| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ineq12 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for intersection of two classes. (Contributed by NM, 8-May-1994.) |
| Ref | Expression |
|---|---|
| ineq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1 4176 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) | |
| 2 | ineq2 4177 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵 ∩ 𝐶) = (𝐵 ∩ 𝐷)) | |
| 3 | 1, 2 | sylan9eq 2784 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∩ cin 3913 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-in 3921 |
| This theorem is referenced by: ineq12i 4181 ineq12d 4184 ineqan12d 4185 fnun 6632 frrlem4 8268 undifixp 8907 endisj 9028 sbthlem8 9058 fiin 9373 pm54.43 9954 kmlem9 10112 indistopon 22888 epttop 22896 restbas 23045 ordtbas2 23078 txbas 23454 ptbasin 23464 trfbas2 23730 snfil 23751 fbasrn 23771 trfil2 23774 fmfnfmlem3 23843 ustuqtop2 24130 minveclem3b 25328 isperp 28639 brredunds 38617 diophin 42760 kelac2lem 43053 iscnrm3r 48936 incat 49590 setc1onsubc 49591 |
| Copyright terms: Public domain | W3C validator |