MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodvscld Structured version   Visualization version   GIF version

Theorem lmodvscld 20894
Description: Closure of scalar product for a left module. (Contributed by SN, 15-Mar-2025.)
Hypotheses
Ref Expression
lmodvscld.v 𝑉 = (Base‘𝑊)
lmodvscld.f 𝐹 = (Scalar‘𝑊)
lmodvscld.s · = ( ·𝑠𝑊)
lmodvscld.k 𝐾 = (Base‘𝐹)
lmodvscld.w (𝜑𝑊 ∈ LMod)
lmodvscld.r (𝜑𝑅𝐾)
lmodvscld.x (𝜑𝑋𝑉)
Assertion
Ref Expression
lmodvscld (𝜑 → (𝑅 · 𝑋) ∈ 𝑉)

Proof of Theorem lmodvscld
StepHypRef Expression
1 lmodvscld.w . 2 (𝜑𝑊 ∈ LMod)
2 lmodvscld.r . 2 (𝜑𝑅𝐾)
3 lmodvscld.x . 2 (𝜑𝑋𝑉)
4 lmodvscld.v . . 3 𝑉 = (Base‘𝑊)
5 lmodvscld.f . . 3 𝐹 = (Scalar‘𝑊)
6 lmodvscld.s . . 3 · = ( ·𝑠𝑊)
7 lmodvscld.k . . 3 𝐾 = (Base‘𝐹)
84, 5, 6, 7lmodvscl 20893 . 2 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝑉) → (𝑅 · 𝑋) ∈ 𝑉)
91, 2, 3, 8syl3anc 1370 1 (𝜑 → (𝑅 · 𝑋) ∈ 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  cfv 6563  (class class class)co 7431  Basecbs 17245  Scalarcsca 17301   ·𝑠 cvsca 17302  LModclmod 20875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-nul 5312
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-iota 6516  df-fv 6571  df-ov 7434  df-lmod 20877
This theorem is referenced by:  assa2ass2  21902  mhpvscacl  22176  ply1vscl  22404  ressasclcl  33576  q1pvsca  33604  r1pvsca  33605  r1plmhm  33610  ply1degltdimlem  33650  lactlmhm  33662  algextdeglem8  33730  frlmsnic  42527  selvvvval  42572  prjspvs  42597  prjspeclsp  42599  asclelbasALT  48796
  Copyright terms: Public domain W3C validator