Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  q1pvsca Structured version   Visualization version   GIF version

Theorem q1pvsca 32964
Description: Scalar multiplication property of the polynomial division. (Contributed by Thierry Arnoux, 2-Apr-2025.)
Hypotheses
Ref Expression
r1padd1.p 𝑃 = (Poly1𝑅)
r1padd1.u 𝑈 = (Base‘𝑃)
r1padd1.n 𝑁 = (Unic1p𝑅)
q1pdir.d / = (quot1p𝑅)
q1pdir.r (𝜑𝑅 ∈ Ring)
q1pdir.a (𝜑𝐴𝑈)
q1pdir.c (𝜑𝐶𝑁)
q1pvsca.1 × = ( ·𝑠𝑃)
q1pvsca.k 𝐾 = (Base‘𝑅)
q1pvsca.8 (𝜑𝐵𝐾)
Assertion
Ref Expression
q1pvsca (𝜑 → ((𝐵 × 𝐴) / 𝐶) = (𝐵 × (𝐴 / 𝐶)))

Proof of Theorem q1pvsca
StepHypRef Expression
1 q1pdir.r . 2 (𝜑𝑅 ∈ Ring)
2 r1padd1.u . . 3 𝑈 = (Base‘𝑃)
3 eqid 2731 . . 3 (Scalar‘𝑃) = (Scalar‘𝑃)
4 q1pvsca.1 . . 3 × = ( ·𝑠𝑃)
5 eqid 2731 . . 3 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
6 r1padd1.p . . . . 5 𝑃 = (Poly1𝑅)
76ply1lmod 22007 . . . 4 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
81, 7syl 17 . . 3 (𝜑𝑃 ∈ LMod)
9 q1pvsca.8 . . . 4 (𝜑𝐵𝐾)
10 q1pvsca.k . . . . 5 𝐾 = (Base‘𝑅)
116ply1sca 22008 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃))
121, 11syl 17 . . . . . 6 (𝜑𝑅 = (Scalar‘𝑃))
1312fveq2d 6895 . . . . 5 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
1410, 13eqtrid 2783 . . . 4 (𝜑𝐾 = (Base‘(Scalar‘𝑃)))
159, 14eleqtrd 2834 . . 3 (𝜑𝐵 ∈ (Base‘(Scalar‘𝑃)))
16 q1pdir.a . . 3 (𝜑𝐴𝑈)
172, 3, 4, 5, 8, 15, 16lmodvscld 20637 . 2 (𝜑 → (𝐵 × 𝐴) ∈ 𝑈)
18 q1pdir.c . 2 (𝜑𝐶𝑁)
19 q1pdir.d . . . . 5 / = (quot1p𝑅)
20 r1padd1.n . . . . 5 𝑁 = (Unic1p𝑅)
2119, 6, 2, 20q1pcl 25922 . . . 4 ((𝑅 ∈ Ring ∧ 𝐴𝑈𝐶𝑁) → (𝐴 / 𝐶) ∈ 𝑈)
221, 16, 18, 21syl3anc 1370 . . 3 (𝜑 → (𝐴 / 𝐶) ∈ 𝑈)
232, 3, 4, 5, 8, 15, 22lmodvscld 20637 . 2 (𝜑 → (𝐵 × (𝐴 / 𝐶)) ∈ 𝑈)
248lmodgrpd 20628 . . . . 5 (𝜑𝑃 ∈ Grp)
25 eqid 2731 . . . . . 6 (.r𝑃) = (.r𝑃)
