| Step | Hyp | Ref
| Expression |
| 1 | | r1plmhm.2 |
. . 3
⊢ 𝑈 = (Base‘𝑃) |
| 2 | | r1plmhm.9 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 3 | 2 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑈) → 𝑅 ∈ Ring) |
| 4 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑈) → 𝑓 ∈ 𝑈) |
| 5 | | r1plmhm.10 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ 𝑁) |
| 6 | 5 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑈) → 𝑀 ∈ 𝑁) |
| 7 | | r1plmhm.4 |
. . . . . 6
⊢ 𝐸 = (rem1p‘𝑅) |
| 8 | | r1plmhm.1 |
. . . . . 6
⊢ 𝑃 = (Poly1‘𝑅) |
| 9 | | r1plmhm.5 |
. . . . . 6
⊢ 𝑁 =
(Unic1p‘𝑅) |
| 10 | 7, 8, 1, 9 | r1pcl 26198 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑓 ∈ 𝑈 ∧ 𝑀 ∈ 𝑁) → (𝑓𝐸𝑀) ∈ 𝑈) |
| 11 | 3, 4, 6, 10 | syl3anc 1373 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑈) → (𝑓𝐸𝑀) ∈ 𝑈) |
| 12 | | r1plmhm.6 |
. . . 4
⊢ 𝐹 = (𝑓 ∈ 𝑈 ↦ (𝑓𝐸𝑀)) |
| 13 | 11, 12 | fmptd 7134 |
. . 3
⊢ (𝜑 → 𝐹:𝑈⟶𝑈) |
| 14 | | eqid 2737 |
. . 3
⊢
(+g‘𝑃) = (+g‘𝑃) |
| 15 | | anass 468 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ↔ (𝜑 ∧ (𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈))) |
| 16 | 2 | ad6antr 736 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑝 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑝)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → 𝑅 ∈ Ring) |
| 17 | | simp-6r 788 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑝 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑝)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → 𝑎 ∈ 𝑈) |
| 18 | 5 | ad6antr 736 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑝 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑝)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → 𝑀 ∈ 𝑁) |
| 19 | | simplr 769 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑝 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑝)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘𝑎) = (𝐹‘𝑝)) |
| 20 | | oveq1 7438 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑎 → (𝑓𝐸𝑀) = (𝑎𝐸𝑀)) |
| 21 | | ovexd 7466 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑝 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑝)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝑎𝐸𝑀) ∈ V) |
| 22 | 12, 20, 17, 21 | fvmptd3 7039 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑝 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑝)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘𝑎) = (𝑎𝐸𝑀)) |
| 23 | | oveq1 7438 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑝 → (𝑓𝐸𝑀) = (𝑝𝐸𝑀)) |
| 24 | | simp-4r 784 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑝 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑝)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → 𝑝 ∈ 𝑈) |
| 25 | | ovexd 7466 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑝 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑝)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝑝𝐸𝑀) ∈ V) |
| 26 | 12, 23, 24, 25 | fvmptd3 7039 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑝 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑝)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘𝑝) = (𝑝𝐸𝑀)) |
| 27 | 19, 22, 26 | 3eqtr3d 2785 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑝 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑝)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝑎𝐸𝑀) = (𝑝𝐸𝑀)) |
| 28 | | simp-5r 786 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑝 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑝)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → 𝑏 ∈ 𝑈) |
| 29 | 8, 1, 9, 7, 16, 17, 18, 27, 14, 24, 28 | r1padd1 33628 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑝 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑝)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → ((𝑎(+g‘𝑃)𝑏)𝐸𝑀) = ((𝑝(+g‘𝑃)𝑏)𝐸𝑀)) |
| 30 | | oveq1 7438 |
. . . . . . . . . . 11
⊢ (𝑓 = (𝑎(+g‘𝑃)𝑏) → (𝑓𝐸𝑀) = ((𝑎(+g‘𝑃)𝑏)𝐸𝑀)) |
| 31 | 8 | ply1ring 22249 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
| 32 | 2, 31 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑃 ∈ Ring) |
| 33 | 32 | ringgrpd 20239 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑃 ∈ Grp) |
