Step | Hyp | Ref
| Expression |
1 | | r1plmhm.2 |
. . 3
β’ π = (Baseβπ) |
2 | | r1plmhm.9 |
. . . . . 6
β’ (π β π
β Ring) |
3 | 2 | adantr 479 |
. . . . 5
β’ ((π β§ π β π) β π
β Ring) |
4 | | simpr 483 |
. . . . 5
β’ ((π β§ π β π) β π β π) |
5 | | r1plmhm.10 |
. . . . . 6
β’ (π β π β π) |
6 | 5 | adantr 479 |
. . . . 5
β’ ((π β§ π β π) β π β π) |
7 | | r1plmhm.4 |
. . . . . 6
β’ πΈ = (rem1pβπ
) |
8 | | r1plmhm.1 |
. . . . . 6
β’ π = (Poly1βπ
) |
9 | | r1plmhm.5 |
. . . . . 6
β’ π =
(Unic1pβπ
) |
10 | 7, 8, 1, 9 | r1pcl 25910 |
. . . . 5
β’ ((π
β Ring β§ π β π β§ π β π) β (ππΈπ) β π) |
11 | 3, 4, 6, 10 | syl3anc 1369 |
. . . 4
β’ ((π β§ π β π) β (ππΈπ) β π) |
12 | | r1plmhm.6 |
. . . 4
β’ πΉ = (π β π β¦ (ππΈπ)) |
13 | 11, 12 | fmptd 7114 |
. . 3
β’ (π β πΉ:πβΆπ) |
14 | | eqid 2730 |
. . 3
β’
(+gβπ) = (+gβπ) |
15 | | anass 467 |
. . . . 5
β’ (((π β§ π β π) β§ π β π) β (π β§ (π β π β§ π β π))) |
16 | 2 | ad6antr 732 |
. . . . . . . . . . 11
β’
(((((((π β§ π β π) β§ π β π) β§ π β π) β§ π β π) β§ (πΉβπ) = (πΉβπ)) β§ (πΉβπ) = (πΉβπ)) β π
β Ring) |
17 | | simp-6r 784 |
. . . . . . . . . . 11
β’
(((((((π β§ π β π) β§ π β π) β§ π β π) β§ π β π) β§ (πΉβπ) = (πΉβπ)) β§ (πΉβπ) = (πΉβπ)) β π β π) |
18 | 5 | ad6antr 732 |
. . . . . . . . . . 11
β’
(((((((π β§ π β π) β§ π β π) β§ π β π) β§ π β π) β§ (πΉβπ) = (πΉβπ)) β§ (πΉβπ) = (πΉβπ)) β π β π) |
19 | | simplr 765 |
. . . . . . . . . . . 12
β’
(((((((π β§ π β π) β§ π β π) β§ π β π) β§ π β π) β§ (πΉβπ) = (πΉβπ)) β§ (πΉβπ) = (πΉβπ)) β (πΉβπ) = (πΉβπ)) |
20 | | oveq1 7418 |
. . . . . . . . . . . . 13
β’ (π = π β (ππΈπ) = (ππΈπ)) |
21 | | ovexd 7446 |
. . . . . . . . . . . . 13
β’
(((((((π β§ π β π) β§ π β π) β§ π β π) β§ π β π) β§ (πΉβπ) = (πΉβπ)) β§ (πΉβπ) = (πΉβπ)) β (ππΈπ) β V) |
22 | 12, 20, 17, 21 | fvmptd3 7020 |
. . . . . . . . . . . 12
β’
(((((((π β§ π β π) β§ π β π) β§ π β π) β§ π β π) β§ (πΉβπ) = (πΉβπ)) β§ (πΉβπ) = (πΉβπ)) β (πΉβπ) = (ππΈπ)) |
23 | | oveq1 7418 |
. . . . . . . . . . . . 13
β’ (π = π β (ππΈπ) = (ππΈπ)) |
24 | | simp-4r 780 |
. . . . . . . . . . . . 13
β’
(((((((π β§ π β π) β§ π β π) β§ π β π) β§ π β π) β§ (πΉβπ) = (πΉβπ)) β§ (πΉβπ) = (πΉβπ)) β π β π) |
