| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ineq12 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for intersection of two classes. (Contributed by NM, 8-May-1994.) |
| Ref | Expression |
|---|---|
| ineq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1 4164 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) | |
| 2 | ineq2 4165 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵 ∩ 𝐶) = (𝐵 ∩ 𝐷)) | |
| 3 | 1, 2 | sylan9eq 2784 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∩ cin 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-in 3910 |
| This theorem is referenced by: ineq12i 4169 ineq12d 4172 ineqan12d 4173 fnun 6596 frrlem4 8222 undifixp 8861 endisj 8981 sbthlem8 9011 fiin 9312 pm54.43 9897 kmlem9 10053 indistopon 22886 epttop 22894 restbas 23043 ordtbas2 23076 txbas 23452 ptbasin 23462 trfbas2 23728 snfil 23749 fbasrn 23769 trfil2 23772 fmfnfmlem3 23841 ustuqtop2 24128 minveclem3b 25326 isperp 28657 brredunds 38607 diophin 42749 kelac2lem 43041 iscnrm3r 48936 incat 49590 setc1onsubc 49591 |
| Copyright terms: Public domain | W3C validator |