266ply1ring 22003 . . . . . . 7 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
271, 26syl 17 . . . . . 6 (𝜑𝑃 ∈ Ring)
286, 2, 20uc1pcl 25910 . . . . . . 7 (𝐶𝑁𝐶𝑈)
2918, 28syl 17 . . . . . 6 (𝜑𝐶𝑈)
302, 25, 27, 23, 29ringcld 20155 . . . . 5 (𝜑 → ((𝐵 × (𝐴 / 𝐶))(.r𝑃)𝐶) ∈ 𝑈)
31 eqid 2731 . . . . . 6 (-g𝑃) = (-g𝑃)
322, 31grpsubcl 18943 . . . . 5 ((𝑃 ∈ Grp ∧ (𝐵 × 𝐴) ∈ 𝑈 ∧ ((𝐵 × (𝐴 / 𝐶))(.r𝑃)𝐶) ∈ 𝑈) → ((𝐵 × 𝐴)(-g𝑃)((𝐵 × (𝐴 / 𝐶))(.r𝑃)𝐶)) ∈ 𝑈)
3324, 17, 30, 32syl3anc 1370 . . . 4 (𝜑 → ((𝐵 × 𝐴)(-g𝑃)((𝐵 × (𝐴 / 𝐶))(.r𝑃)𝐶)) ∈ 𝑈)
34 eqid 2731 . . . . 5 ( deg1𝑅) = ( deg1𝑅)
3534, 6, 2deg1xrcl 25849 . . . 4 (((𝐵 × 𝐴)(-g𝑃)((𝐵 × (𝐴 / 𝐶))(.r𝑃)𝐶)) ∈ 𝑈 → (( deg1𝑅)‘((𝐵 × 𝐴)(-g𝑃)((𝐵 × (𝐴 / 𝐶))(.r𝑃)𝐶))) ∈ ℝ*)
3633, 35syl 17 . . 3 (𝜑 → (( deg1𝑅)‘((𝐵 × 𝐴)(-g𝑃)((𝐵 × (𝐴 / 𝐶))(.r𝑃)𝐶))) ∈ ℝ*)
37 eqid 2731 . . . . . . 7 (rem1p𝑅) = (rem1p𝑅)
3837, 6, 2, 19, 25, 31r1pval 25923 . . . . . 6 ((𝐴𝑈𝐶𝑈) → (𝐴(rem1p𝑅)𝐶) = (𝐴(-g𝑃)((𝐴 / 𝐶)(.r𝑃)𝐶)))
3916, 29, 38syl2anc 583 . . . . 5 (𝜑 → (𝐴(rem1p𝑅)𝐶) = (𝐴(-g𝑃)((𝐴 / 𝐶)(.r𝑃)𝐶)))
402, 25, 27, 22, 29ringcld 20155 . . . . . 6 (𝜑 → ((𝐴 / 𝐶)(.r𝑃)𝐶) ∈ 𝑈)
412, 31grpsubcl 18943 . . . . . 6 ((𝑃 ∈ Grp ∧ 𝐴𝑈 ∧ ((𝐴 / 𝐶)(.r𝑃)𝐶) ∈ 𝑈) → (𝐴(-g𝑃)((𝐴 / 𝐶)(.r𝑃)𝐶)) ∈ 𝑈)
4224, 16, 40, 41syl3anc 1370 . . . . 5 (𝜑 → (𝐴(-g𝑃)((𝐴 / 𝐶)(.r𝑃)𝐶)) ∈ 𝑈)
4339, 42eqeltrd 2832 . . . 4 (𝜑 → (𝐴(rem1p𝑅)𝐶) ∈ 𝑈)
4434, 6, 2deg1xrcl 25849 . . . 4 ((𝐴(rem1p𝑅)𝐶) ∈ 𝑈 → (( deg1𝑅)‘(𝐴(rem1p𝑅)𝐶)) ∈ ℝ*)
4543, 44syl 17 . . 3 (𝜑 → (( deg1𝑅)‘(𝐴(rem1p𝑅)𝐶)) ∈ ℝ*)
4634, 6, 2deg1xrcl 25849 . . . 4 (𝐶𝑈 → (( deg1𝑅)‘𝐶) ∈ ℝ*)
4729, 46syl 17 . . 3 (𝜑 → (( deg1𝑅)‘𝐶) ∈ ℝ*)
486, 34, 1, 2, 10, 4, 9, 42deg1vscale 25871 . . . 4 (𝜑 → (( deg1𝑅)‘(𝐵 × (𝐴(-g𝑃)((𝐴 / 𝐶)(.r𝑃)𝐶)))) ≤ (( deg1𝑅)‘(𝐴(-g𝑃)((𝐴 / 𝐶)(.r𝑃)𝐶))))
496, 25, 2, 10, 4ply1ass23l 21982 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝐵𝐾 ∧ (𝐴 / 𝐶) ∈ 𝑈𝐶𝑈)) → ((𝐵 × (𝐴 / 𝐶))(.r𝑃)𝐶) = (𝐵 × ((𝐴 / 𝐶)(.r𝑃)𝐶)))