25 | | ovexd 7446 |
. . . . . . . . . . . . 13
β’
(((((((π β§ π β π) β§ π β π) β§ π β π) β§ π β π) β§ (πΉβπ) = (πΉβπ)) β§ (πΉβπ) = (πΉβπ)) β (ππΈπ) β V) |
26 | 12, 23, 24, 25 | fvmptd3 7020 |
. . . . . . . . . . . 12
β’
(((((((π β§ π β π) β§ π β π) β§ π β π) β§ π β π) β§ (πΉβπ) = (πΉβπ)) β§ (πΉβπ) = (πΉβπ)) β (πΉβπ) = (ππΈπ)) |
27 | 19, 22, 26 | 3eqtr3d 2778 |
. . . . . . . . . . 11
β’
(((((((π β§ π β π) β§ π β π) β§ π β π) β§ π β π) β§ (πΉβπ) = (πΉβπ)) β§ (πΉβπ) = (πΉβπ)) β (ππΈπ) = (ππΈπ)) |
28 | | simp-5r 782 |
. . . . . . . . . . 11
β’
(((((((π β§ π β π) β§ π β π) β§ π β π) β§ π β π) β§ (πΉβπ) = (πΉβπ)) β§ (πΉβπ) = (πΉβπ)) β π β π) |
29 | 8, 1, 9, 7, 16, 17, 18, 27, 14, 24, 28 | r1padd1 32953 |
. . . . . . . . . 10
β’
(((((((π β§ π β π) β§ π β π) β§ π β π) β§ π β π) β§ (πΉβπ) = (πΉβπ)) β§ (πΉβπ) = (πΉβπ)) β ((π(+gβπ)π)πΈπ) = ((π(+gβπ)π)πΈπ)) |
30 | | oveq1 7418 |
. . . . . . . . . . 11
β’ (π = (π(+gβπ)π) β (ππΈπ) = ((π(+gβπ)π)πΈπ)) |
31 | 8 | ply1ring 21990 |
. . . . . . . . . . . . . . 15
β’ (π
β Ring β π β Ring) |
32 | 2, 31 | syl 17 |
. . . . . . . . . . . . . 14
β’ (π β π β Ring) |
33 | 32 | ringgrpd 20136 |
. . . . . . . . . . . . 13
β’ (π β π β Grp) |
34 | 33 | ad6antr 732 |
. . . . . . . . . . . 12
β’
(((((((π β§ π β π) β§ π β π) β§ π β π) β§ π β π) β§ (πΉβπ) = (πΉβπ)) β§ (πΉβπ) = (πΉβπ)) β π β Grp) |
35 | 1, 14, 34, 17, 28 | grpcld 18869 |
. . . . . . . . . . 11
β’
(((((((π β§ π β π) β§ π β π) β§ π β π) β§ π β π) β§ (πΉβπ) = (πΉβπ)) β§ (πΉβπ) = (πΉβπ)) β (π(+gβπ)π) β π) |
36 | | ovexd 7446 |
. . . . . . . . . . 11
β’
(((((((π β§ π β π) β§ π β π) β§ π β π) β§ π β π) β§ (πΉβπ) = (πΉβπ)) β§ (πΉβπ) = (πΉβπ)) β ((π(+gβπ)π)πΈπ) β V) |
37 | 12, 30, 35, 36 | fvmptd3 7020 |
. . . . . . . . . 10
β’
(((((((π β§ π β π) β§ π β π) β§ π β π) β§ π β π) β§ (πΉβπ) = (πΉβπ)) β§ (πΉβπ) = (πΉβπ)) β (πΉβ(π(+gβπ)π)) = ((π(+gβπ)π)πΈπ)) |
38 | | oveq1 7418 |
. . . . . . . . . . 11
β’ (π = (π(+gβπ)π) β (ππΈπ) = ((π(+gβπ)π)πΈπ)) |
39 | 1, 14, 34, 24, 28 | grpcld 18869 |
. . . . . . . . . . 11
β’
(((((((π β§ π β π) β§ π β π) β§ π β π) β§ π β π) β§ (πΉβπ) = (πΉβπ)) β§ (πΉβπ) = (πΉβπ)) β (π(+gβπ)π) β π) |
