| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodvscld | Structured version Visualization version GIF version | ||
| Description: Closure of scalar product for a left module. (Contributed by SN, 15-Mar-2025.) |
| Ref | Expression |
|---|---|
| lmodvscld.v | ⊢ 𝑉 = (Base‘𝑊) |
| lmodvscld.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lmodvscld.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| lmodvscld.k | ⊢ 𝐾 = (Base‘𝐹) |
| lmodvscld.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lmodvscld.r | ⊢ (𝜑 → 𝑅 ∈ 𝐾) |
| lmodvscld.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| lmodvscld | ⊢ (𝜑 → (𝑅 · 𝑋) ∈ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodvscld.w | . 2 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 2 | lmodvscld.r | . 2 ⊢ (𝜑 → 𝑅 ∈ 𝐾) | |
| 3 | lmodvscld.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 4 | lmodvscld.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 5 | lmodvscld.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 6 | lmodvscld.s | . . 3 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 7 | lmodvscld.k | . . 3 ⊢ 𝐾 = (Base‘𝐹) | |
| 8 | 4, 5, 6, 7 | lmodvscl 20815 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑅 · 𝑋) ∈ 𝑉) |
| 9 | 1, 2, 3, 8 | syl3anc 1373 | 1 ⊢ (𝜑 → (𝑅 · 𝑋) ∈ 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ‘cfv 6488 (class class class)co 7354 Basecbs 17124 Scalarcsca 17168 ·𝑠 cvsca 17169 LModclmod 20797 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6444 df-fv 6496 df-ov 7357 df-lmod 20799 |
| This theorem is referenced by: assa2ass2 21805 mhpvscacl 22072 ply1vscl 22302 ressasclcl 33543 q1pvsca 33573 r1pvsca 33574 r1plmhm 33579 ply1degltdimlem 33658 lactlmhm 33670 extdgfialglem2 33729 algextdeglem8 33760 frlmsnic 42661 selvvvval 42706 prjspvs 42731 prjspeclsp 42733 asclelbasALT 49134 |
| Copyright terms: Public domain | W3C validator |