Step | Hyp | Ref
| Expression |
1 | | q1pdir.r |
. 2
β’ (π β π
β Ring) |
2 | | r1padd1.u |
. . 3
β’ π = (Baseβπ) |
3 | | eqid 2730 |
. . 3
β’
(Scalarβπ) =
(Scalarβπ) |
4 | | q1pvsca.1 |
. . 3
β’ Γ = (
Β·π βπ) |
5 | | eqid 2730 |
. . 3
β’
(Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) |
6 | | r1padd1.p |
. . . . 5
β’ π = (Poly1βπ
) |
7 | 6 | ply1lmod 21994 |
. . . 4
β’ (π
β Ring β π β LMod) |
8 | 1, 7 | syl 17 |
. . 3
β’ (π β π β LMod) |
9 | | q1pvsca.8 |
. . . 4
β’ (π β π΅ β πΎ) |
10 | | q1pvsca.k |
. . . . 5
β’ πΎ = (Baseβπ
) |
11 | 6 | ply1sca 21995 |
. . . . . . 7
β’ (π
β Ring β π
= (Scalarβπ)) |
12 | 1, 11 | syl 17 |
. . . . . 6
β’ (π β π
= (Scalarβπ)) |
13 | 12 | fveq2d 6894 |
. . . . 5
β’ (π β (Baseβπ
) =
(Baseβ(Scalarβπ))) |
14 | 10, 13 | eqtrid 2782 |
. . . 4
β’ (π β πΎ = (Baseβ(Scalarβπ))) |
15 | 9, 14 | eleqtrd 2833 |
. . 3
β’ (π β π΅ β (Baseβ(Scalarβπ))) |
16 | | q1pdir.a |
. . 3
β’ (π β π΄ β π) |
17 | 2, 3, 4, 5, 8, 15,
16 | lmodvscld 20633 |
. 2
β’ (π β (π΅ Γ π΄) β π) |
18 | | q1pdir.c |
. 2
β’ (π β πΆ β π) |
19 | | q1pdir.d |
. . . . 5
β’ / =
(quot1pβπ
) |
20 | | r1padd1.n |
. . . . 5
β’ π =
(Unic1pβπ
) |
21 | 19, 6, 2, 20 | q1pcl 25908 |
. . . 4
β’ ((π
β Ring β§ π΄ β π β§ πΆ β π) β (π΄ / πΆ) β π) |
22 | 1, 16, 18, 21 | syl3anc 1369 |
. . 3
β’ (π β (π΄ / πΆ) β π) |
23 | 2, 3, 4, 5, 8, 15,
22 | lmodvscld 20633 |
. 2
β’ (π β (π΅ Γ (π΄ / πΆ)) β π) |
24 | 8 | lmodgrpd 20624 |
. . . . 5
β’ (π β π β Grp) |
25 | | eqid 2730 |
. . . . . 6
β’
(.rβπ) = (.rβπ) |
26 | 6 | ply1ring 21990 |
. . . . . . 7
β’ (π
β Ring β π β Ring) |
27 | 1, 26 | syl 17 |
. . . . . 6
β’ (π β π β Ring) |
28 | 6, 2, 20 | uc1pcl 25896 |
. . . . . . 7
β’ (πΆ β π β πΆ β π) |
29 | 18, 28 | syl 17 |
. . . . . 6
β’ (π β πΆ β π) |
30 | 2, 25, 27, 23, 29 | ringcld 20151 |
. . . . 5
β’ (π β ((π΅ Γ (π΄ / πΆ))(.rβπ)πΆ) β π) |
31 | | eqid 2730 |
. . . . . 6
β’
(-gβπ) = (-gβπ) |
32 | 2, 31 | grpsubcl 18939 |