40 | | ovexd 7446 |
. . . . . . . . . . 11
β’
(((((((π β§ π β π) β§ π β π) β§ π β π) β§ π β π) β§ (πΉβπ) = (πΉβπ)) β§ (πΉβπ) = (πΉβπ)) β ((π(+gβπ)π)πΈπ) β V) |
41 | 12, 38, 39, 40 | fvmptd3 7020 |
. . . . . . . . . 10
β’
(((((((π β§ π β π) β§ π β π) β§ π β π) β§ π β π) β§ (πΉβπ) = (πΉβπ)) β§ (πΉβπ) = (πΉβπ)) β (πΉβ(π(+gβπ)π)) = ((π(+gβπ)π)πΈπ)) |
42 | 29, 37, 41 | 3eqtr4d 2780 |
. . . . . . . . 9
β’
(((((((π β§ π β π) β§ π β π) β§ π β π) β§ π β π) β§ (πΉβπ) = (πΉβπ)) β§ (πΉβπ) = (πΉβπ)) β (πΉβ(π(+gβπ)π)) = (πΉβ(π(+gβπ)π))) |
43 | 32 | ringabld 20171 |
. . . . . . . . . . . 12
β’ (π β π β Abel) |
44 | 43 | ad6antr 732 |
. . . . . . . . . . 11
β’
(((((((π β§ π β π) β§ π β π) β§ π β π) β§ π β π) β§ (πΉβπ) = (πΉβπ)) β§ (πΉβπ) = (πΉβπ)) β π β Abel) |
45 | 1, 14 | ablcom 19708 |
. . . . . . . . . . 11
β’ ((π β Abel β§ π β π β§ π β π) β (π(+gβπ)π) = (π(+gβπ)π)) |
46 | 44, 24, 28, 45 | syl3anc 1369 |
. . . . . . . . . 10
β’
(((((((π β§ π β π) β§ π β π) β§ π β π) β§ π β π) β§ (πΉβπ) = (πΉβπ)) β§ (πΉβπ) = (πΉβπ)) β (π(+gβπ)π) = (π(+gβπ)π)) |
47 | 46 | fveq2d 6894 |
. . . . . . . . 9
β’
(((((((π β§ π β π) β§ π β π) β§ π β π) β§ π β π) β§ (πΉβπ) = (πΉβπ)) β§ (πΉβπ) = (πΉβπ)) β (πΉβ(π(+gβπ)π)) = (πΉβ(π(+gβπ)π))) |
48 | 42, 47 | eqtrd 2770 |
. . . . . . . 8
β’
(((((((π β§ π β π) β§ π β π) β§ π β π) β§ π β π) β§ (πΉβπ) = (πΉβπ)) β§ (πΉβπ) = (πΉβπ)) β (πΉβ(π(+gβπ)π)) = (πΉβ(π(+gβπ)π))) |
49 | | simpr 483 |
. . . . . . . . . . 11
β’
(((((((π β§ π β π) β§ π β π) β§ π β π) β§ π β π) β§ (πΉβπ) = (πΉβπ)) β§ (πΉβπ) = (πΉβπ)) β (πΉβπ) = (πΉβπ)) |
50 | | oveq1 7418 |
. . . . . . . . . . . 12
β’ (π = π β (ππΈπ) = (ππΈπ)) |
51 | | ovexd 7446 |
. . . . . . . . . . . 12
β’
(((((((π β§ π β π) β§ π β π) β§ π β π) β§ π β π) β§ (πΉβπ) = (πΉβπ)) β§ (πΉβπ) = (πΉβπ)) β (ππΈπ) β V) |
52 | 12, 50, 28, 51 | fvmptd3 7020 |
. . . . . . . . . . 11
β’
(((((((π β§ π β π) β§ π β π) β§ π β π) β§ π β π) β§ (πΉβπ) = (πΉβπ)) β§ (πΉβπ) = (πΉβπ)) β (πΉβπ) = (ππΈπ)) |
53 | | oveq1 7418 |
. . . . . . . . . . . 12
β’ (π = π β (ππΈπ) = (ππΈπ)) |
54 | | simpllr 772 |
. . . . . . . . . . . 12
β’
