSp ↔ 𝐿 ∈ ∞MetSp))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   × cxp 5636  cres 5640  cfv 6511  Basecbs 17179  distcds 17229  TopOpenctopn 17384  MetOpencmopn 21254  TopSpctps 22819  ∞MetSpcxms 24205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-res 5650  df-iota 6464  df-fun 6513  df-fv 6519  df-top 22781  df-topon 22798  df-topsp 22820  df-xms 24208
This theorem is referenced by:  mspropd  24362
  Copyright terms: Public domain W3C validator