Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  r1plmhm Structured version   Visualization version   GIF version

Theorem r1plmhm 33551
Description: The univariate polynomial remainder function 𝐹 is a module homomorphism. Its image (𝐹s 𝑃) is sometimes called the "ring of remainders" (Contributed by Thierry Arnoux, 2-Apr-2025.)
Hypotheses
Ref Expression
r1plmhm.1 𝑃 = (Poly1𝑅)
r1plmhm.2 𝑈 = (Base‘𝑃)
r1plmhm.4 𝐸 = (rem1p𝑅)
r1plmhm.5 𝑁 = (Unic1p𝑅)
r1plmhm.6 𝐹 = (𝑓𝑈 ↦ (𝑓𝐸𝑀))
r1plmhm.9 (𝜑𝑅 ∈ Ring)
r1plmhm.10 (𝜑𝑀𝑁)
Assertion
Ref Expression
r1plmhm (𝜑𝐹 ∈ (𝑃 LMHom (𝐹s 𝑃)))
Distinct variable groups:   𝑓,𝐸   𝑓,𝑀   𝑃,𝑓   𝑈,𝑓   𝜑,𝑓
Allowed substitution hints:   𝑅(𝑓)   𝐹(𝑓)   𝑁(𝑓)

Proof of Theorem r1plmhm
Dummy variables 𝑝 𝑎 𝑏 𝑘 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r1plmhm.2 . . 3 𝑈 = (Base‘𝑃)
2 r1plmhm.9 . . . . . 6 (𝜑𝑅 ∈ Ring)
32adantr 480 . . . . 5 ((𝜑𝑓𝑈) → 𝑅 ∈ Ring)
4 simpr 484 . . . . 5 ((𝜑𝑓𝑈) → 𝑓𝑈)
5 r1plmhm.10 . . . . . 6 (𝜑𝑀𝑁)
65adantr 480 . . . . 5 ((𝜑𝑓𝑈) → 𝑀𝑁)
7 r1plmhm.4 . . . . . 6 𝐸 = (rem1p𝑅)
8 r1plmhm.1 . . . . . 6 𝑃 = (Poly1𝑅)
9 r1plmhm.5 . . . . . 6 𝑁 = (Unic1p𝑅)
107, 8, 1, 9r1pcl 26080 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑓𝑈𝑀𝑁) → (𝑓𝐸𝑀) ∈ 𝑈)
113, 4, 6, 10syl3anc 1373 . . . 4 ((𝜑𝑓𝑈) → (𝑓𝐸𝑀) ∈ 𝑈)
12 r1plmhm.6 . . . 4 𝐹 = (𝑓𝑈 ↦ (𝑓𝐸𝑀))
1311, 12fmptd 7052 . . 3 (𝜑𝐹:𝑈𝑈)
14 eqid 2729 . . 3 (+g𝑃) = (+g𝑃)
15 anass 468 . . . . 5 (((𝜑𝑎𝑈) ∧ 𝑏𝑈) ↔ (𝜑 ∧ (𝑎𝑈𝑏𝑈)))
162ad6antr 736 . . . . . . . . . . 11 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → 𝑅 ∈ Ring)
17 simp-6r 787 . . . . . . . . . . 11 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → 𝑎𝑈)
185ad6antr 736 . . . . . . . . . . 11 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → 𝑀𝑁)
19 simplr 768 . . . . . . . . . . . 12 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹𝑎) = (𝐹𝑝))
20 oveq1 7360 . . . . . . . . . . . . 13 (𝑓 = 𝑎 → (𝑓𝐸𝑀) = (𝑎𝐸𝑀))
21 ovexd 7388 . . . . . . . . . . . . 13 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝑎𝐸𝑀) ∈ V)
2212, 20, 17, 21fvmptd3 6957 . . . . . . . . . . . 12 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹𝑎) = (𝑎𝐸𝑀))
23 oveq1 7360 . . . . . . . . . . . . 13 (𝑓 = 𝑝 → (𝑓𝐸𝑀) = (𝑝𝐸𝑀))
24 simp-4r 783 . . . . . . . . . . . . 13 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → 𝑝𝑈)
25 ovexd 7388 . . . . . . . . . . . . 13 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝑝𝐸𝑀) ∈ V)
2612, 23, 24, 25fvmptd3 6957 . . . . . . . . . . . 12 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹𝑝) = (𝑝𝐸𝑀))
