Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  q1pvsca Structured version   Visualization version   GIF version

Theorem q1pvsca 33569
Description: Scalar multiplication property of the polynomial division. (Contributed by Thierry Arnoux, 2-Apr-2025.)
Hypotheses
Ref Expression
r1padd1.p 𝑃 = (Poly1𝑅)
r1padd1.u 𝑈 = (Base‘𝑃)
r1padd1.n 𝑁 = (Unic1p𝑅)
q1pdir.d / = (quot1p𝑅)
q1pdir.r (𝜑𝑅 ∈ Ring)
q1pdir.a (𝜑𝐴𝑈)
q1pdir.c (𝜑𝐶𝑁)
q1pvsca.1 × = ( ·𝑠𝑃)
q1pvsca.k 𝐾 = (Base‘𝑅)
q1pvsca.8 (𝜑𝐵𝐾)
Assertion
Ref Expression
q1pvsca (𝜑 → ((𝐵 × 𝐴) / 𝐶) = (𝐵 × (𝐴 / 𝐶)))

Proof of Theorem q1pvsca
StepHypRef Expression
1 q1pdir.r . 2 (𝜑𝑅 ∈ Ring)
2 r1padd1.u . . 3 𝑈 = (Base‘𝑃)
3 eqid 2729 . . 3 (Scalar‘𝑃) = (Scalar‘𝑃)
4 q1pvsca.1 . . 3 × = ( ·𝑠𝑃)
5 eqid 2729 . . 3 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
6 r1padd1.p . . . . 5 𝑃 = (Poly1𝑅)
76ply1lmod 22136 . . . 4 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
81, 7syl 17 . . 3 (𝜑𝑃 ∈ LMod)
9 q1pvsca.8 . . . 4 (𝜑𝐵𝐾)
10 q1pvsca.k . . . . 5 𝐾 = (Base‘𝑅)
116ply1sca 22137 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃))
121, 11syl 17 . . . . . 6 (𝜑𝑅 = (Scalar‘𝑃))
1312fveq2d 6862 . . . . 5 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
1410, 13eqtrid 2776 . . . 4 (𝜑𝐾 = (Base‘(Scalar‘𝑃)))
159, 14eleqtrd 2830 . . 3 (𝜑𝐵 ∈ (Base‘(Scalar‘𝑃)))
16 q1pdir.a . . 3 (𝜑𝐴𝑈)
172, 3, 4, 5, 8, 15, 16lmodvscld 20785 . 2 (𝜑 → (𝐵 × 𝐴) ∈ 𝑈)
18 q1pdir.c . 2 (𝜑𝐶𝑁)
19 q1pdir.d . . . . 5 / = (quot1p𝑅)
20 r1padd1.n . . . . 5 𝑁 = (Unic1p𝑅)
2119, 6, 2, 20q1pcl 26062 . . . 4 ((𝑅 ∈ Ring ∧ 𝐴𝑈𝐶𝑁) → (𝐴 / 𝐶) ∈ 𝑈)
221, 16, 18, 21syl3anc 1373 . . 3 (𝜑 → (𝐴 / 𝐶) ∈ 𝑈)
232, 3, 4, 5, 8, 15, 22lmodvscld 20785 . 2 (𝜑 → (𝐵 × (𝐴 / 𝐶)) ∈ 𝑈)
248lmodgrpd 20776 . . . . 5 (𝜑𝑃 ∈ Grp)
25 eqid 2729 . . . . . 6 (.r𝑃) = (.r𝑃)
266ply1ring 22132 . . . . . . 7 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
271, 26syl 17 . . . . . 6 (𝜑𝑃 ∈ Ring)
286, 2, 20uc1pcl 26049 . . . . . . 7 (𝐶𝑁𝐶𝑈)
