Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  r1plmhm Structured version   Visualization version   GIF version

Theorem r1plmhm 33595
Description: The univariate polynomial remainder function 𝐹 is a module homomorphism. Its image (𝐹s 𝑃) is sometimes called the "ring of remainders" (Contributed by Thierry Arnoux, 2-Apr-2025.)
Hypotheses
Ref Expression
r1plmhm.1 𝑃 = (Poly1𝑅)
r1plmhm.2 𝑈 = (Base‘𝑃)
r1plmhm.4 𝐸 = (rem1p𝑅)
r1plmhm.5 𝑁 = (Unic1p𝑅)
r1plmhm.6 𝐹 = (𝑓𝑈 ↦ (𝑓𝐸𝑀))
r1plmhm.9 (𝜑𝑅 ∈ Ring)
r1plmhm.10 (𝜑𝑀𝑁)
Assertion
Ref Expression
r1plmhm (𝜑𝐹 ∈ (𝑃 LMHom (𝐹s 𝑃)))
Distinct variable groups:   𝑓,𝐸   𝑓,𝑀   𝑃,𝑓   𝑈,𝑓   𝜑,𝑓
Allowed substitution hints:   𝑅(𝑓)   𝐹(𝑓)   𝑁(𝑓)

Proof of Theorem r1plmhm
Dummy variables 𝑝 𝑎 𝑏 𝑘 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r1plmhm.2 . . 3 𝑈 = (Base‘𝑃)
2 r1plmhm.9 . . . . . 6 (𝜑𝑅 ∈ Ring)
32adantr 480 . . . . 5 ((𝜑𝑓𝑈) → 𝑅 ∈ Ring)
4 simpr 484 . . . . 5 ((𝜑𝑓𝑈) → 𝑓𝑈)
5 r1plmhm.10 . . . . . 6 (𝜑𝑀𝑁)
65adantr 480 . . . . 5 ((𝜑𝑓𝑈) → 𝑀𝑁)
7 r1plmhm.4 . . . . . 6 𝐸 = (rem1p𝑅)
8 r1plmhm.1 . . . . . 6 𝑃 = (Poly1𝑅)
9 r1plmhm.5 . . . . . 6 𝑁 = (Unic1p𝑅)
107, 8, 1, 9r1pcl 26218 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑓𝑈𝑀𝑁) → (𝑓𝐸𝑀) ∈ 𝑈)
113, 4, 6, 10syl3anc 1371 . . . 4 ((𝜑𝑓𝑈) → (𝑓𝐸𝑀) ∈ 𝑈)
12 r1plmhm.6 . . . 4 𝐹 = (𝑓𝑈 ↦ (𝑓𝐸𝑀))
1311, 12fmptd 7148 . . 3 (𝜑𝐹:𝑈𝑈)
14 eqid 2740 . . 3 (+g𝑃) = (+g𝑃)
15 anass 468 . . . . 5 (((𝜑𝑎𝑈) ∧ 𝑏𝑈) ↔ (𝜑 ∧ (𝑎𝑈𝑏𝑈)))
162ad6antr 735 . . . . . . . . . . 11 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → 𝑅 ∈ Ring)
17 simp-6r 787 . . . . . . . . . . 11 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → 𝑎𝑈)
185ad6antr 735 . . . . . . . . . . 11 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → 𝑀𝑁)
19 simplr 768 . . . . . . . . . . . 12 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹𝑎) = (𝐹𝑝))
20 oveq1 7455 . . . . . . . . . . . . 13 (𝑓 = 𝑎 → (𝑓𝐸𝑀) = (𝑎𝐸𝑀))
21 ovexd 7483 . . . . . . . . . . . . 13 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝑎𝐸𝑀) ∈ V)
2212, 20, 17, 21fvmptd3 7052 . . . . . . . . . . . 12 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹𝑎) = (𝑎𝐸𝑀))
23 oveq1 7455 . . . . . . . . . . . . 13 (𝑓 = 𝑝 → (𝑓𝐸𝑀) = (𝑝𝐸𝑀))
24 simp-4r 783 . . . . . . . . . . . . 13 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → 𝑝𝑈)
25 ovexd 7483 . . . . . . . . . . . . 13 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝑝𝐸𝑀) ∈ V)
2612, 23, 24, 25fvmptd3 7052 . . . . . . . . . . . 12 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹𝑝) = (𝑝𝐸𝑀))
2719, 22, 263eqtr3d 2788 . . . . . . . . . . 11 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝑎𝐸𝑀) = (𝑝𝐸𝑀))
28 simp-5r 785 . . . . . . . . . . 11 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → 𝑏𝑈)
298, 1, 9, 7, 16, 17, 18, 27, 14, 24, 28r1padd1 33593 . . . . . . . . . 10 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → ((𝑎(+g𝑃)𝑏)𝐸𝑀) = ((𝑝(+g𝑃)𝑏)𝐸𝑀))
30 oveq1 7455 . . . . . . . . . . 11 (𝑓 = (𝑎(+g𝑃)𝑏) → (𝑓𝐸𝑀) = ((𝑎(+g𝑃)𝑏)𝐸𝑀))
318ply1ring 22270 . . . . . . . . . . . . . . 15 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
322, 31syl 17 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ Ring)
