Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ineq12 | Structured version Visualization version GIF version |
Description: Equality theorem for intersection of two classes. (Contributed by NM, 8-May-1994.) |
Ref | Expression |
---|---|
ineq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1 4136 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) | |
2 | ineq2 4137 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵 ∩ 𝐶) = (𝐵 ∩ 𝐷)) | |
3 | 1, 2 | sylan9eq 2799 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∩ cin 3882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-in 3890 |
This theorem is referenced by: ineq12i 4141 ineq12d 4144 ineqan12d 4145 fnun 6529 frrlem4 8076 undifixp 8680 endisj 8799 sbthlem8 8830 fiin 9111 pm54.43 9690 kmlem9 9845 indistopon 22059 epttop 22067 restbas 22217 ordtbas2 22250 txbas 22626 ptbasin 22636 trfbas2 22902 snfil 22923 fbasrn 22943 trfil2 22946 fmfnfmlem3 23015 ustuqtop2 23302 minveclem3b 24497 isperp 26977 brredunds 36666 diophin 40510 kelac2lem 40805 iscnrm3r 46130 |
Copyright terms: Public domain | W3C validator |