Proof of Theorem q1pvsca
Step | Hyp | Ref
| Expression |
1 | | q1pdir.r |
. 2
⊢ (𝜑 → 𝑅 ∈ Ring) |
2 | | r1padd1.u |
. . 3
⊢ 𝑈 = (Base‘𝑃) |
3 | | eqid 2731 |
. . 3
⊢
(Scalar‘𝑃) =
(Scalar‘𝑃) |
4 | | q1pvsca.1 |
. . 3
⊢ × = (
·𝑠 ‘𝑃) |
5 | | eqid 2731 |
. . 3
⊢
(Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃)) |
6 | | r1padd1.p |
. . . . 5
⊢ 𝑃 = (Poly1‘𝑅) |
7 | 6 | ply1lmod 22007 |
. . . 4
⊢ (𝑅 ∈ Ring → 𝑃 ∈ LMod) |
8 | 1, 7 | syl 17 |
. . 3
⊢ (𝜑 → 𝑃 ∈ LMod) |
9 | | q1pvsca.8 |
. . . 4
⊢ (𝜑 → 𝐵 ∈ 𝐾) |
10 | | q1pvsca.k |
. . . . 5
⊢ 𝐾 = (Base‘𝑅) |
11 | 6 | ply1sca 22008 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃)) |
12 | 1, 11 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑅 = (Scalar‘𝑃)) |
13 | 12 | fveq2d 6895 |
. . . . 5
⊢ (𝜑 → (Base‘𝑅) =
(Base‘(Scalar‘𝑃))) |
14 | 10, 13 | eqtrid 2783 |
. . . 4
⊢ (𝜑 → 𝐾 = (Base‘(Scalar‘𝑃))) |
15 | 9, 14 | eleqtrd 2834 |
. . 3
⊢ (𝜑 → 𝐵 ∈ (Base‘(Scalar‘𝑃))) |
16 | | q1pdir.a |
. . 3
⊢ (𝜑 → 𝐴 ∈ 𝑈) |
17 | 2, 3, 4, 5, 8, 15,
16 | lmodvscld 20637 |
. 2
⊢ (𝜑 → (𝐵 × 𝐴) ∈ 𝑈) |
18 | | q1pdir.c |
. 2
⊢ (𝜑 → 𝐶 ∈ 𝑁) |
19 | | q1pdir.d |
. . . . 5
⊢ / =
(quot1p‘𝑅) |
20 | | r1padd1.n |
. . . . 5
⊢ 𝑁 =
(Unic1p‘𝑅) |
21 | 19, 6, 2, 20 | q1pcl 25922 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑈 ∧ 𝐶 ∈ 𝑁) → (𝐴 / 𝐶) ∈ 𝑈) |
22 | 1, 16, 18, 21 | syl3anc 1370 |
. . 3
⊢ (𝜑 → (𝐴 / 𝐶) ∈ 𝑈) |
23 | 2, 3, 4, 5, 8, 15,
22 | lmodvscld 20637 |
. 2
⊢ (𝜑 → (𝐵 × (𝐴 / 𝐶)) ∈ 𝑈) |
24 | 8 | lmodgrpd 20628 |
. . . . 5
⊢ (𝜑 → 𝑃 ∈ Grp) |
25 | | eqid 2731 |
. . . . . 6
⊢
(.r‘𝑃) = (.r‘𝑃) |
26 | 6 | ply1ring 22003 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
27 | 1, 26 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑃 ∈ Ring) |
28 | 6, 2, 20 | uc1pcl 25910 |
. . . . . . 7
⊢ (𝐶 ∈ 𝑁 → 𝐶 ∈ 𝑈) |
29 | 18, 28 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ 𝑈) |
30 | 2, 25, 27, 23, 29 | ringcld 20155 |