| 34 | 33 | ad6antr 736 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑝 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑝)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → 𝑃 ∈ Grp) |
| 35 | 1, 14, 34, 17, 28 | grpcld 18965 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑝 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑝)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝑎(+g‘𝑃)𝑏) ∈ 𝑈) |
| 36 | | ovexd 7466 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑝 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑝)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → ((𝑎(+g‘𝑃)𝑏)𝐸𝑀) ∈ V) |
| 37 | 12, 30, 35, 36 | fvmptd3 7039 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑝 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑝)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎(+g‘𝑃)𝑏)) = ((𝑎(+g‘𝑃)𝑏)𝐸𝑀)) |
| 38 | | oveq1 7438 |
. . . . . . . . . . 11
⊢ (𝑓 = (𝑝(+g‘𝑃)𝑏) → (𝑓𝐸𝑀) = ((𝑝(+g‘𝑃)𝑏)𝐸𝑀)) |
| 39 | 1, 14, 34, 24, 28 | grpcld 18965 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑝 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑝)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝑝(+g‘𝑃)𝑏) ∈ 𝑈) |
| 40 | | ovexd 7466 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑝 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑝)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → ((𝑝(+g‘𝑃)𝑏)𝐸𝑀) ∈ V) |
| 41 | 12, 38, 39, 40 | fvmptd3 7039 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑝 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑝)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑝(+g‘𝑃)𝑏)) = ((𝑝(+g‘𝑃)𝑏)𝐸𝑀)) |
| 42 | 29, 37, 41 | 3eqtr4d 2787 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑝 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑝)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎(+g‘𝑃)𝑏)) = (𝐹‘(𝑝(+g‘𝑃)𝑏))) |
| 43 | 32 | ringabld 20280 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑃 ∈ Abel) |
| 44 | 43 | ad6antr 736 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑝 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑝)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → 𝑃 ∈ Abel) |
| 45 | 1, 14 | ablcom 19817 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ Abel ∧ 𝑝 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈) → (𝑝(+g‘𝑃)𝑏) = (𝑏(+g‘𝑃)𝑝)) |
| 46 | 44, 24, 28, 45 | syl3anc 1373 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑝 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑝)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝑝(+g‘𝑃)𝑏) = (𝑏(+g‘𝑃)𝑝)) |
| 47 | 46 | fveq2d 6910 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑝 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑝)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑝(+g‘𝑃)𝑏)) = (𝐹‘(𝑏(+g‘𝑃)𝑝))) |
| 48 | 42, 47 | eqtrd 2777 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑝 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑝)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎(+g‘𝑃)𝑏)) = (𝐹‘(𝑏(+g‘𝑃)𝑝))) |
| 49 | | simpr 484 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑝 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑝)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘𝑏) = (𝐹‘𝑞)) |
| 50 | | oveq1 7438 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑏 → (𝑓𝐸𝑀) = (𝑏𝐸𝑀)) |
| 51 | | ovexd 7466 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑝 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑝)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝑏𝐸𝑀) ∈ V) |
| 52 | 12, 50, 28, 51 | fvmptd3 7039 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑝 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑝)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘𝑏) = (𝑏𝐸𝑀)) |
| 53 | | oveq1 7438 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑞 → (𝑓𝐸𝑀) = (𝑞𝐸𝑀)) |
| 54 | | simpllr 776 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑝 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑝)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → 𝑞 ∈ 𝑈) |
| 55 | | ovexd 7466 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑝 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑝)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝑞𝐸𝑀) ∈ V) |