3332ringgrpd 20269 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ Grp)
3433ad6antr 735 . . . . . . . . . . . 12 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → 𝑃 ∈ Grp)
351, 14, 34, 17, 28grpcld 18987 . . . . . . . . . . 11 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝑎(+g𝑃)𝑏) ∈ 𝑈)
36 ovexd 7483 . . . . . . . . . . 11 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → ((𝑎(+g𝑃)𝑏)𝐸𝑀) ∈ V)
3712, 30, 35, 36fvmptd3 7052 . . . . . . . . . 10 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎(+g𝑃)𝑏)) = ((𝑎(+g𝑃)𝑏)𝐸𝑀))
38 oveq1 7455 . . . . . . . . . . 11 (𝑓 = (𝑝(+g𝑃)𝑏) → (𝑓𝐸𝑀) = ((𝑝(+g𝑃)𝑏)𝐸𝑀))
391, 14, 34, 24, 28grpcld 18987 . . . . . . . . . . 11 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝑝(+g𝑃)𝑏) ∈ 𝑈)
40 ovexd 7483 . . . . . . . . . . 11 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → ((𝑝(+g𝑃)𝑏)𝐸𝑀) ∈ V)
4112, 38, 39, 40fvmptd3 7052 . . . . . . . . . 10 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑝(+g𝑃)𝑏)) = ((𝑝(+g𝑃)𝑏)𝐸𝑀))
4229, 37, 413eqtr4d 2790 . . . . . . . . 9 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎(+g𝑃)𝑏)) = (𝐹‘(𝑝(+g𝑃)𝑏)))
4332ringabld 20306 . . . . . . . . . . . 12 (𝜑𝑃 ∈ Abel)
4443ad6antr 735 . . . . . . . . . . 11 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → 𝑃 ∈ Abel)
451, 14ablcom 19841 . . . . . . . . . . 11 ((𝑃 ∈ Abel ∧ 𝑝𝑈𝑏𝑈) → (𝑝(+g𝑃)𝑏) = (𝑏(+g𝑃)𝑝))
4644, 24, 28, 45syl3anc 1371 . . . . . . . . . 10 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝑝(+g𝑃)𝑏) = (𝑏(+g𝑃)𝑝))
4746fveq2d 6924 . . . . . . . . 9 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑝(+g𝑃)𝑏)) = (𝐹‘(𝑏(+g𝑃)𝑝)))
4842, 47eqtrd 2780 . . . . . . . 8 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎(+g𝑃)𝑏)) = (𝐹‘(𝑏(+g𝑃)𝑝)))
49 simpr 484 . . . . . . . . . . 11 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹𝑏) = (𝐹𝑞))
50 oveq1 7455 . . . . . . . . . . . 12 (𝑓 = 𝑏 → (𝑓𝐸𝑀) = (𝑏𝐸𝑀))
51 ovexd 7483 . . . . . . . . . . . 12 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝑏𝐸𝑀) ∈ V)
5212, 50, 28, 51fvmptd3 7052 . . . . . . . . . . 11 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹𝑏) = (𝑏𝐸𝑀))
53 oveq1 7455 . . . . . . . . . . . 12 (𝑓 = 𝑞 → (𝑓𝐸𝑀) = (𝑞𝐸𝑀))
54 simpllr 775 . . . . . . . . . . . 12 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → 𝑞𝑈)
55 ovexd 7483 . . . . . . . . . . . 12 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝑞𝐸𝑀) ∈ V)
5612, 53, 54, 55fvmptd3 7052 . . . . . . . . . . 11 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹𝑞) = (𝑞𝐸𝑀))
5749, 52, 563eqtr3d 2788 . . . . . . . . . 10 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝑏𝐸𝑀) = (𝑞𝐸𝑀))
588, 1, 9, 7, 16, 28, 18, 57, 14, 54, 24r1padd1 33593 . . . . . . . . 9 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → ((𝑏(+g𝑃)𝑝)𝐸𝑀) = ((𝑞(+g𝑃)𝑝)𝐸𝑀))
59 oveq1 7455 . . . . . . . . . 10 (𝑓 = (𝑏(+g𝑃)𝑝) → (𝑓𝐸𝑀) = ((𝑏(+g𝑃)𝑝)𝐸𝑀))
601, 14, 34, 28, 24grpcld 18987 . . . . . . . . . 10 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝑏(+g𝑃)𝑝) ∈ 𝑈)
61 ovexd 7483 . . . . . . . . . 10 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → ((𝑏(+g𝑃)𝑝)𝐸𝑀) ∈ V)
