Proof of Theorem q1pvsca
| Step | Hyp | Ref
| Expression |
| 1 | | q1pdir.r |
. 2
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 2 | | r1padd1.u |
. . 3
⊢ 𝑈 = (Base‘𝑃) |
| 3 | | eqid 2735 |
. . 3
⊢
(Scalar‘𝑃) =
(Scalar‘𝑃) |
| 4 | | q1pvsca.1 |
. . 3
⊢ × = (
·𝑠 ‘𝑃) |
| 5 | | eqid 2735 |
. . 3
⊢
(Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃)) |
| 6 | | r1padd1.p |
. . . . 5
⊢ 𝑃 = (Poly1‘𝑅) |
| 7 | 6 | ply1lmod 22187 |
. . . 4
⊢ (𝑅 ∈ Ring → 𝑃 ∈ LMod) |
| 8 | 1, 7 | syl 17 |
. . 3
⊢ (𝜑 → 𝑃 ∈ LMod) |
| 9 | | q1pvsca.8 |
. . . 4
⊢ (𝜑 → 𝐵 ∈ 𝐾) |
| 10 | | q1pvsca.k |
. . . . 5
⊢ 𝐾 = (Base‘𝑅) |
| 11 | 6 | ply1sca 22188 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃)) |
| 12 | 1, 11 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑅 = (Scalar‘𝑃)) |
| 13 | 12 | fveq2d 6880 |
. . . . 5
⊢ (𝜑 → (Base‘𝑅) =
(Base‘(Scalar‘𝑃))) |
| 14 | 10, 13 | eqtrid 2782 |
. . . 4
⊢ (𝜑 → 𝐾 = (Base‘(Scalar‘𝑃))) |
| 15 | 9, 14 | eleqtrd 2836 |
. . 3
⊢ (𝜑 → 𝐵 ∈ (Base‘(Scalar‘𝑃))) |
| 16 | | q1pdir.a |
. . 3
⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| 17 | 2, 3, 4, 5, 8, 15,
16 | lmodvscld 20836 |
. 2
⊢ (𝜑 → (𝐵 × 𝐴) ∈ 𝑈) |
| 18 | | q1pdir.c |
. 2
⊢ (𝜑 → 𝐶 ∈ 𝑁) |
| 19 | | q1pdir.d |
. . . . 5
⊢ / =
(quot1p‘𝑅) |
| 20 | | r1padd1.n |
. . . . 5
⊢ 𝑁 =
(Unic1p‘𝑅) |
| 21 | 19, 6, 2, 20 | q1pcl 26114 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑈 ∧ 𝐶 ∈ 𝑁) → (𝐴 / 𝐶) ∈ 𝑈) |
| 22 | 1, 16, 18, 21 | syl3anc 1373 |
. . 3
⊢ (𝜑 → (𝐴 / 𝐶) ∈ 𝑈) |
| 23 | 2, 3, 4, 5, 8, 15,
22 | lmodvscld 20836 |
. 2
⊢ (𝜑 → (𝐵 × (𝐴 / 𝐶)) ∈ 𝑈) |
| 24 | 8 | lmodgrpd 20827 |
. . . . 5
⊢ (𝜑 → 𝑃 ∈ Grp) |
| 25 | | eqid 2735 |
. . . . . 6
⊢
(.r‘𝑃) = (.r‘𝑃) |
| 26 | 6 | ply1ring 22183 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
| 27 | 1, 26 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑃 ∈ Ring) |
| 28 | 6, 2, 20 | uc1pcl 26101 |
. . . . . . 7
⊢ (𝐶 ∈ 𝑁 → 𝐶 ∈ 𝑈) |
