Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ineq12 | Structured version Visualization version GIF version |
Description: Equality theorem for intersection of two classes. (Contributed by NM, 8-May-1994.) |
Ref | Expression |
---|---|
ineq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1 4145 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) | |
2 | ineq2 4146 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵 ∩ 𝐶) = (𝐵 ∩ 𝐷)) | |
3 | 1, 2 | sylan9eq 2800 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∩ cin 3891 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1545 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-rab 3075 df-in 3899 |
This theorem is referenced by: ineq12i 4150 ineq12d 4153 ineqan12d 4154 fnun 6542 frrlem4 8094 undifixp 8703 endisj 8826 sbthlem8 8857 fiin 9157 pm54.43 9758 kmlem9 9913 indistopon 22147 epttop 22155 restbas 22305 ordtbas2 22338 txbas 22714 ptbasin 22724 trfbas2 22990 snfil 23011 fbasrn 23031 trfil2 23034 fmfnfmlem3 23103 ustuqtop2 23390 minveclem3b 24588 isperp 27069 brredunds 36733 diophin 40589 kelac2lem 40884 iscnrm3r 46209 |
Copyright terms: Public domain | W3C validator |