. . . . 5
⊢ (𝜑 → ((𝐵 × (𝐴 / 𝐶))(.r‘𝑃)𝐶) ∈ 𝑈) |
31 | | eqid 2731 |
. . . . . 6
⊢
(-g‘𝑃) = (-g‘𝑃) |
32 | 2, 31 | grpsubcl 18943 |
. . . . 5
⊢ ((𝑃 ∈ Grp ∧ (𝐵 × 𝐴) ∈ 𝑈 ∧ ((𝐵 × (𝐴 / 𝐶))(.r‘𝑃)𝐶) ∈ 𝑈) → ((𝐵 × 𝐴)(-g‘𝑃)((𝐵 × (𝐴 / 𝐶))(.r‘𝑃)𝐶)) ∈ 𝑈) |
33 | 24, 17, 30, 32 | syl3anc 1370 |
. . . 4
⊢ (𝜑 → ((𝐵 × 𝐴)(-g‘𝑃)((𝐵 × (𝐴 / 𝐶))(.r‘𝑃)𝐶)) ∈ 𝑈) |
34 | | eqid 2731 |
. . . . 5
⊢ (
deg1 ‘𝑅) =
( deg1 ‘𝑅) |
35 | 34, 6, 2 | deg1xrcl 25849 |
. . . 4
⊢ (((𝐵 × 𝐴)(-g‘𝑃)((𝐵 × (𝐴 / 𝐶))(.r‘𝑃)𝐶)) ∈ 𝑈 → (( deg1 ‘𝑅)‘((𝐵 × 𝐴)(-g‘𝑃)((𝐵 × (𝐴 / 𝐶))(.r‘𝑃)𝐶))) ∈
ℝ*) |
36 | 33, 35 | syl 17 |
. . 3
⊢ (𝜑 → (( deg1
‘𝑅)‘((𝐵 × 𝐴)(-g‘𝑃)((𝐵 × (𝐴 / 𝐶))(.r‘𝑃)𝐶))) ∈
ℝ*) |
37 | | eqid 2731 |
. . . . . . 7
⊢
(rem1p‘𝑅) = (rem1p‘𝑅) |
38 | 37, 6, 2, 19, 25, 31 | r1pval 25923 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑈 ∧ 𝐶 ∈ 𝑈) → (𝐴(rem1p‘𝑅)𝐶) = (𝐴(-g‘𝑃)((𝐴 / 𝐶)(.r‘𝑃)𝐶))) |
39 | 16, 29, 38 | syl2anc 583 |
. . . . 5
⊢ (𝜑 → (𝐴(rem1p‘𝑅)𝐶) = (𝐴(-g‘𝑃)((𝐴 / 𝐶)(.r‘𝑃)𝐶))) |
40 | 2, 25, 27, 22, 29 | ringcld 20155 |
. . . . . 6
⊢ (𝜑 → ((𝐴 / 𝐶)(.r‘𝑃)𝐶) ∈ 𝑈) |
41 | 2, 31 | grpsubcl 18943 |
. . . . . 6
⊢ ((𝑃 ∈ Grp ∧ 𝐴 ∈ 𝑈 ∧ ((𝐴 / 𝐶)(.r‘𝑃)𝐶) ∈ 𝑈) → (𝐴(-g‘𝑃)((𝐴 / 𝐶)(.r‘𝑃)𝐶)) ∈ 𝑈) |
42 | 24, 16, 40, 41 | syl3anc 1370 |
. . . . 5
⊢ (𝜑 → (𝐴(-g‘𝑃)((𝐴 / 𝐶)(.r‘𝑃)𝐶)) ∈ 𝑈) |
43 | 39, 42 | eqeltrd 2832 |
. . . 4
⊢ (𝜑 → (𝐴(rem1p‘𝑅)𝐶) ∈ 𝑈) |
44 | 34, 6, 2 | deg1xrcl 25849 |
. . . 4
⊢ ((𝐴(rem1p‘𝑅)𝐶) ∈ 𝑈 → (( deg1 ‘𝑅)‘(𝐴(rem1p‘𝑅)𝐶)) ∈
ℝ*) |
45 | 43, 44 | syl 17 |
. . 3
⊢ (𝜑 → (( deg1
‘𝑅)‘(𝐴(rem1p‘𝑅)𝐶)) ∈
ℝ*) |
46 | 34, 6, 2 | deg1xrcl 25849 |
. . . 4
⊢ (𝐶 ∈ 𝑈 → (( deg1 ‘𝑅)‘𝐶) ∈
ℝ*) |
47 | 29, 46 | syl 17 |
. . 3
⊢ (𝜑 → (( deg1
‘𝑅)‘𝐶) ∈
ℝ*) |
48 | 6, 34, 1, 2, 10, 4,
9, 42 | deg1vscale 25871 |
. . . 4
⊢ (𝜑 → (( deg1
‘𝑅)‘(𝐵 × (𝐴(-g‘𝑃)((𝐴 / 𝐶)(.r‘𝑃)𝐶)))) ≤ (( deg1 ‘𝑅)‘(𝐴(-g‘𝑃)((𝐴 / 𝐶)(.r‘𝑃)𝐶)))) |
49 | 6, 25, 2, 10, 4 | ply1ass23l 21982 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ (𝐵 ∈ 𝐾 ∧ (𝐴 / 𝐶) ∈ 𝑈 ∧ 𝐶 ∈ 𝑈)) → ((𝐵 × (𝐴 / 𝐶))(.r‘𝑃)𝐶) = (𝐵 × ((𝐴 / 𝐶)(.r‘𝑃)𝐶))) |