| 29 | 18, 28 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ 𝑈) |
| 30 | 2, 25, 27, 23, 29 | ringcld 20220 |
. . . . 5
⊢ (𝜑 → ((𝐵 × (𝐴 / 𝐶))(.r‘𝑃)𝐶) ∈ 𝑈) |
| 31 | | eqid 2735 |
. . . . . 6
⊢
(-g‘𝑃) = (-g‘𝑃) |
| 32 | 2, 31 | grpsubcl 19003 |
. . . . 5
⊢ ((𝑃 ∈ Grp ∧ (𝐵 × 𝐴) ∈ 𝑈 ∧ ((𝐵 × (𝐴 / 𝐶))(.r‘𝑃)𝐶) ∈ 𝑈) → ((𝐵 × 𝐴)(-g‘𝑃)((𝐵 × (𝐴 / 𝐶))(.r‘𝑃)𝐶)) ∈ 𝑈) |
| 33 | 24, 17, 30, 32 | syl3anc 1373 |
. . . 4
⊢ (𝜑 → ((𝐵 × 𝐴)(-g‘𝑃)((𝐵 × (𝐴 / 𝐶))(.r‘𝑃)𝐶)) ∈ 𝑈) |
| 34 | | eqid 2735 |
. . . . 5
⊢
(deg1‘𝑅) = (deg1‘𝑅) |
| 35 | 34, 6, 2 | deg1xrcl 26039 |
. . . 4
⊢ (((𝐵 × 𝐴)(-g‘𝑃)((𝐵 × (𝐴 / 𝐶))(.r‘𝑃)𝐶)) ∈ 𝑈 → ((deg1‘𝑅)‘((𝐵 × 𝐴)(-g‘𝑃)((𝐵 × (𝐴 / 𝐶))(.r‘𝑃)𝐶))) ∈
ℝ*) |
| 36 | 33, 35 | syl 17 |
. . 3
⊢ (𝜑 →
((deg1‘𝑅)‘((𝐵 × 𝐴)(-g‘𝑃)((𝐵 × (𝐴 / 𝐶))(.r‘𝑃)𝐶))) ∈
ℝ*) |
| 37 | | eqid 2735 |
. . . . . . 7
⊢
(rem1p‘𝑅) = (rem1p‘𝑅) |
| 38 | 37, 6, 2, 19, 25, 31 | r1pval 26115 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑈 ∧ 𝐶 ∈ 𝑈) → (𝐴(rem1p‘𝑅)𝐶) = (𝐴(-g‘𝑃)((𝐴 / 𝐶)(.r‘𝑃)𝐶))) |
| 39 | 16, 29, 38 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → (𝐴(rem1p‘𝑅)𝐶) = (𝐴(-g‘𝑃)((𝐴 / 𝐶)(.r‘𝑃)𝐶))) |
| 40 | 2, 25, 27, 22, 29 | ringcld 20220 |
. . . . . 6
⊢ (𝜑 → ((𝐴 / 𝐶)(.r‘𝑃)𝐶) ∈ 𝑈) |
| 41 | 2, 31 | grpsubcl 19003 |
. . . . . 6
⊢ ((𝑃 ∈ Grp ∧ 𝐴 ∈ 𝑈 ∧ ((𝐴 / 𝐶)(.r‘𝑃)𝐶) ∈ 𝑈) → (𝐴(-g‘𝑃)((𝐴 / 𝐶)(.r‘𝑃)𝐶)) ∈ 𝑈) |
| 42 | 24, 16, 40, 41 | syl3anc 1373 |
. . . . 5
⊢ (𝜑 → (𝐴(-g‘𝑃)((𝐴 / 𝐶)(.r‘𝑃)𝐶)) ∈ 𝑈) |
| 43 | 39, 42 | eqeltrd 2834 |
. . . 4
⊢ (𝜑 → (𝐴(rem1p‘𝑅)𝐶) ∈ 𝑈) |
| 44 | 34, 6, 2 | deg1xrcl 26039 |
. . . 4
⊢ ((𝐴(rem1p‘𝑅)𝐶) ∈ 𝑈 → ((deg1‘𝑅)‘(𝐴(rem1p‘𝑅)𝐶)) ∈
ℝ*) |
| 45 | 43, 44 | syl 17 |
. . 3
⊢ (𝜑 →
((deg1‘𝑅)‘(𝐴(rem1p‘𝑅)𝐶)) ∈
ℝ*) |
| 46 | 34, 6, 2 | deg1xrcl 26039 |
. . . 4
⊢ (𝐶 ∈ 𝑈 → ((deg1‘𝑅)‘𝐶) ∈
ℝ*) |
| 47 | 29, 46 | syl 17 |
. . 3
⊢ (𝜑 →
((deg1‘𝑅)‘𝐶) ∈
ℝ*) |
| 48 | 6, 34, 1, 2, 10, 4,
9, 42 | deg1vscale 26061 |
. . . 4
⊢ (𝜑 →
((deg1‘𝑅)‘(𝐵 × (𝐴(-g‘𝑃)((𝐴 / 𝐶)(.r‘𝑃)𝐶)))) ≤ ((deg1‘𝑅)‘(𝐴(-g‘𝑃)((𝐴 / 𝐶)(.r‘𝑃)𝐶)))) |