2918, 28syl 17 . . . . . 6 (𝜑𝐶𝑈)
302, 25, 27, 23, 29ringcld 20169 . . . . 5 (𝜑 → ((𝐵 × (𝐴 / 𝐶))(.r𝑃)𝐶) ∈ 𝑈)
31 eqid 2729 . . . . . 6 (-g𝑃) = (-g𝑃)
322, 31grpsubcl 18952 . . . . 5 ((𝑃 ∈ Grp ∧ (𝐵 × 𝐴) ∈ 𝑈 ∧ ((𝐵 × (𝐴 / 𝐶))(.r𝑃)𝐶) ∈ 𝑈) → ((𝐵 × 𝐴)(-g𝑃)((𝐵 × (𝐴 / 𝐶))(.r𝑃)𝐶)) ∈ 𝑈)
3324, 17, 30, 32syl3anc 1373 . . . 4 (𝜑 → ((𝐵 × 𝐴)(-g𝑃)((𝐵 × (𝐴 / 𝐶))(.r𝑃)𝐶)) ∈ 𝑈)
34 eqid 2729 . . . . 5 (deg1𝑅) = (deg1𝑅)
3534, 6, 2deg1xrcl 25987 . . . 4 (((𝐵 × 𝐴)(-g𝑃)((𝐵 × (𝐴 / 𝐶))(.r𝑃)𝐶)) ∈ 𝑈 → ((deg1𝑅)‘((𝐵 × 𝐴)(-g𝑃)((𝐵 × (𝐴 / 𝐶))(.r𝑃)𝐶))) ∈ ℝ*)
3633, 35syl 17 . . 3 (𝜑 → ((deg1𝑅)‘((𝐵 × 𝐴)(-g𝑃)((𝐵 × (𝐴 / 𝐶))(.r𝑃)𝐶))) ∈ ℝ*)
37 eqid 2729 . . . . . . 7 (rem1p𝑅) = (rem1p𝑅)
3837, 6, 2, 19, 25, 31r1pval 26063 . . . . . 6 ((𝐴𝑈𝐶𝑈) → (𝐴(rem1p𝑅)𝐶) = (𝐴(-g𝑃)((𝐴 / 𝐶)(.r𝑃)𝐶)))
3916, 29, 38syl2anc 584 . . . . 5 (𝜑 → (𝐴(rem1p𝑅)𝐶) = (𝐴(-g𝑃)((𝐴 / 𝐶)(.r𝑃)𝐶)))
402, 25, 27, 22, 29ringcld 20169 . . . . . 6 (𝜑 → ((𝐴 / 𝐶)(.r𝑃)𝐶) ∈ 𝑈)
412, 31grpsubcl 18952 . . . . . 6 ((𝑃 ∈ Grp ∧ 𝐴𝑈 ∧ ((𝐴 / 𝐶)(.r𝑃)𝐶) ∈ 𝑈) → (𝐴(-g𝑃)((𝐴 / 𝐶)(.r𝑃)𝐶)) ∈ 𝑈)
4224, 16, 40, 41syl3anc 1373 . . . . 5 (𝜑 → (𝐴(-g𝑃)((𝐴 / 𝐶)(.r𝑃)𝐶)) ∈ 𝑈)
4339, 42eqeltrd 2828 . . . 4 (𝜑 → (𝐴(rem1p𝑅)𝐶) ∈ 𝑈)
4434, 6, 2deg1xrcl 25987 . . . 4 ((𝐴(rem1p𝑅)𝐶) ∈ 𝑈 → ((deg1𝑅)‘(𝐴(rem1p𝑅)𝐶)) ∈ ℝ*)
4543, 44syl 17 . . 3 (𝜑 → ((deg1𝑅)‘(𝐴(rem1p𝑅)𝐶)) ∈ ℝ*)
4634, 6, 2deg1xrcl 25987 . . . 4 (𝐶𝑈 → ((deg1𝑅)‘𝐶) ∈ ℝ*)
4729, 46syl 17 . . 3 (𝜑 → ((deg1𝑅)‘𝐶) ∈ ℝ*)
486, 34, 1, 2, 10, 4, 9, 42deg1vscale 26009 . . . 4 (𝜑 → ((deg1𝑅)‘(𝐵 × (𝐴(-g𝑃)((𝐴 / 𝐶)(.r𝑃)𝐶)))) ≤ ((deg1𝑅)‘(𝐴(-g𝑃)((𝐴 / 𝐶)(.r𝑃)𝐶))))
496, 25, 2, 10, 4ply1ass23l 22111 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝐵𝐾 ∧ (𝐴 / 𝐶) ∈ 𝑈𝐶𝑈)) → ((𝐵 × (𝐴 / 𝐶))(.r𝑃)𝐶) = (𝐵 × ((𝐴 / 𝐶)(.r𝑃)𝐶)))
501, 9, 22, 29, 49syl13anc 1374 . . . . . . 7 (𝜑 → ((𝐵 × (𝐴 / 𝐶))(.r𝑃)𝐶) = (𝐵 × ((𝐴 / 𝐶)(.r𝑃)𝐶)))
5150oveq2d 7403 . . . . . 6 (𝜑 → ((𝐵 × 𝐴)(-g𝑃)((𝐵 × (𝐴 / 𝐶))(.r𝑃)𝐶)) = ((𝐵 × 𝐴)(-g𝑃)(𝐵 × ((𝐴 / 𝐶)(.r𝑃)𝐶))))
522, 4, 3, 5, 31, 8, 15, 16, 40lmodsubdi 20825 . . . . . 6 (𝜑 → (𝐵 × (𝐴(-g𝑃)((𝐴 / 𝐶)(.r𝑃)𝐶))) = ((𝐵 × 𝐴)(-g𝑃)(𝐵 × ((𝐴 / 𝐶)(.r𝑃)𝐶))))