(((((((π β§ π β π) β§ π β π) β§ π β π) β§ π β π) β§ (πΉβπ) = (πΉβπ)) β§ (πΉβπ) = (πΉβπ)) β π β π) |
55 | | ovexd 7446 |
. . . . . . . . . . . 12
β’
(((((((π β§ π β π) β§ π β π) β§ π β π) β§ π β π) β§ (πΉβπ) = (πΉβπ)) β§ (πΉβπ) = (πΉβπ)) β (ππΈπ) β V) |
56 | 12, 53, 54, 55 | fvmptd3 7020 |
. . . . . . . . . . 11
β’
(((((((π β§ π β π) β§ π β π) β§ π β π) β§ π β π) β§ (πΉβπ) = (πΉβπ)) β§ (πΉβπ) = (πΉβπ)) β (πΉβπ) = (ππΈπ)) |
57 | 49, 52, 56 | 3eqtr3d 2778 |
. . . . . . . . . 10
β’
(((((((π β§ π β π) β§ π β π) β§ π β π) β§ π β π) β§ (πΉβπ) = (πΉβπ)) β§ (πΉβπ) = (πΉβπ)) β (ππΈπ) = (ππΈπ)) |
58 | 8, 1, 9, 7, 16, 28, 18, 57, 14, 54, 24 | r1padd1 32953 |
. . . . . . . . 9
β’
(((((((π β§ π β π) β§ π β π) β§ π β π) β§ π β π) β§ (πΉβπ) = (πΉβπ)) β§ (πΉβπ) = (πΉβπ)) β ((π(+gβπ)π)πΈπ) = ((π(+gβπ)π)πΈπ)) |
59 | | oveq1 7418 |
. . . . . . . . . 10
β’ (π = (π(+gβπ)π) β (ππΈπ) = ((π(+gβπ)π)πΈπ)) |
60 | 1, 14, 34, 28, 24 | grpcld 18869 |
. . . . . . . . . 10
β’
(((((((π β§ π β π) β§ π β π) β§ π β π) β§ π β π) β§ (πΉβπ) = (πΉβπ)) β§ (πΉβπ) = (πΉβπ)) β (π(+gβπ)π) β π) |
61 | | ovexd 7446 |
. . . . . . . . . 10
β’
(((((((π β§ π β π) β§ π β π) β§ π β π) β§ π β π) β§ (πΉβπ) = (πΉβπ)) β§ (πΉβπ) = (πΉβπ)) β ((π(+gβπ)π)πΈπ) β V) |
62 | 12, 59, 60, 61 | fvmptd3 7020 |
. . . . . . . . 9
β’
(((((((π β§ π β π) β§ π β π) β§ π β π) β§ π β π) β§ (πΉβπ) = (πΉβπ)) β§ (πΉβπ) = (πΉβπ)) β (πΉβ(π(+gβπ)π)) = ((π(+gβπ)π)πΈπ)) |
63 | | oveq1 7418 |
. . . . . . . . . 10
β’ (π = (π(+gβπ)π) β (ππΈπ) = ((π(+gβπ)π)πΈπ)) |
64 | 1, 14, 34, 54, 24 | grpcld 18869 |
. . . . . . . . . 10
β’
(((((((π β§ π β π) β§ π β π) β§ π β π) β§ π β π) β§ (πΉβπ) = (πΉβπ)) β§ (πΉβπ) = (πΉβπ)) β (π(+gβπ)π) β π) |
65 | | ovexd 7446 |
. . . . . . . . . 10
β’
(((((((π β§ π β π) β§ π β π) β§ π β π) β§ π β π) β§ (πΉβπ) = (πΉβπ)) β§ (πΉβπ) = (πΉβπ)) β ((π(+gβπ)π)πΈπ) β V) |
66 | 12, 63, 64, 65 | fvmptd3 7020 |
. . . . . . . . 9
β’
(((((((π β§ π β π) β§ π β π) β§ π β π) β§ π β π) β§ (πΉβπ) = (πΉβπ)) β§ (πΉβπ) = (πΉβπ)) β (πΉβ(π(+gβπ)π)) = ((π(+gβπ)π)πΈπ)) |
67 | 58, 62, 66 | 3eqtr4d 2780 |
. . . . . . . 8
β’
(((((((π β§ π β π) β§ π β π) β§ π β π) β§ π β π) β§ (πΉβπ) = (πΉβπ)) β§ (πΉβπ) = (πΉβπ)) β (πΉβ(π(+gβπ)π)) = (πΉβ(π(+gβπ)π))) |
