Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  r1plmhm Structured version   Visualization version   GIF version

Theorem r1plmhm 32970
Description: The univariate polynomial remainder function 𝐹 is a module homomorphism. Its image (𝐹s 𝑃) is sometimes called the "ring of remainders" (Contributed by Thierry Arnoux, 2-Apr-2025.)
Hypotheses
Ref Expression
r1plmhm.1 𝑃 = (Poly1𝑅)
r1plmhm.2 𝑈 = (Base‘𝑃)
r1plmhm.4 𝐸 = (rem1p𝑅)
r1plmhm.5 𝑁 = (Unic1p𝑅)
r1plmhm.6 𝐹 = (𝑓𝑈 ↦ (𝑓𝐸𝑀))
r1plmhm.9 (𝜑𝑅 ∈ Ring)
r1plmhm.10 (𝜑𝑀𝑁)
Assertion
Ref Expression
r1plmhm (𝜑𝐹 ∈ (𝑃 LMHom (𝐹s 𝑃)))
Distinct variable groups:   𝑓,𝐸   𝑓,𝑀   𝑃,𝑓   𝑈,𝑓   𝜑,𝑓
Allowed substitution hints:   𝑅(𝑓)   𝐹(𝑓)   𝑁(𝑓)

Proof of Theorem r1plmhm
Dummy variables 𝑝 𝑎 𝑏 𝑘 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r1plmhm.2 . . 3 𝑈 = (Base‘𝑃)
2 r1plmhm.9 . . . . . 6 (𝜑𝑅 ∈ Ring)
32adantr 480 . . . . 5 ((𝜑𝑓𝑈) → 𝑅 ∈ Ring)
4 simpr 484 . . . . 5 ((𝜑𝑓𝑈) → 𝑓𝑈)
5 r1plmhm.10 . . . . . 6 (𝜑𝑀𝑁)
65adantr 480 . . . . 5 ((𝜑𝑓𝑈) → 𝑀𝑁)
7 r1plmhm.4 . . . . . 6 𝐸 = (rem1p𝑅)
8 r1plmhm.1 . . . . . 6 𝑃 = (Poly1𝑅)
9 r1plmhm.5 . . . . . 6 𝑁 = (Unic1p𝑅)
107, 8, 1, 9r1pcl 25924 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑓𝑈𝑀𝑁) → (𝑓𝐸𝑀) ∈ 𝑈)
113, 4, 6, 10syl3anc 1370 . . . 4 ((𝜑𝑓𝑈) → (𝑓𝐸𝑀) ∈ 𝑈)
12 r1plmhm.6 . . . 4 𝐹 = (𝑓𝑈 ↦ (𝑓𝐸𝑀))
1311, 12fmptd 7115 . . 3 (𝜑𝐹:𝑈𝑈)
14 eqid 2731 . . 3 (+g𝑃) = (+g𝑃)
15 anass 468 . . . . 5 (((𝜑𝑎𝑈) ∧ 𝑏𝑈) ↔ (𝜑 ∧ (𝑎𝑈𝑏𝑈)))
162ad6antr 733 . . . . . . . . . . 11 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → 𝑅 ∈ Ring)
17 simp-6r 785 . . . . . . . . . . 11 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → 𝑎𝑈)
185ad6antr 733 . . . . . . . . . . 11 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → 𝑀𝑁)
19 simplr 766 . . . . . . . . . . . 12 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹𝑎) = (𝐹𝑝))
20 oveq1 7419 . . . . . . . . . . . . 13 (𝑓 = 𝑎 → (𝑓𝐸𝑀) = (𝑎𝐸𝑀))
21 ovexd 7447 . . . . . . . . . . . . 13 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝑎𝐸𝑀) ∈ V)
2212, 20, 17, 21fvmptd3 7021 . . . . . . . . . . . 12 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹𝑎) = (𝑎𝐸𝑀))
23 oveq1 7419 . . . . . . . . . . . . 13 (𝑓 = 𝑝 → (𝑓𝐸𝑀) = (𝑝𝐸𝑀))
24 simp-4r 781 . . . . . . . . . . . . 13 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → 𝑝𝑈)
25 ovexd 7447 . . . . . . . . . . . . 13 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝑝𝐸𝑀) ∈ V)
2612, 23, 24, 25fvmptd3 7021 . . . . . . . . . . . 12 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹𝑝) = (𝑝𝐸𝑀))
2719, 22, 263eqtr3d 2779 . . . . . . . . . . 11 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝑎𝐸𝑀) = (𝑝𝐸𝑀))
28 simp-5r 783 . . . . . . . . . . 11 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → 𝑏𝑈)
298, 1, 9, 7, 16, 17, 18, 27, 14, 24, 28r1padd1 32968 . . . . . . . . . 10 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → ((𝑎(+g𝑃)𝑏)𝐸𝑀) = ((𝑝(+g𝑃)𝑏)𝐸𝑀))