. . . . 5
β’ ((π β Grp β§ (π΅ Γ π΄) β π β§ ((π΅ Γ (π΄ / πΆ))(.rβπ)πΆ) β π) β ((π΅ Γ π΄)(-gβπ)((π΅ Γ (π΄ / πΆ))(.rβπ)πΆ)) β π) |
33 | 24, 17, 30, 32 | syl3anc 1369 |
. . . 4
β’ (π β ((π΅ Γ π΄)(-gβπ)((π΅ Γ (π΄ / πΆ))(.rβπ)πΆ)) β π) |
34 | | eqid 2730 |
. . . . 5
β’ (
deg1 βπ
) =
( deg1 βπ
) |
35 | 34, 6, 2 | deg1xrcl 25835 |
. . . 4
β’ (((π΅ Γ π΄)(-gβπ)((π΅ Γ (π΄ / πΆ))(.rβπ)πΆ)) β π β (( deg1 βπ
)β((π΅ Γ π΄)(-gβπ)((π΅ Γ (π΄ / πΆ))(.rβπ)πΆ))) β
β*) |
36 | 33, 35 | syl 17 |
. . 3
β’ (π β (( deg1
βπ
)β((π΅ Γ π΄)(-gβπ)((π΅ Γ (π΄ / πΆ))(.rβπ)πΆ))) β
β*) |
37 | | eqid 2730 |
. . . . . . 7
β’
(rem1pβπ
) = (rem1pβπ
) |
38 | 37, 6, 2, 19, 25, 31 | r1pval 25909 |
. . . . . 6
β’ ((π΄ β π β§ πΆ β π) β (π΄(rem1pβπ
)πΆ) = (π΄(-gβπ)((π΄ / πΆ)(.rβπ)πΆ))) |
39 | 16, 29, 38 | syl2anc 582 |
. . . . 5
β’ (π β (π΄(rem1pβπ
)πΆ) = (π΄(-gβπ)((π΄ / πΆ)(.rβπ)πΆ))) |
40 | 2, 25, 27, 22, 29 | ringcld 20151 |
. . . . . 6
β’ (π β ((π΄ / πΆ)(.rβπ)πΆ) β π) |
41 | 2, 31 | grpsubcl 18939 |
. . . . . 6
β’ ((π β Grp β§ π΄ β π β§ ((π΄ / πΆ)(.rβπ)πΆ) β π) β (π΄(-gβπ)((π΄ / πΆ)(.rβπ)πΆ)) β π) |
42 | 24, 16, 40, 41 | syl3anc 1369 |
. . . . 5
β’ (π β (π΄(-gβπ)((π΄ / πΆ)(.rβπ)πΆ)) β π) |
43 | 39, 42 | eqeltrd 2831 |
. . . 4
β’ (π β (π΄(rem1pβπ
)πΆ) β π) |
44 | 34, 6, 2 | deg1xrcl 25835 |
. . . 4
β’ ((π΄(rem1pβπ
)πΆ) β π β (( deg1 βπ
)β(π΄(rem1pβπ
)πΆ)) β
β*) |
45 | 43, 44 | syl 17 |
. . 3
β’ (π β (( deg1
βπ
)β(π΄(rem1pβπ
)πΆ)) β
β*) |
46 | 34, 6, 2 | deg1xrcl 25835 |
. . . 4
β’ (πΆ β π β (( deg1 βπ
)βπΆ) β
β*) |
47 | 29, 46 | syl 17 |
. . 3
β’ (π β (( deg1
βπ
)βπΆ) β
β*) |
48 | 6, 34, 1, 2, 10, 4,
9, 42 | deg1vscale 25857 |
. . . 4
β’ (π β (( deg1
βπ
)β(π΅ Γ (π΄(-gβπ)((π΄ / πΆ)(.rβπ)πΆ)))) β€ (( deg1 βπ
)β(π΄(-gβπ)((π΄ / πΆ)(.rβπ)πΆ)))) |
49 | 6, 25, 2, 10, 4 | ply1ass23l 21969 |
. . . . . . . 8
β’ ((π
β Ring β§ (π΅ β πΎ β§ (π΄ / πΆ) β π β§ πΆ β π)) β ((π΅ Γ (π΄ / πΆ))(.rβπ)πΆ) = (π΅ Γ ((π΄ / πΆ)(.rβπ)πΆ))) |