| 49 | 6, 25, 2, 10, 4 | ply1ass23l 22162 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ (𝐵 ∈ 𝐾 ∧ (𝐴 / 𝐶) ∈ 𝑈 ∧ 𝐶 ∈ 𝑈)) → ((𝐵 × (𝐴 / 𝐶))(.r‘𝑃)𝐶) = (𝐵 × ((𝐴 / 𝐶)(.r‘𝑃)𝐶))) |
| 50 | 1, 9, 22, 29, 49 | syl13anc 1374 |
. . . . . . 7
⊢ (𝜑 → ((𝐵 × (𝐴 / 𝐶))(.r‘𝑃)𝐶) = (𝐵 × ((𝐴 / 𝐶)(.r‘𝑃)𝐶))) |
| 51 | 50 | oveq2d 7421 |
. . . . . 6
⊢ (𝜑 → ((𝐵 × 𝐴)(-g‘𝑃)((𝐵 × (𝐴 / 𝐶))(.r‘𝑃)𝐶)) = ((𝐵 × 𝐴)(-g‘𝑃)(𝐵 × ((𝐴 / 𝐶)(.r‘𝑃)𝐶)))) |
| 52 | 2, 4, 3, 5, 31, 8,
15, 16, 40 | lmodsubdi 20876 |
. . . . . 6
⊢ (𝜑 → (𝐵 × (𝐴(-g‘𝑃)((𝐴 / 𝐶)(.r‘𝑃)𝐶))) = ((𝐵 × 𝐴)(-g‘𝑃)(𝐵 × ((𝐴 / 𝐶)(.r‘𝑃)𝐶)))) |
| 53 | 51, 52 | eqtr4d 2773 |
. . . . 5
⊢ (𝜑 → ((𝐵 × 𝐴)(-g‘𝑃)((𝐵 × (𝐴 / 𝐶))(.r‘𝑃)𝐶)) = (𝐵 × (𝐴(-g‘𝑃)((𝐴 / 𝐶)(.r‘𝑃)𝐶)))) |
| 54 | 53 | fveq2d 6880 |
. . . 4
⊢ (𝜑 →
((deg1‘𝑅)‘((𝐵 × 𝐴)(-g‘𝑃)((𝐵 × (𝐴 / 𝐶))(.r‘𝑃)𝐶))) = ((deg1‘𝑅)‘(𝐵 × (𝐴(-g‘𝑃)((𝐴 / 𝐶)(.r‘𝑃)𝐶))))) |
| 55 | 39 | fveq2d 6880 |
. . . 4
⊢ (𝜑 →
((deg1‘𝑅)‘(𝐴(rem1p‘𝑅)𝐶)) = ((deg1‘𝑅)‘(𝐴(-g‘𝑃)((𝐴 / 𝐶)(.r‘𝑃)𝐶)))) |
| 56 | 48, 54, 55 | 3brtr4d 5151 |
. . 3
⊢ (𝜑 →
((deg1‘𝑅)‘((𝐵 × 𝐴)(-g‘𝑃)((𝐵 × (𝐴 / 𝐶))(.r‘𝑃)𝐶))) ≤ ((deg1‘𝑅)‘(𝐴(rem1p‘𝑅)𝐶))) |
| 57 | 37, 6, 2, 20, 34 | r1pdeglt 26117 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑈 ∧ 𝐶 ∈ 𝑁) → ((deg1‘𝑅)‘(𝐴(rem1p‘𝑅)𝐶)) < ((deg1‘𝑅)‘𝐶)) |
| 58 | 1, 16, 18, 57 | syl3anc 1373 |
. . 3
⊢ (𝜑 →
((deg1‘𝑅)‘(𝐴(rem1p‘𝑅)𝐶)) < ((deg1‘𝑅)‘𝐶)) |
| 59 | 36, 45, 47, 56, 58 | xrlelttrd 13176 |
. 2
⊢ (𝜑 →
((deg1‘𝑅)‘((𝐵 × 𝐴)(-g‘𝑃)((𝐵 × (𝐴 / 𝐶))(.r‘𝑃)𝐶))) < ((deg1‘𝑅)‘𝐶)) |
| 60 | 19, 6, 2, 34, 31, 25, 20 | q1peqb 26113 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝐵 × 𝐴) ∈ 𝑈 ∧ 𝐶 ∈ 𝑁) → (((𝐵 × (𝐴 / 𝐶)) ∈ 𝑈 ∧ ((deg1‘𝑅)‘((𝐵 × 𝐴)(-g‘𝑃)((𝐵 × (𝐴 / 𝐶))(.r‘𝑃)𝐶))) < ((deg1‘𝑅)‘𝐶)) ↔ ((𝐵 × 𝐴) / 𝐶) = (𝐵 × (𝐴 / 𝐶)))) |
| 61 | 60 | biimpa 476 |
. 2
⊢ (((𝑅 ∈ Ring ∧ (𝐵 × 𝐴) ∈ 𝑈 ∧ 𝐶 ∈ 𝑁) ∧ ((𝐵 × (𝐴 / 𝐶)) ∈ 𝑈 ∧ ((deg1‘𝑅)‘((𝐵 × 𝐴)(-g‘𝑃)((𝐵 × (𝐴 / 𝐶))(.r‘𝑃)𝐶))) < ((deg1‘𝑅)‘𝐶))) → ((𝐵 × 𝐴) / 𝐶) = (𝐵 × (𝐴 / 𝐶))) |
| 62 | 1, 17, 18, 23, 59, 61 | syl32anc 1380 |
1
⊢ (𝜑 → ((𝐵 × 𝐴) / 𝐶) = (𝐵 × (𝐴 / 𝐶))) |