30 oveq1 7419 . . . . . . . . . . 11 (𝑓 = (𝑎(+g𝑃)𝑏) → (𝑓𝐸𝑀) = ((𝑎(+g𝑃)𝑏)𝐸𝑀))
318ply1ring 22003 . . . . . . . . . . . . . . 15 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
322, 31syl 17 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ Ring)
3332ringgrpd 20140 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ Grp)
3433ad6antr 733 . . . . . . . . . . . 12 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → 𝑃 ∈ Grp)
351, 14, 34, 17, 28grpcld 18872 . . . . . . . . . . 11 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝑎(+g𝑃)𝑏) ∈ 𝑈)
36 ovexd 7447 . . . . . . . . . . 11 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → ((𝑎(+g𝑃)𝑏)𝐸𝑀) ∈ V)
3712, 30, 35, 36fvmptd3 7021 . . . . . . . . . 10 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎(+g𝑃)𝑏)) = ((𝑎(+g𝑃)𝑏)𝐸𝑀))
38 oveq1 7419 . . . . . . . . . . 11 (𝑓 = (𝑝(+g𝑃)𝑏) → (𝑓𝐸𝑀) = ((𝑝(+g𝑃)𝑏)𝐸𝑀))
391, 14, 34, 24, 28grpcld 18872 . . . . . . . . . . 11 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝑝(+g𝑃)𝑏) ∈ 𝑈)
40 ovexd 7447 . . . . . . . . . . 11 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → ((𝑝(+g𝑃)𝑏)𝐸𝑀) ∈ V)
4112, 38, 39, 40fvmptd3 7021 . . . . . . . . . 10 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑝(+g𝑃)𝑏)) = ((𝑝(+g𝑃)𝑏)𝐸𝑀))
4229, 37, 413eqtr4d 2781 . . . . . . . . 9 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎(+g𝑃)𝑏)) = (𝐹‘(𝑝(+g𝑃)𝑏)))
4332ringabld 20175 . . . . . . . . . . . 12 (𝜑𝑃 ∈ Abel)
4443ad6antr 733 . . . . . . . . . . 11 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → 𝑃 ∈ Abel)
451, 14ablcom 19712 . . . . . . . . . . 11 ((𝑃 ∈ Abel ∧ 𝑝𝑈𝑏𝑈) → (𝑝(+g𝑃)𝑏) = (𝑏(+g𝑃)𝑝))
4644, 24, 28, 45syl3anc 1370 . . . . . . . . . 10 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝑝(+g𝑃)𝑏) = (𝑏(+g𝑃)𝑝))
4746fveq2d 6895 . . . . . . . . 9 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑝(+g𝑃)𝑏)) = (𝐹‘(𝑏(+g𝑃)𝑝)))
4842, 47eqtrd 2771 . . . . . . . 8 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎(+g𝑃)𝑏)) = (𝐹‘(𝑏(+g𝑃)𝑝)))
49 simpr 484 . . . . . . . . . . 11 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹𝑏) = (𝐹𝑞))
50 oveq1 7419 . . . . . . . . . . . 12 (𝑓 = 𝑏 → (𝑓𝐸𝑀) = (𝑏𝐸𝑀))
51 ovexd 7447 . . . . . . . . . . . 12 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝑏𝐸𝑀) ∈ V)
5212, 50, 28, 51fvmptd3 7021 . . . . . . . . . . 11 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹𝑏) = (𝑏𝐸𝑀))
53 oveq1 7419 . . . . . . . . . . . 12 (𝑓 = 𝑞 → (𝑓𝐸𝑀) = (𝑞𝐸𝑀))
54 simpllr 773 . . . . . . . . . . . 12 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → 𝑞𝑈)
55 ovexd 7447 . . . . . . . . . . . 12 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝑞𝐸𝑀) ∈ V)
5612, 53, 54, 55fvmptd3 7021 . . . . . . . . . . 11 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹𝑞) = (𝑞𝐸𝑀))
