Proof of Theorem xmspropd
Step | Hyp | Ref
| Expression |
1 | | xmspropd.1 |
. . . . 5
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
2 | | xmspropd.2 |
. . . . 5
⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
3 | 1, 2 | eqtr3d 2781 |
. . . 4
⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) |
4 | | xmspropd.4 |
. . . 4
⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿)) |
5 | 3, 4 | tpspropd 22068 |
. . 3
⊢ (𝜑 → (𝐾 ∈ TopSp ↔ 𝐿 ∈ TopSp)) |
6 | | xmspropd.3 |
. . . . . . 7
⊢ (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ (𝐵 × 𝐵))) |
7 | 1 | sqxpeqd 5620 |
. . . . . . . 8
⊢ (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐾) × (Base‘𝐾))) |
8 | 7 | reseq2d 5888 |
. . . . . . 7
⊢ (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) |
9 | 6, 8 | eqtr3d 2781 |
. . . . . 6
⊢ (𝜑 → ((dist‘𝐿) ↾ (𝐵 × 𝐵)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) |
10 | 2 | sqxpeqd 5620 |
. . . . . . 7
⊢ (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐿) × (Base‘𝐿))) |
11 | 10 | reseq2d 5888 |
. . . . . 6
⊢ (𝜑 → ((dist‘𝐿) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))) |
12 | 9, 11 | eqtr3d 2781 |
. . . . 5
⊢ (𝜑 → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))) |
13 | 12 | fveq2d 6772 |
. . . 4
⊢ (𝜑 →
(MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) = (MetOpen‘((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))))) |
14 | 4, 13 | eqeq12d 2755 |
. . 3
⊢ (𝜑 → ((TopOpen‘𝐾) =
(MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) ↔ (TopOpen‘𝐿) = (MetOpen‘((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))))) |
15 | 5, 14 | anbi12d 630 |
. 2
⊢ (𝜑 → ((𝐾 ∈ TopSp ∧ (TopOpen‘𝐾) =
(MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))) ↔ (𝐿 ∈ TopSp ∧ (TopOpen‘𝐿) =
(MetOpen‘((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))))))) |
16 | | eqid 2739 |
. . 3
⊢
(TopOpen‘𝐾) =
(TopOpen‘𝐾) |
17 | | eqid 2739 |
. . 3
⊢
(Base‘𝐾) =
(Base‘𝐾) |
18 | | eqid 2739 |
. . 3
⊢
((dist‘𝐾)
↾ ((Base‘𝐾)
× (Base‘𝐾))) =
((dist‘𝐾) ↾
((Base‘𝐾) ×
(Base‘𝐾))) |
19 | 16, 17, 18 | isxms 23581 |
. 2
⊢ (𝐾 ∈ ∞MetSp ↔
(𝐾 ∈ TopSp ∧
(TopOpen‘𝐾) =
(MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))))) |
20 | | eqid 2739 |
. . 3
⊢
(TopOpen‘𝐿) =
(TopOpen‘𝐿) |
21 | | eqid 2739 |
. . 3
⊢
(Base‘𝐿) =
(Base‘𝐿) |
22 | | eqid 2739 |
. . 3
⊢
((dist‘𝐿)
↾ ((Base‘𝐿)
× (Base‘𝐿))) =
((dist‘𝐿) ↾
((Base‘𝐿) ×
(Base‘𝐿))) |
23 | 20, 21, 22 | isxms 23581 |
. 2
⊢ (𝐿 ∈ ∞MetSp ↔
(𝐿 ∈ TopSp ∧
(TopOpen‘𝐿) =
(MetOpen‘((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))))) |
24 | 15, 19, 23 | 3bitr4g 313 |
1
⊢ (𝜑 → (𝐾 ∈ ∞MetSp ↔ 𝐿 ∈
∞MetSp)) |