2719, 22, 263eqtr3d 2772 . . . . . . . . . . 11 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝑎𝐸𝑀) = (𝑝𝐸𝑀))
28 simp-5r 785 . . . . . . . . . . 11 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → 𝑏𝑈)
298, 1, 9, 7, 16, 17, 18, 27, 14, 24, 28r1padd1 33549 . . . . . . . . . 10 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → ((𝑎(+g𝑃)𝑏)𝐸𝑀) = ((𝑝(+g𝑃)𝑏)𝐸𝑀))
30 oveq1 7360 . . . . . . . . . . 11 (𝑓 = (𝑎(+g𝑃)𝑏) → (𝑓𝐸𝑀) = ((𝑎(+g𝑃)𝑏)𝐸𝑀))
318ply1ring 22148 . . . . . . . . . . . . . . 15 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
322, 31syl 17 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ Ring)
3332ringgrpd 20145 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ Grp)
3433ad6antr 736 . . . . . . . . . . . 12 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → 𝑃 ∈ Grp)
351, 14, 34, 17, 28grpcld 18844 . . . . . . . . . . 11 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝑎(+g𝑃)𝑏) ∈ 𝑈)
36 ovexd 7388 . . . . . . . . . . 11 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → ((𝑎(+g𝑃)𝑏)𝐸𝑀) ∈ V)
3712, 30, 35, 36fvmptd3 6957 . . . . . . . . . 10 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎(+g𝑃)𝑏)) = ((𝑎(+g𝑃)𝑏)𝐸𝑀))
38 oveq1 7360 . . . . . . . . . . 11 (𝑓 = (𝑝(+g𝑃)𝑏) → (𝑓𝐸𝑀) = ((𝑝(+g𝑃)𝑏)𝐸𝑀))
391, 14, 34, 24, 28grpcld 18844 . . . . . . . . . . 11 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝑝(+g𝑃)𝑏) ∈ 𝑈)
40 ovexd 7388 . . . . . . . . . . 11 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → ((𝑝(+g𝑃)𝑏)𝐸𝑀) ∈ V)
4112, 38, 39, 40fvmptd3 6957 . . . . . . . . . 10 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑝(+g𝑃)𝑏)) = ((𝑝(+g𝑃)𝑏)𝐸𝑀))
4229, 37, 413eqtr4d 2774 . . . . . . . . 9 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎(+g𝑃)𝑏)) = (𝐹‘(𝑝(+g𝑃)𝑏)))
4332ringabld 20186 . . . . . . . . . . . 12 (𝜑𝑃 ∈ Abel)
4443ad6antr 736 . . . . . . . . . . 11 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → 𝑃 ∈ Abel)
451, 14ablcom 19696 . . . . . . . . . . 11 ((𝑃 ∈ Abel ∧ 𝑝𝑈𝑏𝑈) → (𝑝(+g𝑃)𝑏) = (𝑏(+g𝑃)𝑝))
4644, 24, 28, 45syl3anc 1373 . . . . . . . . . 10 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝑝(+g𝑃)𝑏) = (𝑏(+g𝑃)𝑝))
4746fveq2d 6830 . . . . . . . . 9 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑝(+g𝑃)𝑏)) = (𝐹‘(𝑏(+g𝑃)𝑝)))
4842, 47eqtrd 2764 . . . . . . . 8 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎(+g𝑃)𝑏)) = (𝐹‘(𝑏(+g𝑃)𝑝)))
49 simpr 484 . . . . . . . . . . 11 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹𝑏) = (𝐹𝑞))
50 oveq1 7360 . . . . . . . . . . . 12 (𝑓 = 𝑏 → (𝑓𝐸𝑀) = (𝑏𝐸𝑀))
51 ovexd 7388 . . . . . . . . . . . 12 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝑏𝐸𝑀) ∈ V)