50 | 1, 9, 22, 29, 49 | syl13anc 1370 |
. . . . . . 7
β’ (π β ((π΅ Γ (π΄ / πΆ))(.rβπ)πΆ) = (π΅ Γ ((π΄ / πΆ)(.rβπ)πΆ))) |
51 | 50 | oveq2d 7427 |
. . . . . 6
β’ (π β ((π΅ Γ π΄)(-gβπ)((π΅ Γ (π΄ / πΆ))(.rβπ)πΆ)) = ((π΅ Γ π΄)(-gβπ)(π΅ Γ ((π΄ / πΆ)(.rβπ)πΆ)))) |
52 | 2, 4, 3, 5, 31, 8,
15, 16, 40 | lmodsubdi 20673 |
. . . . . 6
β’ (π β (π΅ Γ (π΄(-gβπ)((π΄ / πΆ)(.rβπ)πΆ))) = ((π΅ Γ π΄)(-gβπ)(π΅ Γ ((π΄ / πΆ)(.rβπ)πΆ)))) |
53 | 51, 52 | eqtr4d 2773 |
. . . . 5
β’ (π β ((π΅ Γ π΄)(-gβπ)((π΅ Γ (π΄ / πΆ))(.rβπ)πΆ)) = (π΅ Γ (π΄(-gβπ)((π΄ / πΆ)(.rβπ)πΆ)))) |
54 | 53 | fveq2d 6894 |
. . . 4
β’ (π β (( deg1
βπ
)β((π΅ Γ π΄)(-gβπ)((π΅ Γ (π΄ / πΆ))(.rβπ)πΆ))) = (( deg1 βπ
)β(π΅ Γ (π΄(-gβπ)((π΄ / πΆ)(.rβπ)πΆ))))) |
55 | 39 | fveq2d 6894 |
. . . 4
β’ (π β (( deg1
βπ
)β(π΄(rem1pβπ
)πΆ)) = (( deg1 βπ
)β(π΄(-gβπ)((π΄ / πΆ)(.rβπ)πΆ)))) |
56 | 48, 54, 55 | 3brtr4d 5179 |
. . 3
β’ (π β (( deg1
βπ
)β((π΅ Γ π΄)(-gβπ)((π΅ Γ (π΄ / πΆ))(.rβπ)πΆ))) β€ (( deg1 βπ
)β(π΄(rem1pβπ
)πΆ))) |
57 | 37, 6, 2, 20, 34 | r1pdeglt 25911 |
. . . 4
β’ ((π
β Ring β§ π΄ β π β§ πΆ β π) β (( deg1 βπ
)β(π΄(rem1pβπ
)πΆ)) < (( deg1 βπ
)βπΆ)) |
58 | 1, 16, 18, 57 | syl3anc 1369 |
. . 3
β’ (π β (( deg1
βπ
)β(π΄(rem1pβπ
)πΆ)) < (( deg1 βπ
)βπΆ)) |
59 | 36, 45, 47, 56, 58 | xrlelttrd 13143 |
. 2
β’ (π β (( deg1
βπ
)β((π΅ Γ π΄)(-gβπ)((π΅ Γ (π΄ / πΆ))(.rβπ)πΆ))) < (( deg1 βπ
)βπΆ)) |
60 | 19, 6, 2, 34, 31, 25, 20 | q1peqb 25907 |
. . 3
β’ ((π
β Ring β§ (π΅ Γ π΄) β π β§ πΆ β π) β (((π΅ Γ (π΄ / πΆ)) β π β§ (( deg1 βπ
)β((π΅ Γ π΄)(-gβπ)((π΅ Γ (π΄ / πΆ))(.rβπ)πΆ))) < (( deg1 βπ
)βπΆ)) β ((π΅ Γ π΄) / πΆ) = (π΅ Γ (π΄ / πΆ)))) |
61 | 60 | biimpa 475 |
. 2
β’ (((π
β Ring β§ (π΅ Γ π΄) β π β§ πΆ β π) β§ ((π΅ Γ (π΄ / πΆ)) β π β§ (( deg1 βπ
)β((π΅ Γ π΄)(-gβπ)((π΅ Γ (π΄ / πΆ))(.rβπ)πΆ))) < (( deg1 βπ
)βπΆ))) β ((π΅ Γ π΄) / πΆ) = (π΅ Γ (π΄ / πΆ))) |
62 | 1, 17, 18, 23, 59, 61 | syl32anc 1376 |
1
β’ (π β ((π΅ Γ π΄) / πΆ) = (π΅ Γ (π΄ / πΆ))) |