MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmspropd Structured version   Visualization version   GIF version

Theorem xmspropd 23706
Description: Property deduction for an extended metric space. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
xmspropd.1 (𝜑𝐵 = (Base‘𝐾))
xmspropd.2 (𝜑𝐵 = (Base‘𝐿))
xmspropd.3 (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ (𝐵 × 𝐵)))
xmspropd.4 (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿))
Assertion
Ref Expression
xmspropd (𝜑 → (𝐾 ∈ ∞MetSp ↔ 𝐿 ∈ ∞MetSp))

Proof of Theorem xmspropd
StepHypRef Expression
1 xmspropd.1 . . . . 5 (𝜑𝐵 = (Base‘𝐾))
2 xmspropd.2 . . . . 5 (𝜑𝐵 = (Base‘𝐿))
31, 2eqtr3d 2778 . . . 4 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
4 xmspropd.4 . . . 4 (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿))
53, 4tpspropd 22167 . . 3 (𝜑 → (𝐾 ∈ TopSp ↔ 𝐿 ∈ TopSp))
6 xmspropd.3 . . . . . . 7 (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ (𝐵 × 𝐵)))
71sqxpeqd 5639 . . . . . . . 8 (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐾) × (Base‘𝐾)))
87reseq2d 5910 . . . . . . 7 (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))
96, 8eqtr3d 2778 . . . . . 6 (𝜑 → ((dist‘𝐿) ↾ (𝐵 × 𝐵)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))
102sqxpeqd 5639 . . . . . . 7 (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐿) × (Base‘𝐿)))
1110reseq2d 5910 . . . . . 6 (𝜑 → ((dist‘𝐿) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))))
129, 11eqtr3d 2778 . . . . 5 (𝜑 → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))))
1312fveq2d 6815 . . . 4 (𝜑 → (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) = (MetOpen‘((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))))
144, 13eqeq12d 2752 . . 3 (𝜑 → ((TopOpen‘𝐾) = (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) ↔ (TopOpen‘𝐿) = (MetOpen‘((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))))))
155, 14anbi12d 631 . 2 (𝜑 → ((𝐾 ∈ TopSp ∧ (TopOpen‘𝐾) = (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))) ↔ (𝐿 ∈ TopSp ∧ (TopOpen‘𝐿) = (MetOpen‘((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))))))
16 eqid 2736 . . 3 (TopOpen‘𝐾) = (TopOpen‘𝐾)
17 eqid 2736 . . 3 (Base‘𝐾) = (Base‘𝐾)
18 eqid 2736 . . 3 ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))
1916, 17, 18isxms 23680 . 2 (𝐾 ∈ ∞MetSp ↔ (𝐾 ∈ TopSp ∧ (TopOpen‘𝐾) = (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))))
20 eqid 2736 . . 3 (TopOpen‘𝐿) = (TopOpen‘𝐿)
21 eqid 2736 . . 3 (Base‘𝐿) = (Base‘𝐿)
22 eqid 2736 . . 3 ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))
2320, 21, 22isxms 23680 . 2 (𝐿 ∈ ∞MetSp ↔ (𝐿 ∈ TopSp ∧ (TopOpen‘𝐿) = (MetOpen‘((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))))))
2415, 19, 233bitr4g 313 1 (𝜑 → (𝐾 ∈ ∞MetSp ↔ 𝐿 ∈ ∞MetSp))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105   × cxp 5605  cres 5609  cfv 6465  Basecbs 16986  distcds 17045  TopOpenctopn 17206  MetOpencmopn 20667  TopSpctps 22161  ∞MetSpcxms 23550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5237  ax-nul 5244  ax-pow 5302  ax-pr 5366  ax-un 7629
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3442  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-br 5087  df-opab 5149  df-mpt 5170  df-id 5506  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-res 5619  df-iota 6417  df-fun 6467  df-fv 6473  df-top 22123  df-topon 22140  df-topsp 22162  df-xms 23553
This theorem is referenced by:  mspropd  23707
  Copyright terms: Public domain W3C validator