5749, 52, 563eqtr3d 2779 . . . . . . . . . 10 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝑏𝐸𝑀) = (𝑞𝐸𝑀))
588, 1, 9, 7, 16, 28, 18, 57, 14, 54, 24r1padd1 32968 . . . . . . . . 9 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → ((𝑏(+g𝑃)𝑝)𝐸𝑀) = ((𝑞(+g𝑃)𝑝)𝐸𝑀))
59 oveq1 7419 . . . . . . . . . 10 (𝑓 = (𝑏(+g𝑃)𝑝) → (𝑓𝐸𝑀) = ((𝑏(+g𝑃)𝑝)𝐸𝑀))
601, 14, 34, 28, 24grpcld 18872 . . . . . . . . . 10 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝑏(+g𝑃)𝑝) ∈ 𝑈)
61 ovexd 7447 . . . . . . . . . 10 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → ((𝑏(+g𝑃)𝑝)𝐸𝑀) ∈ V)
6212, 59, 60, 61fvmptd3 7021 . . . . . . . . 9 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑏(+g𝑃)𝑝)) = ((𝑏(+g𝑃)𝑝)𝐸𝑀))
63 oveq1 7419 . . . . . . . . . 10 (𝑓 = (𝑞(+g𝑃)𝑝) → (𝑓𝐸𝑀) = ((𝑞(+g𝑃)𝑝)𝐸𝑀))
641, 14, 34, 54, 24grpcld 18872 . . . . . . . . . 10 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝑞(+g𝑃)𝑝) ∈ 𝑈)
65 ovexd 7447 . . . . . . . . . 10 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → ((𝑞(+g𝑃)𝑝)𝐸𝑀) ∈ V)
6612, 63, 64, 65fvmptd3 7021 . . . . . . . . 9 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑞(+g𝑃)𝑝)) = ((𝑞(+g𝑃)𝑝)𝐸𝑀))
6758, 62, 663eqtr4d 2781 . . . . . . . 8 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑏(+g𝑃)𝑝)) = (𝐹‘(𝑞(+g𝑃)𝑝)))
681, 14ablcom 19712 . . . . . . . . . 10 ((𝑃 ∈ Abel ∧ 𝑞𝑈𝑝𝑈) → (𝑞(+g𝑃)𝑝) = (𝑝(+g𝑃)𝑞))
6944, 54, 24, 68syl3anc 1370 . . . . . . . . 9 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝑞(+g𝑃)𝑝) = (𝑝(+g𝑃)𝑞))
7069fveq2d 6895 . . . . . . . 8 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑞(+g𝑃)𝑝)) = (𝐹‘(𝑝(+g𝑃)𝑞)))
7148, 67, 703eqtrd 2775 . . . . . . 7 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑝)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎(+g𝑃)𝑏)) = (𝐹‘(𝑝(+g𝑃)𝑞)))
7271expl 457 . . . . . 6 (((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑝𝑈) ∧ 𝑞𝑈) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎(+g𝑃)𝑏)) = (𝐹‘(𝑝(+g𝑃)𝑞))))
7372anasss 466 . . . . 5 ((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ (𝑝𝑈𝑞𝑈)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎(+g𝑃)𝑏)) = (𝐹‘(𝑝(+g𝑃)𝑞))))
7415, 73sylanbr 581 . . . 4 (((𝜑 ∧ (𝑎𝑈𝑏𝑈)) ∧ (𝑝𝑈𝑞𝑈)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎(+g𝑃)𝑏)) = (𝐹‘(𝑝(+g𝑃)𝑞))))
75743impa 1109 . . 3 ((𝜑 ∧ (𝑎𝑈𝑏𝑈) ∧ (𝑝𝑈𝑞𝑈)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎(+g𝑃)𝑏)) = (𝐹‘(𝑝(+g𝑃)𝑞))))
76 eqid 2731 . . 3 (Scalar‘𝑃) = (Scalar‘𝑃)
77 eqid 2731 . . 3 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
78 simplr 766 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → (𝐹𝑎) = (𝐹𝑏))
79 simpr2 1194 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑎𝑈)
80 ovexd 7447 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → (𝑎𝐸𝑀) ∈ V)
8112, 20, 79, 80fvmptd3 7021 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → (𝐹𝑎) = (𝑎𝐸𝑀))