| 56 | 12, 53, 54, 55 | fvmptd3 7039 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑝 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑝)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘𝑞) = (𝑞𝐸𝑀)) |
| 57 | 49, 52, 56 | 3eqtr3d 2785 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑝 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑝)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝑏𝐸𝑀) = (𝑞𝐸𝑀)) |
| 58 | 8, 1, 9, 7, 16, 28, 18, 57, 14, 54, 24 | r1padd1 33628 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑝 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑝)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → ((𝑏(+g‘𝑃)𝑝)𝐸𝑀) = ((𝑞(+g‘𝑃)𝑝)𝐸𝑀)) |
| 59 | | oveq1 7438 |
. . . . . . . . . 10
⊢ (𝑓 = (𝑏(+g‘𝑃)𝑝) → (𝑓𝐸𝑀) = ((𝑏(+g‘𝑃)𝑝)𝐸𝑀)) |
| 60 | 1, 14, 34, 28, 24 | grpcld 18965 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑝 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑝)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝑏(+g‘𝑃)𝑝) ∈ 𝑈) |
| 61 | | ovexd 7466 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑝 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑝)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → ((𝑏(+g‘𝑃)𝑝)𝐸𝑀) ∈ V) |
| 62 | 12, 59, 60, 61 | fvmptd3 7039 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑝 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑝)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑏(+g‘𝑃)𝑝)) = ((𝑏(+g‘𝑃)𝑝)𝐸𝑀)) |
| 63 | | oveq1 7438 |
. . . . . . . . . 10
⊢ (𝑓 = (𝑞(+g‘𝑃)𝑝) → (𝑓𝐸𝑀) = ((𝑞(+g‘𝑃)𝑝)𝐸𝑀)) |
| 64 | 1, 14, 34, 54, 24 | grpcld 18965 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑝 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑝)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝑞(+g‘𝑃)𝑝) ∈ 𝑈) |
| 65 | | ovexd 7466 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑝 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑝)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → ((𝑞(+g‘𝑃)𝑝)𝐸𝑀) ∈ V) |
| 66 | 12, 63, 64, 65 | fvmptd3 7039 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑝 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑝)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑞(+g‘𝑃)𝑝)) = ((𝑞(+g‘𝑃)𝑝)𝐸𝑀)) |
| 67 | 58, 62, 66 | 3eqtr4d 2787 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑝 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑝)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑏(+g‘𝑃)𝑝)) = (𝐹‘(𝑞(+g‘𝑃)𝑝))) |
| 68 | 1, 14 | ablcom 19817 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ Abel ∧ 𝑞 ∈ 𝑈 ∧ 𝑝 ∈ 𝑈) → (𝑞(+g‘𝑃)𝑝) = (𝑝(+g‘𝑃)𝑞)) |
| 69 | 44, 54, 24, 68 | syl3anc 1373 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑝 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑝)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝑞(+g‘𝑃)𝑝) = (𝑝(+g‘𝑃)𝑞)) |
| 70 | 69 | fveq2d 6910 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑝 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑝)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑞(+g‘𝑃)𝑝)) = (𝐹‘(𝑝(+g‘𝑃)𝑞))) |
| 71 | 48, 67, 70 | 3eqtrd 2781 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑝 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑝)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎(+g‘𝑃)𝑏)) = (𝐹‘(𝑝(+g‘𝑃)𝑞))) |
| 72 | 71 | expl 457 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑝 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎(+g‘𝑃)𝑏)) = (𝐹‘(𝑝(+g‘𝑃)𝑞)))) |
| 73 | 72 | anasss 466 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ (𝑝 ∈ 𝑈 ∧ 𝑞 ∈ 𝑈)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎(+g‘𝑃)𝑏)) = (𝐹‘(𝑝(+g‘𝑃)𝑞)))) |
| 74 | 15, 73 | sylanbr 582 |
. . . 4
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈)) ∧ (𝑝 ∈ 𝑈 ∧ 𝑞 ∈ 𝑈)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎(+g‘𝑃)𝑏)) = (𝐹‘(𝑝(+g‘𝑃)𝑞)))) |
| 75 | 74 | 3impa 1110 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈) ∧ (𝑝 ∈ 𝑈 ∧ 𝑞 ∈ 𝑈)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎(+g‘𝑃)𝑏)) = (𝐹‘(𝑝(+g‘𝑃)𝑞)))) |
| 76 | | eqid 2737 |
. . 3
⊢
(Scalar‘𝑃) =
(Scalar‘𝑃) |
| 77 | | eqid 2737 |
