![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lmodvscld | Structured version Visualization version GIF version |
Description: Closure of scalar product for a left module. (Contributed by SN, 15-Mar-2025.) |
Ref | Expression |
---|---|
lmodvscld.v | β’ π = (Baseβπ) |
lmodvscld.f | β’ πΉ = (Scalarβπ) |
lmodvscld.s | β’ Β· = ( Β·π βπ) |
lmodvscld.k | β’ πΎ = (BaseβπΉ) |
lmodvscld.w | β’ (π β π β LMod) |
lmodvscld.r | β’ (π β π β πΎ) |
lmodvscld.x | β’ (π β π β π) |
Ref | Expression |
---|---|
lmodvscld | β’ (π β (π Β· π) β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodvscld.w | . 2 β’ (π β π β LMod) | |
2 | lmodvscld.r | . 2 β’ (π β π β πΎ) | |
3 | lmodvscld.x | . 2 β’ (π β π β π) | |
4 | lmodvscld.v | . . 3 β’ π = (Baseβπ) | |
5 | lmodvscld.f | . . 3 β’ πΉ = (Scalarβπ) | |
6 | lmodvscld.s | . . 3 β’ Β· = ( Β·π βπ) | |
7 | lmodvscld.k | . . 3 β’ πΎ = (BaseβπΉ) | |
8 | 4, 5, 6, 7 | lmodvscl 20489 | . 2 β’ ((π β LMod β§ π β πΎ β§ π β π) β (π Β· π) β π) |
9 | 1, 2, 3, 8 | syl3anc 1372 | 1 β’ (π β (π Β· π) β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1542 β wcel 2107 βcfv 6544 (class class class)co 7409 Basecbs 17144 Scalarcsca 17200 Β·π cvsca 17201 LModclmod 20471 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-nul 5307 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rab 3434 df-v 3477 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-iota 6496 df-fv 6552 df-ov 7412 df-lmod 20473 |
This theorem is referenced by: frlmsnic 41110 selvvvval 41157 prjspvs 41352 prjspeclsp 41354 |
Copyright terms: Public domain | W3C validator |