MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmspropd Structured version   Visualization version   GIF version

Theorem xmspropd 24334
Description: Property deduction for an extended metric space. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
xmspropd.1 (𝜑𝐵 = (Base‘𝐾))
xmspropd.2 (𝜑𝐵 = (Base‘𝐿))
xmspropd.3 (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ (𝐵 × 𝐵)))
xmspropd.4 (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿))
Assertion
Ref Expression
xmspropd (𝜑 → (𝐾 ∈ ∞MetSp ↔ 𝐿 ∈ ∞MetSp))

Proof of Theorem xmspropd
StepHypRef Expression
1 xmspropd.1 . . . . 5 (𝜑𝐵 = (Base‘𝐾))
2 xmspropd.2 . . . . 5 (𝜑𝐵 = (Base‘𝐿))
31, 2eqtr3d 2768 . . . 4 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
4 xmspropd.4 . . . 4 (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿))
53, 4tpspropd 22795 . . 3 (𝜑 → (𝐾 ∈ TopSp ↔ 𝐿 ∈ TopSp))
6 xmspropd.3 . . . . . . 7 (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ (𝐵 × 𝐵)))
71sqxpeqd 5701 . . . . . . . 8 (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐾) × (Base‘𝐾)))
87reseq2d 5975 . . . . . . 7 (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))
96, 8eqtr3d 2768 . . . . . 6 (𝜑 → ((dist‘𝐿) ↾ (𝐵 × 𝐵)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))
102sqxpeqd 5701 . . . . . . 7 (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐿) × (Base‘𝐿)))
1110reseq2d 5975 . . . . . 6 (𝜑 → ((dist‘𝐿) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))))
129, 11eqtr3d 2768 . . . . 5 (𝜑 → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))))
1312fveq2d 6889 . . . 4 (𝜑 → (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) = (MetOpen‘((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))))
144, 13eqeq12d 2742 . . 3 (𝜑 → ((TopOpen‘𝐾) = (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) ↔ (TopOpen‘𝐿) = (MetOpen‘((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))))))
155, 14anbi12d 630 . 2 (𝜑 → ((𝐾 ∈ TopSp ∧ (TopOpen‘𝐾) = (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))) ↔ (𝐿 ∈ TopSp ∧ (TopOpen‘𝐿) = (MetOpen‘((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))))))
16 eqid 2726 . . 3 (TopOpen‘𝐾) = (TopOpen‘𝐾)
17 eqid 2726 . . 3 (Base‘𝐾) = (Base‘𝐾)
18 eqid 2726 . . 3 ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))
1916, 17, 18isxms 24308 . 2 (𝐾 ∈ ∞MetSp ↔ (𝐾 ∈ TopSp ∧ (TopOpen‘𝐾) = (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))))
20 eqid 2726 . . 3 (TopOpen‘𝐿) = (TopOpen‘𝐿)
21 eqid 2726 . . 3 (Base‘𝐿) = (Base‘𝐿)
22 eqid 2726 . . 3 ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))
2320, 21, 22isxms 24308 . 2 (𝐿 ∈ ∞MetSp ↔ (𝐿 ∈ TopSp ∧ (TopOpen‘𝐿) = (MetOpen‘((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))))))
2415, 19, 233bitr4g 314 1 (𝜑 → (𝐾 ∈ ∞MetSp ↔ 𝐿 ∈ ∞MetSp))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098   × cxp 5667  cres 5671  cfv 6537  Basecbs 17153  distcds 17215  TopOpenctopn 17376  MetOpencmopn 21230  TopSpctps 22789  ∞MetSpcxms 24178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-res 5681  df-iota 6489  df-fun 6539  df-fv 6545  df-top 22751  df-topon 22768  df-topsp 22790  df-xms 24181
This theorem is referenced by:  mspropd  24335
  Copyright terms: Public domain W3C validator