| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodvscld | Structured version Visualization version GIF version | ||
| Description: Closure of scalar product for a left module. (Contributed by SN, 15-Mar-2025.) |
| Ref | Expression |
|---|---|
| lmodvscld.v | ⊢ 𝑉 = (Base‘𝑊) |
| lmodvscld.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lmodvscld.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| lmodvscld.k | ⊢ 𝐾 = (Base‘𝐹) |
| lmodvscld.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lmodvscld.r | ⊢ (𝜑 → 𝑅 ∈ 𝐾) |
| lmodvscld.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| lmodvscld | ⊢ (𝜑 → (𝑅 · 𝑋) ∈ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodvscld.w | . 2 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 2 | lmodvscld.r | . 2 ⊢ (𝜑 → 𝑅 ∈ 𝐾) | |
| 3 | lmodvscld.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 4 | lmodvscld.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 5 | lmodvscld.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 6 | lmodvscld.s | . . 3 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 7 | lmodvscld.k | . . 3 ⊢ 𝐾 = (Base‘𝐹) | |
| 8 | 4, 5, 6, 7 | lmodvscl 20784 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑅 · 𝑋) ∈ 𝑉) |
| 9 | 1, 2, 3, 8 | syl3anc 1373 | 1 ⊢ (𝜑 → (𝑅 · 𝑋) ∈ 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 Scalarcsca 17223 ·𝑠 cvsca 17224 LModclmod 20766 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-lmod 20768 |
| This theorem is referenced by: assa2ass2 21773 mhpvscacl 22041 ply1vscl 22271 ressasclcl 33540 q1pvsca 33569 r1pvsca 33570 r1plmhm 33575 ply1degltdimlem 33618 lactlmhm 33630 algextdeglem8 33714 frlmsnic 42528 selvvvval 42573 prjspvs 42598 prjspeclsp 42600 asclelbasALT 48995 |
| Copyright terms: Public domain | W3C validator |