| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ineq12 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for intersection of two classes. (Contributed by NM, 8-May-1994.) |
| Ref | Expression |
|---|---|
| ineq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1 4193 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) | |
| 2 | ineq2 4194 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵 ∩ 𝐶) = (𝐵 ∩ 𝐷)) | |
| 3 | 1, 2 | sylan9eq 2791 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∩ cin 3930 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-in 3938 |
| This theorem is referenced by: ineq12i 4198 ineq12d 4201 ineqan12d 4202 fnun 6657 frrlem4 8293 undifixp 8953 endisj 9077 sbthlem8 9109 fiin 9439 pm54.43 10020 kmlem9 10178 indistopon 22944 epttop 22952 restbas 23101 ordtbas2 23134 txbas 23510 ptbasin 23520 trfbas2 23786 snfil 23807 fbasrn 23827 trfil2 23830 fmfnfmlem3 23899 ustuqtop2 24186 minveclem3b 25385 isperp 28696 brredunds 38649 diophin 42762 kelac2lem 43055 iscnrm3r 48889 incat 49445 setc1onsubc 49446 |
| Copyright terms: Public domain | W3C validator |