![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmodvscld | Structured version Visualization version GIF version |
Description: Closure of scalar product for a left module. (Contributed by SN, 15-Mar-2025.) |
Ref | Expression |
---|---|
lmodvscld.v | ⊢ 𝑉 = (Base‘𝑊) |
lmodvscld.f | ⊢ 𝐹 = (Scalar‘𝑊) |
lmodvscld.s | ⊢ · = ( ·𝑠 ‘𝑊) |
lmodvscld.k | ⊢ 𝐾 = (Base‘𝐹) |
lmodvscld.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lmodvscld.r | ⊢ (𝜑 → 𝑅 ∈ 𝐾) |
lmodvscld.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
Ref | Expression |
---|---|
lmodvscld | ⊢ (𝜑 → (𝑅 · 𝑋) ∈ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodvscld.w | . 2 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
2 | lmodvscld.r | . 2 ⊢ (𝜑 → 𝑅 ∈ 𝐾) | |
3 | lmodvscld.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
4 | lmodvscld.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
5 | lmodvscld.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
6 | lmodvscld.s | . . 3 ⊢ · = ( ·𝑠 ‘𝑊) | |
7 | lmodvscld.k | . . 3 ⊢ 𝐾 = (Base‘𝐹) | |
8 | 4, 5, 6, 7 | lmodvscl 20893 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑅 · 𝑋) ∈ 𝑉) |
9 | 1, 2, 3, 8 | syl3anc 1370 | 1 ⊢ (𝜑 → (𝑅 · 𝑋) ∈ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 Scalarcsca 17301 ·𝑠 cvsca 17302 LModclmod 20875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-nul 5312 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-ov 7434 df-lmod 20877 |
This theorem is referenced by: assa2ass2 21902 mhpvscacl 22176 ply1vscl 22404 ressasclcl 33576 q1pvsca 33604 r1pvsca 33605 r1plmhm 33610 ply1degltdimlem 33650 lactlmhm 33662 algextdeglem8 33730 frlmsnic 42527 selvvvval 42572 prjspvs 42597 prjspeclsp 42599 asclelbasALT 48796 |
Copyright terms: Public domain | W3C validator |