MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ineq12 Structured version   Visualization version   GIF version

Theorem ineq12 4181
Description: Equality theorem for intersection of two classes. (Contributed by NM, 8-May-1994.)
Assertion
Ref Expression
ineq12 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶) = (𝐵𝐷))

Proof of Theorem ineq12
StepHypRef Expression
1 ineq1 4179 . 2 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
2 ineq2 4180 . 2 (𝐶 = 𝐷 → (𝐵𝐶) = (𝐵𝐷))
31, 2sylan9eq 2785 1 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶) = (𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  cin 3916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-in 3924
This theorem is referenced by:  ineq12i  4184  ineq12d  4187  ineqan12d  4188  fnun  6635  frrlem4  8271  undifixp  8910  endisj  9032  sbthlem8  9064  fiin  9380  pm54.43  9961  kmlem9  10119  indistopon  22895  epttop  22903  restbas  23052  ordtbas2  23085  txbas  23461  ptbasin  23471  trfbas2  23737  snfil  23758  fbasrn  23778  trfil2  23781  fmfnfmlem3  23850  ustuqtop2  24137  minveclem3b  25335  isperp  28646  brredunds  38624  diophin  42767  kelac2lem  43060  iscnrm3r  48940  incat  49594  setc1onsubc  49595
  Copyright terms: Public domain W3C validator