5212, 50, 28, 51fvmptd3 6957 . . . . . . . . . . 11 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹𝑏) = (𝑏𝐸𝑀))
53 oveq1 7360 . . . . . . . . . . . 12 (𝑓 = 𝑞 → (𝑓𝐸𝑀) = (𝑞𝐸𝑀))
54 simpllr 775 . . . . . . . . . . . 12 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → 𝑞𝑈)
55 ovexd 7388 . . . . . . . . . . . 12 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝑞𝐸𝑀) ∈ V)
5612, 53, 54, 55fvmptd3 6957 . . . . . . . . . . 11 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹𝑞) = (𝑞𝐸𝑀))
5749, 52, 563eqtr3d 2772 . . . . . . . . . 10 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝑏𝐸𝑀) = (𝑞𝐸𝑀))
588, 1, 9, 7, 16, 28, 18, 57, 14, 54, 24r1padd1 33549 . . . . . . . . 9 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → ((𝑏(+g𝑃)𝑝)𝐸𝑀) = ((𝑞(+g𝑃)𝑝)𝐸𝑀))
59 oveq1 7360 . . . . . . . . . 10 (𝑓 = (𝑏(+g𝑃)𝑝) → (𝑓𝐸𝑀) = ((𝑏(+g𝑃)𝑝)𝐸𝑀))
601, 14, 34, 28, 24grpcld 18844 . . . . . . . . . 10 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝑏(+g𝑃)𝑝) ∈ 𝑈)
61 ovexd 7388 . . . . . . . . . 10 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → ((𝑏(+g𝑃)𝑝)𝐸𝑀) ∈ V)
6212, 59, 60, 61fvmptd3 6957 . . . . . . . . 9 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑏(+g𝑃)𝑝)) = ((𝑏(+g𝑃)𝑝)𝐸𝑀))
63 oveq1 7360 . . . . . . . . . 10 (𝑓 = (𝑞(+g𝑃)𝑝) → (𝑓𝐸𝑀) = ((𝑞(+g𝑃)𝑝)𝐸𝑀))
641, 14, 34, 54, 24grpcld 18844 . . . . . . . . . 10 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝑞(+g𝑃)𝑝) ∈ 𝑈)
65 ovexd 7388 . . . . . . . . . 10 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → ((𝑞(+g𝑃)𝑝)𝐸𝑀) ∈ V)
6612, 63, 64, 65fvmptd3 6957 . . . . . . . . 9 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑞(+g𝑃)𝑝)) = ((𝑞(+g𝑃)𝑝)𝐸𝑀))
6758, 62, 663eqtr4d 2774 . . . . . . . 8 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑏(+g𝑃)𝑝)) = (𝐹‘(𝑞(+g𝑃)𝑝)))
681, 14ablcom 19696 . . . . . . . . . 10 ((𝑃 ∈ Abel ∧ 𝑞𝑈𝑝𝑈) → (𝑞(+g𝑃)𝑝) = (𝑝(+g𝑃)𝑞))
6944, 54, 24, 68syl3anc 1373 . . . . . . . . 9 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝑞(+g𝑃)𝑝) = (𝑝(+g𝑃)𝑞))
7069fveq2d 6830 . . . . . . . 8 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑞(+g𝑃)𝑝)) = (𝐹‘(𝑝(+g𝑃)𝑞)))
7148, 67, 703eqtrd 2768 . . . . . . 7 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎(+g𝑃)𝑏)) = (𝐹‘(𝑝(+g𝑃)𝑞)))
7271expl 457 . . . . . 6 (((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎(+g𝑃)𝑏)) = (𝐹‘(𝑝(+g𝑃)𝑞))))
7372anasss 466 . . . . 5 ((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ (𝑝𝑈𝑞𝑈)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎(+g𝑃)𝑏)) = (𝐹‘(𝑝(+g𝑃)𝑞))))