5351, 52eqtr4d 2767 . . . . 5 (𝜑 → ((𝐵 × 𝐴)(-g𝑃)((𝐵 × (𝐴 / 𝐶))(.r𝑃)𝐶)) = (𝐵 × (𝐴(-g𝑃)((𝐴 / 𝐶)(.r𝑃)𝐶))))
5453fveq2d 6862 . . . 4 (𝜑 → ((deg1𝑅)‘((𝐵 × 𝐴)(-g𝑃)((𝐵 × (𝐴 / 𝐶))(.r𝑃)𝐶))) = ((deg1𝑅)‘(𝐵 × (𝐴(-g𝑃)((𝐴 / 𝐶)(.r𝑃)𝐶)))))
5539fveq2d 6862 . . . 4 (𝜑 → ((deg1𝑅)‘(𝐴(rem1p𝑅)𝐶)) = ((deg1𝑅)‘(𝐴(-g𝑃)((𝐴 / 𝐶)(.r𝑃)𝐶))))
5648, 54, 553brtr4d 5139 . . 3 (𝜑 → ((deg1𝑅)‘((𝐵 × 𝐴)(-g𝑃)((𝐵 × (𝐴 / 𝐶))(.r𝑃)𝐶))) ≤ ((deg1𝑅)‘(𝐴(rem1p𝑅)𝐶)))
5737, 6, 2, 20, 34r1pdeglt 26065 . . . 4 ((𝑅 ∈ Ring ∧ 𝐴𝑈𝐶𝑁) → ((deg1𝑅)‘(𝐴(rem1p𝑅)𝐶)) < ((deg1𝑅)‘𝐶))
581, 16, 18, 57syl3anc 1373 . . 3 (𝜑 → ((deg1𝑅)‘(𝐴(rem1p𝑅)𝐶)) < ((deg1𝑅)‘𝐶))
5936, 45, 47, 56, 58xrlelttrd 13120 . 2 (𝜑 → ((deg1𝑅)‘((𝐵 × 𝐴)(-g𝑃)((𝐵 × (𝐴 / 𝐶))(.r𝑃)𝐶))) < ((deg1𝑅)‘𝐶))
6019, 6, 2, 34, 31, 25, 20q1peqb 26061 . . 3 ((𝑅 ∈ Ring ∧ (𝐵 × 𝐴) ∈ 𝑈𝐶𝑁) → (((𝐵 × (𝐴 / 𝐶)) ∈ 𝑈 ∧ ((deg1𝑅)‘((𝐵 × 𝐴)(-g𝑃)((𝐵 × (𝐴 / 𝐶))(.r𝑃)𝐶))) < ((deg1𝑅)‘𝐶)) ↔ ((𝐵 × 𝐴) / 𝐶) = (𝐵 × (𝐴 / 𝐶))))
6160biimpa 476 . 2 (((𝑅 ∈ Ring ∧ (𝐵 × 𝐴) ∈ 𝑈𝐶𝑁) ∧ ((𝐵 × (𝐴 / 𝐶)) ∈ 𝑈 ∧ ((deg1𝑅)‘((𝐵 × 𝐴)(-g𝑃)((𝐵 × (𝐴 / 𝐶))(.r𝑃)𝐶))) < ((deg1𝑅)‘𝐶))) → ((𝐵 × 𝐴) / 𝐶) = (𝐵 × (𝐴 / 𝐶)))
621, 17, 18, 23, 59, 61syl32anc 1380 1 (𝜑 → ((𝐵 × 𝐴) / 𝐶) = (𝐵 × (𝐴 / 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5107  cfv 6511  (class class class)co 7387  *cxr 11207   < clt 11208  cle 11209  Basecbs 17179  .rcmulr 17221  Scalarcsca 17223   ·𝑠 cvsca 17224  Grpcgrp 18865  -gcsg 18867  Ringcrg 20142  LModclmod 20766  Poly1cpl1 22061  deg1cdg1 25959  Unic1pcuc1p 26032  quot1pcq1p 26033  rem1pcr1p 26034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-subrng 20455  df-subrg 20479  df-rlreg 20603  df-lmod 20768  df-lss 20838  df-cnfld 21265  df-psr 21818  df-mvr 21819  df-mpl 21820  df-opsr 21822  df-psr1 22064  df-vr1 22065  df-ply1 22066  df-coe1 22067  df-mdeg 25960  df-deg1 25961  df-uc1p 26037  df-q1p 26038  df-r1p 26039
This theorem is referenced by:  r1pvsca  33570
  Copyright terms: Public domain W3C validator