![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ineq12 | Structured version Visualization version GIF version |
Description: Equality theorem for intersection of two classes. (Contributed by NM, 8-May-1994.) |
Ref | Expression |
---|---|
ineq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1 4221 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) | |
2 | ineq2 4222 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵 ∩ 𝐶) = (𝐵 ∩ 𝐷)) | |
3 | 1, 2 | sylan9eq 2795 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∩ cin 3962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-in 3970 |
This theorem is referenced by: ineq12i 4226 ineq12d 4229 ineqan12d 4230 fnun 6683 frrlem4 8313 undifixp 8973 endisj 9097 sbthlem8 9129 fiin 9460 pm54.43 10039 kmlem9 10197 indistopon 23024 epttop 23032 restbas 23182 ordtbas2 23215 txbas 23591 ptbasin 23601 trfbas2 23867 snfil 23888 fbasrn 23908 trfil2 23911 fmfnfmlem3 23980 ustuqtop2 24267 minveclem3b 25476 isperp 28735 brredunds 38608 diophin 42760 kelac2lem 43053 iscnrm3r 48745 |
Copyright terms: Public domain | W3C validator |