| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ineq12 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for intersection of two classes. (Contributed by NM, 8-May-1994.) |
| Ref | Expression |
|---|---|
| ineq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1 4160 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) | |
| 2 | ineq2 4161 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵 ∩ 𝐶) = (𝐵 ∩ 𝐷)) | |
| 3 | 1, 2 | sylan9eq 2786 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∩ cin 3896 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-in 3904 |
| This theorem is referenced by: ineq12i 4165 ineq12d 4168 ineqan12d 4169 fnun 6595 frrlem4 8219 undifixp 8858 endisj 8977 sbthlem8 9007 fiin 9306 pm54.43 9894 kmlem9 10050 indistopon 22916 epttop 22924 restbas 23073 ordtbas2 23106 txbas 23482 ptbasin 23492 trfbas2 23758 snfil 23779 fbasrn 23799 trfil2 23802 fmfnfmlem3 23871 ustuqtop2 24157 minveclem3b 25355 isperp 28690 brredunds 38732 diophin 42875 kelac2lem 43167 iscnrm3r 49058 incat 49712 setc1onsubc 49713 |
| Copyright terms: Public domain | W3C validator |