7415, 73sylanbr 582 . . . 4 (((𝜑 ∧ (𝑎𝑈𝑏𝑈)) ∧ (𝑝𝑈𝑞𝑈)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎(+g𝑃)𝑏)) = (𝐹‘(𝑝(+g𝑃)𝑞))))
75743impa 1109 . . 3 ((𝜑 ∧ (𝑎𝑈𝑏𝑈) ∧ (𝑝𝑈𝑞𝑈)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎(+g𝑃)𝑏)) = (𝐹‘(𝑝(+g𝑃)𝑞))))
76 eqid 2729 . . 3 (Scalar‘𝑃) = (Scalar‘𝑃)
77 eqid 2729 . . 3 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
78 simplr 768 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → (𝐹𝑎) = (𝐹𝑏))
79 simpr2 1196 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑎𝑈)
80 ovexd 7388 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → (𝑎𝐸𝑀) ∈ V)
8112, 20, 79, 80fvmptd3 6957 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → (𝐹𝑎) = (𝑎𝐸𝑀))
82 simpr3 1197 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑏𝑈)
83 ovexd 7388 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → (𝑏𝐸𝑀) ∈ V)
8412, 50, 82, 83fvmptd3 6957 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → (𝐹𝑏) = (𝑏𝐸𝑀))
8578, 81, 843eqtr3d 2772 . . . . . . . 8 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → (𝑎𝐸𝑀) = (𝑏𝐸𝑀))
8685oveq2d 7369 . . . . . . 7 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → (𝑘( ·𝑠𝑃)(𝑎𝐸𝑀)) = (𝑘( ·𝑠𝑃)(𝑏𝐸𝑀)))
872ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑅 ∈ Ring)
885ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑀𝑁)
89 eqid 2729 . . . . . . . 8 ( ·𝑠𝑃) = ( ·𝑠𝑃)
90 eqid 2729 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
91 simpr1 1195 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑘 ∈ (Base‘(Scalar‘𝑃)))
928ply1sca 22153 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃))
932, 92syl 17 . . . . . . . . . . 11 (𝜑𝑅 = (Scalar‘𝑃))
9493fveq2d 6830 . . . . . . . . . 10 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
9594ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
9691, 95eleqtrrd 2831 . . . . . . . 8 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑘 ∈ (Base‘𝑅))
978, 1, 9, 7, 87, 79, 88, 89, 90, 96r1pvsca 33546 . . . . . . 7 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → ((𝑘( ·𝑠𝑃)𝑎)𝐸𝑀) = (𝑘( ·𝑠𝑃)(𝑎𝐸𝑀)))
988, 1, 9, 7, 87, 82, 88, 89, 90, 96r1pvsca 33546 . . . . . . 7 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → ((𝑘( ·𝑠𝑃)𝑏)𝐸𝑀) = (𝑘( ·𝑠𝑃)(𝑏𝐸𝑀)))
9986, 97, 983eqtr4d 2774 . . . . . 6 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → ((𝑘( ·𝑠𝑃)𝑎)𝐸𝑀) = ((𝑘( ·𝑠𝑃)𝑏)𝐸𝑀))
100 oveq1 7360 . . . . . . 7 (𝑓 = (𝑘( ·𝑠𝑃)𝑎) → (𝑓𝐸𝑀) = ((𝑘( ·𝑠𝑃)𝑎)𝐸𝑀))
1018ply1lmod 22152 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
10287, 101syl 17 . . . . . . . 8 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑃 ∈ LMod)
1031, 76, 89, 77, 102, 91, 79lmodvscld 20800 . . . . . . 7 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → (𝑘( ·𝑠𝑃)𝑎) ∈ 𝑈)
104 ovexd 7388 . . . . . . 7 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → ((𝑘( ·𝑠𝑃)𝑎)𝐸𝑀) ∈ V)
10512, 100, 103, 104fvmptd3 6957 . . . . . 6 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → (𝐹‘(𝑘( ·𝑠𝑃)𝑎)) = ((𝑘( ·𝑠𝑃)𝑎)𝐸𝑀))
106 oveq1 7360 . . . . . . 7 (𝑓 = (𝑘( ·𝑠𝑃)𝑏) → (𝑓𝐸𝑀) = ((𝑘( ·𝑠𝑃)𝑏)𝐸𝑀))
1071, 76, 89, 77, 102, 91, 82lmodvscld 20800 . . . . . . 7 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → (𝑘( ·𝑠𝑃)𝑏) ∈ 𝑈)
108 ovexd 7388 . . . . . . 7 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → ((𝑘( ·𝑠𝑃)𝑏)𝐸𝑀) ∈ V)
10912, 106, 107, 108fvmptd3 6957 . . . . . 6 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → (𝐹‘(𝑘( ·𝑠𝑃)𝑏)) = ((𝑘( ·𝑠𝑃)𝑏)𝐸𝑀))
11099, 105, 1093eqtr4d 2774 . . . . 5 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → (𝐹‘(𝑘( ·𝑠𝑃)𝑎)) = (𝐹‘(𝑘( ·𝑠𝑃)𝑏)))
111110an32s 652 . . . 4 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹‘(𝑘( ·𝑠𝑃)𝑎)) = (𝐹‘(𝑘( ·𝑠𝑃)𝑏)))
112111ex 412 . . 3 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → ((𝐹𝑎) = (𝐹𝑏) → (𝐹‘(𝑘( ·𝑠𝑃)𝑎)) = (𝐹‘(𝑘( ·𝑠𝑃)𝑏))))
1132, 101syl 17 . . 3 (𝜑𝑃 ∈ LMod)
1141, 13, 14, 75, 76, 77, 112, 113, 89imaslmhm 33304 . 2 (𝜑 → ((𝐹s 𝑃) ∈ LMod ∧ 𝐹 ∈ (𝑃 LMHom (𝐹s 𝑃))))
115114simprd 495 1 (𝜑𝐹 ∈ (𝑃 LMHom (𝐹s 𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3438  cmpt 5176  cfv 6486  (class class class)co 7353  Basecbs 17138  +gcplusg 17179  Scalarcsca 17182   ·𝑠 cvsca 17183  s cimas 17426  Grpcgrp 18830  Abelcabl 19678  Ringcrg 20136  LModclmod 20781   LMHom clmhm 20941  Poly1cpl1 22077  Unic1pcuc1p 26048  rem1pcr1p 26050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-ofr 7618  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-fzo 13576  df-seq 13927  df-hash 14256  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-0g 17363  df-gsum 17364  df-prds 17369  df-pws 17371  df-imas 17430  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-mulg 18965  df-subg 19020  df-ghm 19110  df-cntz 19214  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-cring 20139  df-oppr 20240  df-dvdsr 20260  df-unit 20261  df-invr 20291  df-subrng 20449  df-subrg 20473  df-rlreg 20597  df-lmod 20783  df-lss 20853  df-lmhm 20944  df-cnfld 21280  df-psr 21834  df-mvr 21835  df-mpl 21836  df-opsr 21838  df-psr1 22080  df-vr1 22081  df-ply1 22082  df-coe1 22083  df-mdeg 25976  df-deg1 25977  df-uc1p 26053  df-q1p 26054  df-r1p 26055
This theorem is referenced by:  r1pquslmic  33552  algextdeglem8  33690
  Copyright terms: Public domain W3C validator