Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ineq12 | Structured version Visualization version GIF version |
Description: Equality theorem for intersection of two classes. (Contributed by NM, 8-May-1994.) |
Ref | Expression |
---|---|
ineq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1 4139 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) | |
2 | ineq2 4140 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵 ∩ 𝐶) = (𝐵 ∩ 𝐷)) | |
3 | 1, 2 | sylan9eq 2798 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∩ cin 3886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-in 3894 |
This theorem is referenced by: ineq12i 4144 ineq12d 4147 ineqan12d 4148 fnun 6545 frrlem4 8105 undifixp 8722 endisj 8845 sbthlem8 8877 fiin 9181 pm54.43 9759 kmlem9 9914 indistopon 22151 epttop 22159 restbas 22309 ordtbas2 22342 txbas 22718 ptbasin 22728 trfbas2 22994 snfil 23015 fbasrn 23035 trfil2 23038 fmfnfmlem3 23107 ustuqtop2 23394 minveclem3b 24592 isperp 27073 brredunds 36739 diophin 40594 kelac2lem 40889 iscnrm3r 46242 |
Copyright terms: Public domain | W3C validator |