6212, 59, 60, 61fvmptd3 7052 . . . . . . . . 9 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑏(+g𝑃)𝑝)) = ((𝑏(+g𝑃)𝑝)𝐸𝑀))
63 oveq1 7455 . . . . . . . . . 10 (𝑓 = (𝑞(+g𝑃)𝑝) → (𝑓𝐸𝑀) = ((𝑞(+g𝑃)𝑝)𝐸𝑀))
641, 14, 34, 54, 24grpcld 18987 . . . . . . . . . 10 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝑞(+g𝑃)𝑝) ∈ 𝑈)
65 ovexd 7483 . . . . . . . . . 10 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → ((𝑞(+g𝑃)𝑝)𝐸𝑀) ∈ V)
6612, 63, 64, 65fvmptd3 7052 . . . . . . . . 9 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑞(+g𝑃)𝑝)) = ((𝑞(+g𝑃)𝑝)𝐸𝑀))
6758, 62, 663eqtr4d 2790 . . . . . . . 8 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑏(+g𝑃)𝑝)) = (𝐹‘(𝑞(+g𝑃)𝑝)))
681, 14ablcom 19841 . . . . . . . . . 10 ((𝑃 ∈ Abel ∧ 𝑞𝑈𝑝𝑈) → (𝑞(+g𝑃)𝑝) = (𝑝(+g𝑃)𝑞))
6944, 54, 24, 68syl3anc 1371 . . . . . . . . 9 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝑞(+g𝑃)𝑝) = (𝑝(+g𝑃)𝑞))
7069fveq2d 6924 . . . . . . . 8 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑞(+g𝑃)𝑝)) = (𝐹‘(𝑝(+g𝑃)𝑞)))
7148, 67, 703eqtrd 2784 . . . . . . 7 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎(+g𝑃)𝑏)) = (𝐹‘(𝑝(+g𝑃)𝑞)))
7271expl 457 . . . . . 6 (((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎(+g𝑃)𝑏)) = (𝐹‘(𝑝(+g𝑃)𝑞))))
7372anasss 466 . . . . 5 ((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ (𝑝𝑈𝑞𝑈)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎(+g𝑃)𝑏)) = (𝐹‘(𝑝(+g𝑃)𝑞))))
7415, 73sylanbr 581 . . . 4 (((𝜑 ∧ (𝑎𝑈𝑏𝑈)) ∧ (𝑝𝑈𝑞𝑈)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎(+g𝑃)𝑏)) = (𝐹‘(𝑝(+g𝑃)𝑞))))
75743impa 1110 . . 3 ((𝜑 ∧ (𝑎𝑈𝑏𝑈) ∧ (𝑝𝑈𝑞𝑈)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎(+g𝑃)𝑏)) = (𝐹‘(𝑝(+g𝑃)𝑞))))
76 eqid 2740 . . 3 (Scalar‘𝑃) = (Scalar‘𝑃)
77 eqid 2740 . . 3 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
78 simplr 768 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → (𝐹𝑎) = (𝐹𝑏))
79 simpr2 1195 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑎𝑈)
80 ovexd 7483 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → (𝑎𝐸𝑀) ∈ V)
8112, 20, 79, 80fvmptd3 7052 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → (𝐹𝑎) = (𝑎𝐸𝑀))
82 simpr3 1196 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑏𝑈)
83 ovexd 7483 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → (𝑏𝐸𝑀) ∈ V)
8412, 50, 82, 83fvmptd3 7052 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → (𝐹𝑏) = (𝑏𝐸𝑀))
8578, 81, 843eqtr3d 2788 . . . . . . . 8 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → (𝑎𝐸𝑀) = (𝑏𝐸𝑀))
8685oveq2d 7464 . . . . . . 7 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → (𝑘( ·𝑠𝑃)(𝑎𝐸𝑀)) = (𝑘( ·𝑠𝑃)(𝑏𝐸𝑀)))
872ad2antrr 725 . . . . . . . 8 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑅 ∈ Ring)
885ad2antrr 725 . . . . . . . 8 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑀𝑁)
89 eqid 2740 . . . . . . . 8 ( ·𝑠𝑃) = ( ·𝑠𝑃)
90 eqid 2740 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
91 simpr1 1194 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑘 ∈ (Base‘(Scalar‘𝑃)))
928ply1sca 22275 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃))
932, 92syl 17 . . . . . . . . . . 11 (𝜑𝑅 = (Scalar‘𝑃))
