| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodvscld | Structured version Visualization version GIF version | ||
| Description: Closure of scalar product for a left module. (Contributed by SN, 15-Mar-2025.) |
| Ref | Expression |
|---|---|
| lmodvscld.v | ⊢ 𝑉 = (Base‘𝑊) |
| lmodvscld.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lmodvscld.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| lmodvscld.k | ⊢ 𝐾 = (Base‘𝐹) |
| lmodvscld.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lmodvscld.r | ⊢ (𝜑 → 𝑅 ∈ 𝐾) |
| lmodvscld.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| lmodvscld | ⊢ (𝜑 → (𝑅 · 𝑋) ∈ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodvscld.w | . 2 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 2 | lmodvscld.r | . 2 ⊢ (𝜑 → 𝑅 ∈ 𝐾) | |
| 3 | lmodvscld.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 4 | lmodvscld.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 5 | lmodvscld.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 6 | lmodvscld.s | . . 3 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 7 | lmodvscld.k | . . 3 ⊢ 𝐾 = (Base‘𝐹) | |
| 8 | 4, 5, 6, 7 | lmodvscl 20833 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑅 · 𝑋) ∈ 𝑉) |
| 9 | 1, 2, 3, 8 | syl3anc 1373 | 1 ⊢ (𝜑 → (𝑅 · 𝑋) ∈ 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ‘cfv 6530 (class class class)co 7403 Basecbs 17226 Scalarcsca 17272 ·𝑠 cvsca 17273 LModclmod 20815 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-nul 5276 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6483 df-fv 6538 df-ov 7406 df-lmod 20817 |
| This theorem is referenced by: assa2ass2 21822 mhpvscacl 22090 ply1vscl 22320 ressasclcl 33530 q1pvsca 33559 r1pvsca 33560 r1plmhm 33565 ply1degltdimlem 33608 lactlmhm 33620 algextdeglem8 33704 frlmsnic 42510 selvvvval 42555 prjspvs 42580 prjspeclsp 42582 asclelbasALT 48929 |
| Copyright terms: Public domain | W3C validator |