MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodvscld Structured version   Visualization version   GIF version

Theorem lmodvscld 20813
Description: Closure of scalar product for a left module. (Contributed by SN, 15-Mar-2025.)
Hypotheses
Ref Expression
lmodvscld.v 𝑉 = (Base‘𝑊)
lmodvscld.f 𝐹 = (Scalar‘𝑊)
lmodvscld.s · = ( ·𝑠𝑊)
lmodvscld.k 𝐾 = (Base‘𝐹)
lmodvscld.w (𝜑𝑊 ∈ LMod)
lmodvscld.r (𝜑𝑅𝐾)
lmodvscld.x (𝜑𝑋𝑉)
Assertion
Ref Expression
lmodvscld (𝜑 → (𝑅 · 𝑋) ∈ 𝑉)

Proof of Theorem lmodvscld
StepHypRef Expression
1 lmodvscld.w . 2 (𝜑𝑊 ∈ LMod)
2 lmodvscld.r . 2 (𝜑𝑅𝐾)
3 lmodvscld.x . 2 (𝜑𝑋𝑉)
4 lmodvscld.v . . 3 𝑉 = (Base‘𝑊)
5 lmodvscld.f . . 3 𝐹 = (Scalar‘𝑊)
6 lmodvscld.s . . 3 · = ( ·𝑠𝑊)
7 lmodvscld.k . . 3 𝐾 = (Base‘𝐹)
84, 5, 6, 7lmodvscl 20812 . 2 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝑉) → (𝑅 · 𝑋) ∈ 𝑉)
91, 2, 3, 8syl3anc 1373 1 (𝜑 → (𝑅 · 𝑋) ∈ 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cfv 6481  (class class class)co 7346  Basecbs 17120  Scalarcsca 17164   ·𝑠 cvsca 17165  LModclmod 20794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5244
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-iota 6437  df-fv 6489  df-ov 7349  df-lmod 20796
This theorem is referenced by:  assa2ass2  21802  mhpvscacl  22070  ply1vscl  22300  ressasclcl  33532  q1pvsca  33562  r1pvsca  33563  r1plmhm  33568  ply1degltdimlem  33633  lactlmhm  33645  extdgfialglem2  33704  algextdeglem8  33735  frlmsnic  42579  selvvvval  42624  prjspvs  42649  prjspeclsp  42651  asclelbasALT  49044
  Copyright terms: Public domain W3C validator