68 | 1, 14 | ablcom 19708 |
. . . . . . . . . 10
β’ ((π β Abel β§ π β π β§ π β π) β (π(+gβπ)π) = (π(+gβπ)π)) |
69 | 44, 54, 24, 68 | syl3anc 1369 |
. . . . . . . . 9
β’
(((((((π β§ π β π) β§ π β π) β§ π β π) β§ π β π) β§ (πΉβπ) = (πΉβπ)) β§ (πΉβπ) = (πΉβπ)) β (π(+gβπ)π) = (π(+gβπ)π)) |
70 | 69 | fveq2d 6894 |
. . . . . . . 8
β’
(((((((π β§ π β π) β§ π β π) β§ π β π) β§ π β π) β§ (πΉβπ) = (πΉβπ)) β§ (πΉβπ) = (πΉβπ)) β (πΉβ(π(+gβπ)π)) = (πΉβ(π(+gβπ)π))) |
71 | 48, 67, 70 | 3eqtrd 2774 |
. . . . . . 7
β’
(((((((π β§ π β π) β§ π β π) β§ π β π) β§ π β π) β§ (πΉβπ) = (πΉβπ)) β§ (πΉβπ) = (πΉβπ)) β (πΉβ(π(+gβπ)π)) = (πΉβ(π(+gβπ)π))) |
72 | 71 | expl 456 |
. . . . . 6
β’
(((((π β§ π β π) β§ π β π) β§ π β π) β§ π β π) β (((πΉβπ) = (πΉβπ) β§ (πΉβπ) = (πΉβπ)) β (πΉβ(π(+gβπ)π)) = (πΉβ(π(+gβπ)π)))) |
73 | 72 | anasss 465 |
. . . . 5
β’ ((((π β§ π β π) β§ π β π) β§ (π β π β§ π β π)) β (((πΉβπ) = (πΉβπ) β§ (πΉβπ) = (πΉβπ)) β (πΉβ(π(+gβπ)π)) = (πΉβ(π(+gβπ)π)))) |
74 | 15, 73 | sylanbr 580 |
. . . 4
β’ (((π β§ (π β π β§ π β π)) β§ (π β π β§ π β π)) β (((πΉβπ) = (πΉβπ) β§ (πΉβπ) = (πΉβπ)) β (πΉβ(π(+gβπ)π)) = (πΉβ(π(+gβπ)π)))) |
75 | 74 | 3impa 1108 |
. . 3
β’ ((π β§ (π β π β§ π β π) β§ (π β π β§ π β π)) β (((πΉβπ) = (πΉβπ) β§ (πΉβπ) = (πΉβπ)) β (πΉβ(π(+gβπ)π)) = (πΉβ(π(+gβπ)π)))) |
76 | | eqid 2730 |
. . 3
β’
(Scalarβπ) =
(Scalarβπ) |
77 | | eqid 2730 |
. . 3
β’
(Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) |
78 | | simplr 765 |
. . . . . . . . 9
β’ (((π β§ (πΉβπ) = (πΉβπ)) β§ (π β (Baseβ(Scalarβπ)) β§ π β π β§ π β π)) β (πΉβπ) = (πΉβπ)) |
79 | | simpr2 1193 |
. . . . . . . . . 10
β’ (((π β§ (πΉβπ) = (πΉβπ)) β§ (π β (Baseβ(Scalarβπ)) β§ π β π β§ π β π)) β π β π) |
80 | | ovexd 7446 |
. . . . . . . . . 10
β’ (((π β§ (πΉβπ) = (πΉβπ)) β§ (π β (Baseβ(Scalarβπ)) β§ π β π β§ π β π)) β (ππΈπ) β V) |
81 | 12, 20, 79, 80 | fvmptd3 7020 |
. . . . . . . . 9
β’ (((π β§ (πΉβπ) = (πΉβπ)) β§ (π β (Baseβ(Scalarβπ)) β§ π β π β§ π β π)) β (πΉβπ) = (ππΈπ)) |
82 | | simpr3 1194 |
. . . . . . . . . 10
β’ (((π β§ (πΉβπ) = (πΉβπ)) β§ (π β (Baseβ(Scalarβπ)) β§ π β π β§ π β π)) β π β π) |
