MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodvscld Structured version   Visualization version   GIF version

Theorem lmodvscld 20785
Description: Closure of scalar product for a left module. (Contributed by SN, 15-Mar-2025.)
Hypotheses
Ref Expression
lmodvscld.v 𝑉 = (Base‘𝑊)
lmodvscld.f 𝐹 = (Scalar‘𝑊)
lmodvscld.s · = ( ·𝑠𝑊)
lmodvscld.k 𝐾 = (Base‘𝐹)
lmodvscld.w (𝜑𝑊 ∈ LMod)
lmodvscld.r (𝜑𝑅𝐾)
lmodvscld.x (𝜑𝑋𝑉)
Assertion
Ref Expression
lmodvscld (𝜑 → (𝑅 · 𝑋) ∈ 𝑉)

Proof of Theorem lmodvscld
StepHypRef Expression
1 lmodvscld.w . 2 (𝜑𝑊 ∈ LMod)
2 lmodvscld.r . 2 (𝜑𝑅𝐾)
3 lmodvscld.x . 2 (𝜑𝑋𝑉)
4 lmodvscld.v . . 3 𝑉 = (Base‘𝑊)
5 lmodvscld.f . . 3 𝐹 = (Scalar‘𝑊)
6 lmodvscld.s . . 3 · = ( ·𝑠𝑊)
7 lmodvscld.k . . 3 𝐾 = (Base‘𝐹)
84, 5, 6, 7lmodvscl 20784 . 2 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝑉) → (𝑅 · 𝑋) ∈ 𝑉)
91, 2, 3, 8syl3anc 1373 1 (𝜑 → (𝑅 · 𝑋) ∈ 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6511  (class class class)co 7387  Basecbs 17179  Scalarcsca 17223   ·𝑠 cvsca 17224  LModclmod 20766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519  df-ov 7390  df-lmod 20768
This theorem is referenced by:  assa2ass2  21773  mhpvscacl  22041  ply1vscl  22271  ressasclcl  33540  q1pvsca  33569  r1pvsca  33570  r1plmhm  33575  ply1degltdimlem  33618  lactlmhm  33630  algextdeglem8  33714  frlmsnic  42528  selvvvval  42573  prjspvs  42598  prjspeclsp  42600  asclelbasALT  48995
  Copyright terms: Public domain W3C validator