![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmodvscld | Structured version Visualization version GIF version |
Description: Closure of scalar product for a left module. (Contributed by SN, 15-Mar-2025.) |
Ref | Expression |
---|---|
lmodvscld.v | ⊢ 𝑉 = (Base‘𝑊) |
lmodvscld.f | ⊢ 𝐹 = (Scalar‘𝑊) |
lmodvscld.s | ⊢ · = ( ·𝑠 ‘𝑊) |
lmodvscld.k | ⊢ 𝐾 = (Base‘𝐹) |
lmodvscld.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lmodvscld.r | ⊢ (𝜑 → 𝑅 ∈ 𝐾) |
lmodvscld.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
Ref | Expression |
---|---|
lmodvscld | ⊢ (𝜑 → (𝑅 · 𝑋) ∈ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodvscld.w | . 2 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
2 | lmodvscld.r | . 2 ⊢ (𝜑 → 𝑅 ∈ 𝐾) | |
3 | lmodvscld.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
4 | lmodvscld.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
5 | lmodvscld.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
6 | lmodvscld.s | . . 3 ⊢ · = ( ·𝑠 ‘𝑊) | |
7 | lmodvscld.k | . . 3 ⊢ 𝐾 = (Base‘𝐹) | |
8 | 4, 5, 6, 7 | lmodvscl 20898 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑅 · 𝑋) ∈ 𝑉) |
9 | 1, 2, 3, 8 | syl3anc 1371 | 1 ⊢ (𝜑 → (𝑅 · 𝑋) ∈ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 Scalarcsca 17314 ·𝑠 cvsca 17315 LModclmod 20880 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-lmod 20882 |
This theorem is referenced by: assa2ass2 21907 mhpvscacl 22181 ply1vscl 22409 ressasclcl 33561 q1pvsca 33589 r1pvsca 33590 r1plmhm 33595 ply1degltdimlem 33635 lactlmhm 33647 algextdeglem8 33715 frlmsnic 42495 selvvvval 42540 prjspvs 42565 prjspeclsp 42567 |
Copyright terms: Public domain | W3C validator |