83 | | ovexd 7446 |
. . . . . . . . . 10
β’ (((π β§ (πΉβπ) = (πΉβπ)) β§ (π β (Baseβ(Scalarβπ)) β§ π β π β§ π β π)) β (ππΈπ) β V) |
84 | 12, 50, 82, 83 | fvmptd3 7020 |
. . . . . . . . 9
β’ (((π β§ (πΉβπ) = (πΉβπ)) β§ (π β (Baseβ(Scalarβπ)) β§ π β π β§ π β π)) β (πΉβπ) = (ππΈπ)) |
85 | 78, 81, 84 | 3eqtr3d 2778 |
. . . . . . . 8
β’ (((π β§ (πΉβπ) = (πΉβπ)) β§ (π β (Baseβ(Scalarβπ)) β§ π β π β§ π β π)) β (ππΈπ) = (ππΈπ)) |
86 | 85 | oveq2d 7427 |
. . . . . . 7
β’ (((π β§ (πΉβπ) = (πΉβπ)) β§ (π β (Baseβ(Scalarβπ)) β§ π β π β§ π β π)) β (π( Β·π
βπ)(ππΈπ)) = (π( Β·π
βπ)(ππΈπ))) |
87 | 2 | ad2antrr 722 |
. . . . . . . 8
β’ (((π β§ (πΉβπ) = (πΉβπ)) β§ (π β (Baseβ(Scalarβπ)) β§ π β π β§ π β π)) β π
β Ring) |
88 | 5 | ad2antrr 722 |
. . . . . . . 8
β’ (((π β§ (πΉβπ) = (πΉβπ)) β§ (π β (Baseβ(Scalarβπ)) β§ π β π β§ π β π)) β π β π) |
89 | | eqid 2730 |
. . . . . . . 8
β’ (
Β·π βπ) = ( Β·π
βπ) |
90 | | eqid 2730 |
. . . . . . . 8
β’
(Baseβπ
) =
(Baseβπ
) |
91 | | simpr1 1192 |
. . . . . . . . 9
β’ (((π β§ (πΉβπ) = (πΉβπ)) β§ (π β (Baseβ(Scalarβπ)) β§ π β π β§ π β π)) β π β (Baseβ(Scalarβπ))) |
92 | 8 | ply1sca 21995 |
. . . . . . . . . . . 12
β’ (π
β Ring β π
= (Scalarβπ)) |
93 | 2, 92 | syl 17 |
. . . . . . . . . . 11
β’ (π β π
= (Scalarβπ)) |
94 | 93 | fveq2d 6894 |
. . . . . . . . . 10
β’ (π β (Baseβπ
) =
(Baseβ(Scalarβπ))) |
95 | 94 | ad2antrr 722 |
. . . . . . . . 9
β’ (((π β§ (πΉβπ) = (πΉβπ)) β§ (π β (Baseβ(Scalarβπ)) β§ π β π β§ π β π)) β (Baseβπ
) = (Baseβ(Scalarβπ))) |
96 | 91, 95 | eleqtrrd 2834 |
. . . . . . . 8
β’ (((π β§ (πΉβπ) = (πΉβπ)) β§ (π β (Baseβ(Scalarβπ)) β§ π β π β§ π β π)) β π β (Baseβπ
)) |
97 | 8, 1, 9, 7, 87, 79, 88, 89, 90, 96 | r1pvsca 32950 |
. . . . . . 7
β’ (((π β§ (πΉβπ) = (πΉβπ)) β§ (π β (Baseβ(Scalarβπ)) β§ π β π β§ π β π)) β ((π( Β·π
βπ)π)πΈπ) = (π( Β·π
βπ)(ππΈπ))) |
98 | 8, 1, 9, 7, 87, 82, 88, 89, 90, 96 | r1pvsca 32950 |
. . . . . . 7
β’ (((π β§ (πΉβπ) = (πΉβπ)) β§ (π β (Baseβ(Scalarβπ)) β§ π β π β§ π β π)) β ((π( Β·π
βπ)π)πΈπ) = (π( Β·π
βπ)(ππΈπ))) |
99 | 86, 97, 98 | 3eqtr4d 2780 |
. . . . . 6