501, 9, 22, 29, 49syl13anc 1371 . . . . . . 7 (𝜑 → ((𝐵 × (𝐴 / 𝐶))(.r𝑃)𝐶) = (𝐵 × ((𝐴 / 𝐶)(.r𝑃)𝐶)))
5150oveq2d 7428 . . . . . 6 (𝜑 → ((𝐵 × 𝐴)(-g𝑃)((𝐵 × (𝐴 / 𝐶))(.r𝑃)𝐶)) = ((𝐵 × 𝐴)(-g𝑃)(𝐵 × ((𝐴 / 𝐶)(.r𝑃)𝐶))))
522, 4, 3, 5, 31, 8, 15, 16, 40lmodsubdi 20677 . . . . . 6 (𝜑 → (𝐵 × (𝐴(-g𝑃)((𝐴 / 𝐶)(.r𝑃)𝐶))) = ((𝐵 × 𝐴)(-g𝑃)(𝐵 × ((𝐴 / 𝐶)(.r𝑃)𝐶))))
5351, 52eqtr4d 2774 . . . . 5 (𝜑 → ((𝐵 × 𝐴)(-g𝑃)((𝐵 × (𝐴 / 𝐶))(.r𝑃)𝐶)) = (𝐵 × (𝐴(-g𝑃)((𝐴 / 𝐶)(.r𝑃)𝐶))))
5453fveq2d 6895 . . . 4 (𝜑 → (( deg1𝑅)‘((𝐵 × 𝐴)(-g𝑃)((𝐵 × (𝐴 / 𝐶))(.r𝑃)𝐶))) = (( deg1𝑅)‘(𝐵 × (𝐴(-g𝑃)((𝐴 / 𝐶)(.r𝑃)𝐶)))))
5539fveq2d 6895 . . . 4 (𝜑 → (( deg1𝑅)‘(𝐴(rem1p𝑅)𝐶)) = (( deg1𝑅)‘(𝐴(-g𝑃)((𝐴 / 𝐶)(.r𝑃)𝐶))))
5648, 54, 553brtr4d 5180 . . 3 (𝜑 → (( deg1𝑅)‘((𝐵 × 𝐴)(-g𝑃)((𝐵 × (𝐴 / 𝐶))(.r𝑃)𝐶))) ≤ (( deg1𝑅)‘(𝐴(rem1p𝑅)𝐶)))
5737, 6, 2, 20, 34r1pdeglt 25925 . . . 4 ((𝑅 ∈ Ring ∧ 𝐴𝑈𝐶𝑁) → (( deg1𝑅)‘(𝐴(rem1p𝑅)𝐶)) < (( deg1𝑅)‘𝐶))
581, 16, 18, 57syl3anc 1370 . . 3 (𝜑 → (( deg1𝑅)‘(𝐴(rem1p𝑅)𝐶)) < (( deg1𝑅)‘𝐶))
5936, 45, 47, 56, 58xrlelttrd 13146 . 2 (𝜑 → (( deg1𝑅)‘((𝐵 × 𝐴)(-g𝑃)((𝐵 × (𝐴 / 𝐶))(.r𝑃)𝐶))) < (( deg1𝑅)‘𝐶))
6019, 6, 2, 34, 31, 25, 20q1peqb 25921 . . 3 ((𝑅 ∈ Ring ∧ (𝐵 × 𝐴) ∈ 𝑈𝐶𝑁) → (((𝐵 × (𝐴 / 𝐶)) ∈ 𝑈 ∧ (( deg1𝑅)‘((𝐵 × 𝐴)(-g𝑃)((𝐵 × (𝐴 / 𝐶))(.r𝑃)𝐶))) < (( deg1𝑅)‘𝐶)) ↔ ((𝐵 × 𝐴) / 𝐶) = (𝐵 × (𝐴 / 𝐶))))
6160biimpa 476 . 2 (((𝑅 ∈ Ring ∧ (𝐵 × 𝐴) ∈ 𝑈𝐶𝑁) ∧ ((𝐵 × (𝐴 / 𝐶)) ∈ 𝑈 ∧ (( deg1𝑅)‘((𝐵 × 𝐴)(-g𝑃)((𝐵 × (𝐴 / 𝐶))(.r𝑃)𝐶))) < (( deg1𝑅)‘𝐶))) → ((𝐵 × 𝐴) / 𝐶) = (𝐵 × (𝐴 / 𝐶)))
621, 17, 18, 23, 59, 61syl32anc 1377 1 (𝜑 → ((𝐵 × 𝐴) / 𝐶) = (𝐵 × (𝐴 / 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2105   class class class wbr 5148  cfv 6543  (class class class)co 7412  *cxr 11254   < clt 11255  cle 11256  Basecbs 17151  .rcmulr 17205  Scalarcsca 17207   ·𝑠 cvsca 17208  Grpcgrp 18858  -gcsg 18860  Ringcrg 20131  LModclmod 20618  Poly1cpl1 21933   deg1 cdg1 25818  Unic1pcuc1p 25893  quot1pcq1p 25894  rem1pcr1p 25895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-pre-sup 11194  ax-addf 11195  ax-mulf 11196
