| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodvscld | Structured version Visualization version GIF version | ||
| Description: Closure of scalar product for a left module. (Contributed by SN, 15-Mar-2025.) |
| Ref | Expression |
|---|---|
| lmodvscld.v | ⊢ 𝑉 = (Base‘𝑊) |
| lmodvscld.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lmodvscld.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| lmodvscld.k | ⊢ 𝐾 = (Base‘𝐹) |
| lmodvscld.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lmodvscld.r | ⊢ (𝜑 → 𝑅 ∈ 𝐾) |
| lmodvscld.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| lmodvscld | ⊢ (𝜑 → (𝑅 · 𝑋) ∈ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodvscld.w | . 2 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 2 | lmodvscld.r | . 2 ⊢ (𝜑 → 𝑅 ∈ 𝐾) | |
| 3 | lmodvscld.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 4 | lmodvscld.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 5 | lmodvscld.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 6 | lmodvscld.s | . . 3 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 7 | lmodvscld.k | . . 3 ⊢ 𝐾 = (Base‘𝐹) | |
| 8 | 4, 5, 6, 7 | lmodvscl 20812 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑅 · 𝑋) ∈ 𝑉) |
| 9 | 1, 2, 3, 8 | syl3anc 1373 | 1 ⊢ (𝜑 → (𝑅 · 𝑋) ∈ 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 Scalarcsca 17164 ·𝑠 cvsca 17165 LModclmod 20794 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5244 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-iota 6437 df-fv 6489 df-ov 7349 df-lmod 20796 |
| This theorem is referenced by: assa2ass2 21802 mhpvscacl 22070 ply1vscl 22300 ressasclcl 33532 q1pvsca 33562 r1pvsca 33563 r1plmhm 33568 ply1degltdimlem 33633 lactlmhm 33645 extdgfialglem2 33704 algextdeglem8 33735 frlmsnic 42579 selvvvval 42624 prjspvs 42649 prjspeclsp 42651 asclelbasALT 49044 |
| Copyright terms: Public domain | W3C validator |