50 | 1, 9, 22, 29, 49 | syl13anc 1371 |
. . . . . . 7
⊢ (𝜑 → ((𝐵 × (𝐴 / 𝐶))(.r‘𝑃)𝐶) = (𝐵 × ((𝐴 / 𝐶)(.r‘𝑃)𝐶))) |
51 | 50 | oveq2d 7428 |
. . . . . 6
⊢ (𝜑 → ((𝐵 × 𝐴)(-g‘𝑃)((𝐵 × (𝐴 / 𝐶))(.r‘𝑃)𝐶)) = ((𝐵 × 𝐴)(-g‘𝑃)(𝐵 × ((𝐴 / 𝐶)(.r‘𝑃)𝐶)))) |
52 | 2, 4, 3, 5, 31, 8,
15, 16, 40 | lmodsubdi 20677 |
. . . . . 6
⊢ (𝜑 → (𝐵 × (𝐴(-g‘𝑃)((𝐴 / 𝐶)(.r‘𝑃)𝐶))) = ((𝐵 × 𝐴)(-g‘𝑃)(𝐵 × ((𝐴 / 𝐶)(.r‘𝑃)𝐶)))) |
53 | 51, 52 | eqtr4d 2774 |
. . . . 5
⊢ (𝜑 → ((𝐵 × 𝐴)(-g‘𝑃)((𝐵 × (𝐴 / 𝐶))(.r‘𝑃)𝐶)) = (𝐵 × (𝐴(-g‘𝑃)((𝐴 / 𝐶)(.r‘𝑃)𝐶)))) |
54 | 53 | fveq2d 6895 |
. . . 4
⊢ (𝜑 → (( deg1
‘𝑅)‘((𝐵 × 𝐴)(-g‘𝑃)((𝐵 × (𝐴 / 𝐶))(.r‘𝑃)𝐶))) = (( deg1 ‘𝑅)‘(𝐵 × (𝐴(-g‘𝑃)((𝐴 / 𝐶)(.r‘𝑃)𝐶))))) |
55 | 39 | fveq2d 6895 |
. . . 4
⊢ (𝜑 → (( deg1
‘𝑅)‘(𝐴(rem1p‘𝑅)𝐶)) = (( deg1 ‘𝑅)‘(𝐴(-g‘𝑃)((𝐴 / 𝐶)(.r‘𝑃)𝐶)))) |
56 | 48, 54, 55 | 3brtr4d 5180 |
. . 3
⊢ (𝜑 → (( deg1
‘𝑅)‘((𝐵 × 𝐴)(-g‘𝑃)((𝐵 × (𝐴 / 𝐶))(.r‘𝑃)𝐶))) ≤ (( deg1 ‘𝑅)‘(𝐴(rem1p‘𝑅)𝐶))) |
57 | 37, 6, 2, 20, 34 | r1pdeglt 25925 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑈 ∧ 𝐶 ∈ 𝑁) → (( deg1 ‘𝑅)‘(𝐴(rem1p‘𝑅)𝐶)) < (( deg1 ‘𝑅)‘𝐶)) |
58 | 1, 16, 18, 57 | syl3anc 1370 |
. . 3
⊢ (𝜑 → (( deg1
‘𝑅)‘(𝐴(rem1p‘𝑅)𝐶)) < (( deg1 ‘𝑅)‘𝐶)) |
59 | 36, 45, 47, 56, 58 | xrlelttrd 13146 |
. 2
⊢ (𝜑 → (( deg1
‘𝑅)‘((𝐵 × 𝐴)(-g‘𝑃)((𝐵 × (𝐴 / 𝐶))(.r‘𝑃)𝐶))) < (( deg1 ‘𝑅)‘𝐶)) |
60 | 19, 6, 2, 34, 31, 25, 20 | q1peqb 25921 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝐵 × 𝐴) ∈ 𝑈 ∧ 𝐶 ∈ 𝑁) → (((𝐵 × (𝐴 / 𝐶)) ∈ 𝑈 ∧ (( deg1 ‘𝑅)‘((𝐵 × 𝐴)(-g‘𝑃)((𝐵 × (𝐴 / 𝐶))(.r‘𝑃)𝐶))) < (( deg1 ‘𝑅)‘𝐶)) ↔ ((𝐵 × 𝐴) / 𝐶) = (𝐵 × (𝐴 / 𝐶)))) |
61 | 60 | biimpa 476 |
. 2
⊢ (((𝑅 ∈ Ring ∧ (𝐵 × 𝐴) ∈ 𝑈 ∧ 𝐶 ∈ 𝑁) ∧ ((𝐵 × (𝐴 / 𝐶)) ∈ 𝑈 ∧ (( deg1 ‘𝑅)‘((𝐵 × 𝐴)(-g‘𝑃)((𝐵 × (𝐴 / 𝐶))(.r‘𝑃)𝐶))) < (( deg1 ‘𝑅)‘𝐶))) → ((𝐵 × 𝐴) / 𝐶) = (𝐵 × (𝐴 / 𝐶))) |
62 | 1, 17, 18, 23, 59, 61 | syl32anc 1377 |
1
⊢ (𝜑 → ((𝐵 × 𝐴) / 𝐶) = (𝐵 × (𝐴 / 𝐶))) |