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7674  df-ofr 7675  df-om 7860  df-1st 7979  df-2nd 7980  df-supp 8152  df-tpos 8217  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-er 8709  df-map 8828  df-pm 8829  df-ixp 8898  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-fsupp 9368  df-sup 9443  df-oi 9511  df-card 9940  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-7 12287  df-8 12288  df-9 12289  df-n0 12480  df-z 12566  df-dec 12685  df-uz 12830  df-fz 13492  df-fzo 13635  df-seq 13974  df-hash 14298  df-struct 17087  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-plusg 17217  df-mulr 17218  df-starv 17219  df-sca 17220  df-vsca 17221  df-ip 17222  df-tset 17223  df-ple 17224  df-ds 17226  df-unif 17227  df-hom 17228  df-cco 17229  df-0g 17394  df-gsum 17395  df-prds 17400  df-pws 17402  df-mre 17537  df-mrc 17538  df-acs 17540  df-mgm 18568  df-sgrp 18647  df-mnd 18663  df-mhm 18708  df-submnd 18709  df-grp 18861  df-minusg 18862  df-sbg 18863  df-mulg 18991  df-subg 19043  df-ghm 19132  df-cntz 19226  df-cmn 19695  df-abl 19696  df-mgp 20033  df-rng 20051  df-ur 20080  df-ring 20133  df-cring 20134  df-oppr 20229  df-dvdsr 20252  df-unit 20253  df-invr 20283  df-subrng 20438  df-subrg 20463  df-lmod 20620  df-lss 20691  df-rlreg 21103  df-cnfld 21149  df-psr 21685  df-mvr 21686  df-mpl 21687  df-opsr 21689  df-psr1 21936  df-vr1 21937  df-ply1 21938  df-coe1 21939  df-mdeg 25819  df-deg1 25820  df-uc1p 25898  df-q1p 25899  df-r1p 25900
This theorem is referenced by:  r1pvsca  32965
  Copyright terms: Public domain W3C validator