β’ (((π β§ (πΉβπ) = (πΉβπ)) β§ (π β (Baseβ(Scalarβπ)) β§ π β π β§ π β π)) β ((π( Β·π
βπ)π)πΈπ) = ((π( Β·π
βπ)π)πΈπ)) |
100 | | oveq1 7418 |
. . . . . . 7
β’ (π = (π( Β·π
βπ)π) β (ππΈπ) = ((π( Β·π
βπ)π)πΈπ)) |
101 | 8 | ply1lmod 21994 |
. . . . . . . . 9
β’ (π
β Ring β π β LMod) |
102 | 87, 101 | syl 17 |
. . . . . . . 8
β’ (((π β§ (πΉβπ) = (πΉβπ)) β§ (π β (Baseβ(Scalarβπ)) β§ π β π β§ π β π)) β π β LMod) |
103 | 1, 76, 89, 77, 102, 91, 79 | lmodvscld 20633 |
. . . . . . 7
β’ (((π β§ (πΉβπ) = (πΉβπ)) β§ (π β (Baseβ(Scalarβπ)) β§ π β π β§ π β π)) β (π( Β·π
βπ)π) β π) |
104 | | ovexd 7446 |
. . . . . . 7
β’ (((π β§ (πΉβπ) = (πΉβπ)) β§ (π β (Baseβ(Scalarβπ)) β§ π β π β§ π β π)) β ((π( Β·π
βπ)π)πΈπ) β V) |
105 | 12, 100, 103, 104 | fvmptd3 7020 |
. . . . . 6
β’ (((π β§ (πΉβπ) = (πΉβπ)) β§ (π β (Baseβ(Scalarβπ)) β§ π β π β§ π β π)) β (πΉβ(π( Β·π
βπ)π)) = ((π( Β·π
βπ)π)πΈπ)) |
106 | | oveq1 7418 |
. . . . . . 7
β’ (π = (π( Β·π
βπ)π) β (ππΈπ) = ((π( Β·π
βπ)π)πΈπ)) |
107 | 1, 76, 89, 77, 102, 91, 82 | lmodvscld 20633 |
. . . . . . 7
β’ (((π β§ (πΉβπ) = (πΉβπ)) β§ (π β (Baseβ(Scalarβπ)) β§ π β π β§ π β π)) β (π( Β·π
βπ)π) β π) |
108 | | ovexd 7446 |
. . . . . . 7
β’ (((π β§ (πΉβπ) = (πΉβπ)) β§ (π β (Baseβ(Scalarβπ)) β§ π β π β§ π β π)) β ((π( Β·π
βπ)π)πΈπ) β V) |
109 | 12, 106, 107, 108 | fvmptd3 7020 |
. . . . . 6
β’ (((π β§ (πΉβπ) = (πΉβπ)) β§ (π β (Baseβ(Scalarβπ)) β§ π β π β§ π β π)) β (πΉβ(π( Β·π
βπ)π)) = ((π( Β·π
βπ)π)πΈπ)) |
110 | 99, 105, 109 | 3eqtr4d 2780 |
. . . . 5
β’ (((π β§ (πΉβπ) = (πΉβπ)) β§ (π β (Baseβ(Scalarβπ)) β§ π β π β§ π β π)) β (πΉβ(π( Β·π
βπ)π)) = (πΉβ(π( Β·π
βπ)π))) |
111 | 110 | an32s 648 |
. . . 4
β’ (((π β§ (π β (Baseβ(Scalarβπ)) β§ π β π β§ π β π)) β§ (πΉβπ) = (πΉβπ)) β (πΉβ(π( Β·π
βπ)π)) = (πΉβ(π( Β·π
βπ)π))) |
112 | 111 | ex 411 |
. . 3
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β π β§ π β π)) β ((πΉβπ) = (πΉβπ) β (πΉβ(π( Β·π
βπ)π)) = (πΉβ(π( Β·π
βπ)π)))) |
113 | 2, 101 | syl 17 |
. . 3
β’ (π β π β LMod) |
114 | 1, 13, 14, 75, 76, 77, 112, 113, 89 | imaslmhm 32742 |
. 2
β’ (π β ((πΉ βs π) β LMod β§ πΉ β (π LMHom (πΉ βs π)))) |
115 | 114 | simprd 494 |
1
β’ (π β πΉ β (π LMHom (πΉ βs π))) |