MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodvscld Structured version   Visualization version   GIF version

Theorem lmodvscld 20800
Description: Closure of scalar product for a left module. (Contributed by SN, 15-Mar-2025.)
Hypotheses
Ref Expression
lmodvscld.v 𝑉 = (Base‘𝑊)
lmodvscld.f 𝐹 = (Scalar‘𝑊)
lmodvscld.s · = ( ·𝑠𝑊)
lmodvscld.k 𝐾 = (Base‘𝐹)
lmodvscld.w (𝜑𝑊 ∈ LMod)
lmodvscld.r (𝜑𝑅𝐾)
lmodvscld.x (𝜑𝑋𝑉)
Assertion
Ref Expression
lmodvscld (𝜑 → (𝑅 · 𝑋) ∈ 𝑉)

Proof of Theorem lmodvscld
StepHypRef Expression
1 lmodvscld.w . 2 (𝜑𝑊 ∈ LMod)
2 lmodvscld.r . 2 (𝜑𝑅𝐾)
3 lmodvscld.x . 2 (𝜑𝑋𝑉)
4 lmodvscld.v . . 3 𝑉 = (Base‘𝑊)
5 lmodvscld.f . . 3 𝐹 = (Scalar‘𝑊)
6 lmodvscld.s . . 3 · = ( ·𝑠𝑊)
7 lmodvscld.k . . 3 𝐾 = (Base‘𝐹)
84, 5, 6, 7lmodvscl 20799 . 2 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝑉) → (𝑅 · 𝑋) ∈ 𝑉)
91, 2, 3, 8syl3anc 1373 1 (𝜑 → (𝑅 · 𝑋) ∈ 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6486  (class class class)co 7353  Basecbs 17138  Scalarcsca 17182   ·𝑠 cvsca 17183  LModclmod 20781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5248
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-iota 6442  df-fv 6494  df-ov 7356  df-lmod 20783
This theorem is referenced by:  assa2ass2  21789  mhpvscacl  22057  ply1vscl  22287  ressasclcl  33516  q1pvsca  33545  r1pvsca  33546  r1plmhm  33551  ply1degltdimlem  33594  lactlmhm  33606  algextdeglem8  33690  frlmsnic  42513  selvvvval  42558  prjspvs  42583  prjspeclsp  42585  asclelbasALT  48992
  Copyright terms: Public domain W3C validator