. . 3
⊢
(Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃)) |
| 78 | | simplr 769 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈)) → (𝐹‘𝑎) = (𝐹‘𝑏)) |
| 79 | | simpr2 1196 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈)) → 𝑎 ∈ 𝑈) |
| 80 | | ovexd 7466 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈)) → (𝑎𝐸𝑀) ∈ V) |
| 81 | 12, 20, 79, 80 | fvmptd3 7039 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈)) → (𝐹‘𝑎) = (𝑎𝐸𝑀)) |
| 82 | | simpr3 1197 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈)) → 𝑏 ∈ 𝑈) |
| 83 | | ovexd 7466 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈)) → (𝑏𝐸𝑀) ∈ V) |
| 84 | 12, 50, 82, 83 | fvmptd3 7039 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈)) → (𝐹‘𝑏) = (𝑏𝐸𝑀)) |
| 85 | 78, 81, 84 | 3eqtr3d 2785 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈)) → (𝑎𝐸𝑀) = (𝑏𝐸𝑀)) |
| 86 | 85 | oveq2d 7447 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈)) → (𝑘( ·𝑠
‘𝑃)(𝑎𝐸𝑀)) = (𝑘( ·𝑠
‘𝑃)(𝑏𝐸𝑀))) |
| 87 | 2 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈)) → 𝑅 ∈ Ring) |
| 88 | 5 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈)) → 𝑀 ∈ 𝑁) |
| 89 | | eqid 2737 |
. . . . . . . 8
⊢ (
·𝑠 ‘𝑃) = ( ·𝑠
‘𝑃) |
| 90 | | eqid 2737 |
. . . . . . . 8
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 91 | | simpr1 1195 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈)) → 𝑘 ∈ (Base‘(Scalar‘𝑃))) |
| 92 | 8 | ply1sca 22254 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃)) |
| 93 | 2, 92 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 = (Scalar‘𝑃)) |
| 94 | 93 | fveq2d 6910 |
. . . . . . . . . 10
⊢ (𝜑 → (Base‘𝑅) =
(Base‘(Scalar‘𝑃))) |
| 95 | 94 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈)) → (Base‘𝑅) = (Base‘(Scalar‘𝑃))) |
| 96 | 91, 95 | eleqtrrd 2844 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈)) → 𝑘 ∈ (Base‘𝑅)) |
| 97 | 8, 1, 9, 7, 87, 79, 88, 89, 90, 96 | r1pvsca 33625 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈)) → ((𝑘( ·𝑠
‘𝑃)𝑎)𝐸𝑀) = (𝑘( ·𝑠
‘𝑃)(𝑎𝐸𝑀))) |
| 98 | 8, 1, 9, 7, 87, 82, 88, 89, 90, 96 | r1pvsca 33625 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈)) → ((𝑘( ·𝑠
‘𝑃)𝑏)𝐸𝑀) = (𝑘( ·𝑠
‘𝑃)(𝑏𝐸𝑀))) |
| 99 | 86, 97, 98 | 3eqtr4d 2787 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈)) → ((𝑘( ·𝑠
‘𝑃)𝑎)𝐸𝑀) = ((𝑘( ·𝑠
‘𝑃)𝑏)𝐸𝑀)) |
| 100 | | oveq1 7438 |
. . . . . . 7
⊢ (𝑓 = (𝑘( ·𝑠
‘𝑃)𝑎) → (𝑓𝐸𝑀) = ((𝑘( ·𝑠
‘𝑃)𝑎)𝐸𝑀)) |
| 101 | 8 | ply1lmod 22253 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring → 𝑃 ∈ LMod) |
| 102 | 87, 101 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈)) → 𝑃 ∈ LMod) |
| 103 | 1, 76, 89, 77, 102, 91, 79 | lmodvscld 20877 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈)) → (𝑘( ·𝑠
‘𝑃)𝑎) ∈ 𝑈) |
| 104 | | ovexd 7466 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈)) → ((𝑘( ·𝑠
‘𝑃)𝑎)𝐸𝑀) ∈ V) |
| 105 | 12, 100, 103, 104 | fvmptd3 7039 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈)) → (𝐹‘(𝑘( ·𝑠
‘𝑃)𝑎)) = ((𝑘( ·𝑠
‘𝑃)𝑎)𝐸𝑀)) |
| 106 | | oveq1 7438 |
. . . . . . 7
⊢ (𝑓 = (𝑘( ·𝑠
‘𝑃)𝑏) → (𝑓𝐸𝑀) = ((𝑘( ·𝑠
‘𝑃)𝑏)𝐸𝑀)) |
| 107 | 1, 76, 89, 77, 102, 91, 82 | lmodvscld 20877 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈)) → (𝑘( ·𝑠
‘𝑃)𝑏) ∈ 𝑈) |
| 108 | | ovexd 7466 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈)) → ((𝑘( ·𝑠
‘𝑃)𝑏)𝐸𝑀) ∈ V) |
| 109 | 12, 106, 107, 108 | fvmptd3 7039 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈)) → (𝐹‘(𝑘( ·𝑠
‘𝑃)𝑏)) = ((𝑘( ·𝑠
‘𝑃)𝑏)𝐸𝑀)) |
| 110 | 99, 105, 109 | 3eqtr4d 2787 |
. . . . 5
⊢ (((𝜑 ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈)) → (𝐹‘(𝑘( ·𝑠
‘𝑃)𝑎)) = (𝐹‘(𝑘( ·𝑠
‘𝑃)𝑏))) |
| 111 | 110 | an32s 652 |
. . . 4
⊢ (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈)) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → (𝐹‘(𝑘( ·𝑠
‘𝑃)𝑎)) = (𝐹‘(𝑘( ·𝑠
‘𝑃)𝑏))) |
| 112 | 111 | ex 412 |
. . 3
⊢ ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈)) → ((𝐹‘𝑎) = (𝐹‘𝑏) → (𝐹‘(𝑘( ·𝑠
‘𝑃)𝑎)) = (𝐹‘(𝑘( ·𝑠
‘𝑃)𝑏)))) |
| 113 | 2, 101 | syl 17 |
. . 3
⊢ (𝜑 → 𝑃 ∈ LMod) |
| 114 | 1, 13, 14, 75, 76, 77, 112, 113, 89 | imaslmhm 33385 |
. 2
⊢ (𝜑 → ((𝐹 “s 𝑃) ∈ LMod ∧ 𝐹 ∈ (𝑃 LMHom (𝐹 “s 𝑃)))) |
| 115 | 114 | simprd 495 |
1
⊢ (𝜑 → 𝐹 ∈ (𝑃 LMHom (𝐹 “s 𝑃))) |