9493fveq2d 6924 . . . . . . . . . 10 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
9594ad2antrr 725 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
9691, 95eleqtrrd 2847 . . . . . . . 8 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑘 ∈ (Base‘𝑅))
978, 1, 9, 7, 87, 79, 88, 89, 90, 96r1pvsca 33590 . . . . . . 7 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → ((𝑘( ·𝑠𝑃)𝑎)𝐸𝑀) = (𝑘( ·𝑠𝑃)(𝑎𝐸𝑀)))
988, 1, 9, 7, 87, 82, 88, 89, 90, 96r1pvsca 33590 . . . . . . 7 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → ((𝑘( ·𝑠𝑃)𝑏)𝐸𝑀) = (𝑘( ·𝑠𝑃)(𝑏𝐸𝑀)))
9986, 97, 983eqtr4d 2790 . . . . . 6 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → ((𝑘( ·𝑠𝑃)𝑎)𝐸𝑀) = ((𝑘( ·𝑠𝑃)𝑏)𝐸𝑀))
100 oveq1 7455 . . . . . . 7 (𝑓 = (𝑘( ·𝑠𝑃)𝑎) → (𝑓𝐸𝑀) = ((𝑘( ·𝑠𝑃)𝑎)𝐸𝑀))
1018ply1lmod 22274 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
10287, 101syl 17 . . . . . . . 8 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑃 ∈ LMod)
1031, 76, 89, 77, 102, 91, 79lmodvscld 20899 . . . . . . 7 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → (𝑘( ·𝑠𝑃)𝑎) ∈ 𝑈)
104 ovexd 7483 . . . . . . 7 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → ((𝑘( ·𝑠𝑃)𝑎)𝐸𝑀) ∈ V)
10512, 100, 103, 104fvmptd3 7052 . . . . . 6 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → (𝐹‘(𝑘( ·𝑠𝑃)𝑎)) = ((𝑘( ·𝑠𝑃)𝑎)𝐸𝑀))
106 oveq1 7455 . . . . . . 7 (𝑓 = (𝑘( ·𝑠𝑃)𝑏) → (𝑓𝐸𝑀) = ((𝑘( ·𝑠𝑃)𝑏)𝐸𝑀))
1071, 76, 89, 77, 102, 91, 82lmodvscld 20899 . . . . . . 7 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → (𝑘( ·𝑠𝑃)𝑏) ∈ 𝑈)
108 ovexd 7483 . . . . . . 7 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → ((𝑘( ·𝑠𝑃)𝑏)𝐸𝑀) ∈ V)
10912, 106, 107, 108fvmptd3 7052 . . . . . 6 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → (𝐹‘(𝑘( ·𝑠𝑃)𝑏)) = ((𝑘( ·𝑠𝑃)𝑏)𝐸𝑀))
11099, 105, 1093eqtr4d 2790 . . . . 5 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → (𝐹‘(𝑘( ·𝑠𝑃)𝑎)) = (𝐹‘(𝑘( ·𝑠𝑃)𝑏)))
111110an32s 651 . . . 4 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹‘(𝑘( ·𝑠𝑃)𝑎)) = (𝐹‘(𝑘( ·𝑠𝑃)𝑏)))
112111ex 412 . . 3 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → ((𝐹𝑎) = (𝐹𝑏) → (𝐹‘(𝑘( ·𝑠𝑃)𝑎)) = (𝐹‘(𝑘( ·𝑠𝑃)𝑏))))
1132, 101syl 17 . . 3 (𝜑𝑃 ∈ LMod)
1141, 13, 14, 75, 76, 77, 112, 113, 89imaslmhm 33350 . 2 (𝜑 → ((𝐹s 𝑃) ∈ LMod ∧ 𝐹 ∈ (𝑃 LMHom (𝐹s 𝑃))))
115114simprd 495 1 (𝜑𝐹 ∈ (𝑃 LMHom (𝐹s 𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  Vcvv 3488  cmpt 5249  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  Scalarcsca 17314   ·𝑠 cvsca 17315  s cimas 17564  Grpcgrp 18973  Abelcabl 19823  Ringcrg 20260  LModclmod 20880   LMHom clmhm 21041  Poly1cpl1 22199  Unic1pcuc1p 26186  rem1pcr1p 26188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-imas 17568  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-subrng 20572  df-subrg 20597  df-rlreg 20716  df-lmod 20882  df-lss 20953  df-lmhm 21044  df-cnfld 21388  df-psr 21952  df-mvr 21953  df-mpl 21954  df-opsr 21956  df-psr1 22202  df-vr1 22203  df-ply1 22204  df-coe1 22205  df-mdeg 26114  df-deg1 26115  df-uc1p 26191  df-q1p 26192  df-r1p 26193
This theorem is referenced by:  r1pquslmic  33596  algextdeglem8  33715
  Copyright terms: Public domain W3C validator