Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmodvscld Structured version   Visualization version   GIF version

Theorem lmodvscld 41104
Description: Closure of scalar product for a left module. (Contributed by SN, 15-Mar-2025.)
Hypotheses
Ref Expression
lmodvscld.v 𝑉 = (Baseβ€˜π‘Š)
lmodvscld.f 𝐹 = (Scalarβ€˜π‘Š)
lmodvscld.s Β· = ( ·𝑠 β€˜π‘Š)
lmodvscld.k 𝐾 = (Baseβ€˜πΉ)
lmodvscld.w (πœ‘ β†’ π‘Š ∈ LMod)
lmodvscld.r (πœ‘ β†’ 𝑅 ∈ 𝐾)
lmodvscld.x (πœ‘ β†’ 𝑋 ∈ 𝑉)
Assertion
Ref Expression
lmodvscld (πœ‘ β†’ (𝑅 Β· 𝑋) ∈ 𝑉)

Proof of Theorem lmodvscld
StepHypRef Expression
1 lmodvscld.w . 2 (πœ‘ β†’ π‘Š ∈ LMod)
2 lmodvscld.r . 2 (πœ‘ β†’ 𝑅 ∈ 𝐾)
3 lmodvscld.x . 2 (πœ‘ β†’ 𝑋 ∈ 𝑉)
4 lmodvscld.v . . 3 𝑉 = (Baseβ€˜π‘Š)
5 lmodvscld.f . . 3 𝐹 = (Scalarβ€˜π‘Š)
6 lmodvscld.s . . 3 Β· = ( ·𝑠 β€˜π‘Š)
7 lmodvscld.k . . 3 𝐾 = (Baseβ€˜πΉ)
84, 5, 6, 7lmodvscl 20489 . 2 ((π‘Š ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) β†’ (𝑅 Β· 𝑋) ∈ 𝑉)
91, 2, 3, 8syl3anc 1372 1 (πœ‘ β†’ (𝑅 Β· 𝑋) ∈ 𝑉)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1542   ∈ wcel 2107  β€˜cfv 6544  (class class class)co 7409  Basecbs 17144  Scalarcsca 17200   ·𝑠 cvsca 17201  LModclmod 20471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-nul 5307
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rab 3434  df-v 3477  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-iota 6496  df-fv 6552  df-ov 7412  df-lmod 20473
This theorem is referenced by:  frlmsnic  41110  selvvvval  41157  prjspvs  41352  prjspeclsp  41354
  Copyright terms: Public domain W3C validator