82 simpr3 1195 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑏𝑈)
83 ovexd 7447 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → (𝑏𝐸𝑀) ∈ V)
8412, 50, 82, 83fvmptd3 7021 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → (𝐹𝑏) = (𝑏𝐸𝑀))
8578, 81, 843eqtr3d 2779 . . . . . . . 8 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → (𝑎𝐸𝑀) = (𝑏𝐸𝑀))
8685oveq2d 7428 . . . . . . 7 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → (𝑘( ·𝑠𝑃)(𝑎𝐸𝑀)) = (𝑘( ·𝑠𝑃)(𝑏𝐸𝑀)))
872ad2antrr 723 . . . . . . . 8 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑅 ∈ Ring)
885ad2antrr 723 . . . . . . . 8 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑀𝑁)
89 eqid 2731 . . . . . . . 8 ( ·𝑠𝑃) = ( ·𝑠𝑃)
90 eqid 2731 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
91 simpr1 1193 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑘 ∈ (Base‘(Scalar‘𝑃)))
928ply1sca 22008 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃))
932, 92syl 17 . . . . . . . . . . 11 (𝜑𝑅 = (Scalar‘𝑃))
9493fveq2d 6895 . . . . . . . . . 10 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
9594ad2antrr 723 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
9691, 95eleqtrrd 2835 . . . . . . . 8 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑘 ∈ (Base‘𝑅))
978, 1, 9, 7, 87, 79, 88, 89, 90, 96r1pvsca 32965 . . . . . . 7 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → ((𝑘( ·𝑠𝑃)𝑎)𝐸𝑀) = (𝑘( ·𝑠𝑃)(𝑎𝐸𝑀)))
988, 1, 9, 7, 87, 82, 88, 89, 90, 96r1pvsca 32965 . . . . . . 7 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → ((𝑘( ·𝑠𝑃)𝑏)𝐸𝑀) = (𝑘( ·𝑠𝑃)(𝑏𝐸𝑀)))
9986, 97, 983eqtr4d 2781 . . . . . 6 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → ((𝑘( ·𝑠𝑃)𝑎)𝐸𝑀) = ((𝑘( ·𝑠𝑃)𝑏)𝐸𝑀))
100 oveq1 7419 . . . . . . 7 (𝑓 = (𝑘( ·𝑠𝑃)𝑎) → (𝑓𝐸𝑀) = ((𝑘( ·𝑠𝑃)𝑎)𝐸𝑀))
1018ply1lmod 22007 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
10287, 101syl 17 . . . . . . . 8 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑃 ∈ LMod)
1031, 76, 89, 77, 102, 91, 79lmodvscld 20637 . . . . . . 7 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → (𝑘( ·𝑠𝑃)𝑎) ∈ 𝑈)
104 ovexd 7447 . . . . . . 7 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → ((𝑘( ·𝑠𝑃)𝑎)𝐸𝑀) ∈ V)
10512, 100, 103, 104fvmptd3 7021 . . . . . 6 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → (𝐹‘(𝑘( ·𝑠𝑃)𝑎)) = ((𝑘( ·𝑠𝑃)𝑎)𝐸𝑀))
106 oveq1 7419 . . . . . . 7 (𝑓 = (𝑘( ·𝑠𝑃)𝑏) → (𝑓𝐸𝑀) = ((𝑘( ·𝑠𝑃)𝑏)𝐸𝑀))
1071, 76, 89, 77, 102, 91, 82lmodvscld 20637 . . . . . . 7 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → (𝑘( ·𝑠𝑃)𝑏) ∈ 𝑈)
108 ovexd 7447 . . . . . . 7 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → ((𝑘( ·𝑠𝑃)𝑏)𝐸𝑀) ∈ V)
10912, 106, 107, 108fvmptd3 7021 . . . . . 6 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → (𝐹‘(𝑘( ·𝑠𝑃)𝑏)) = ((𝑘( ·𝑠𝑃)𝑏)𝐸𝑀))
11099, 105, 1093eqtr4d 2781 . . . . 5 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → (𝐹‘(𝑘( ·𝑠𝑃)𝑎)) = (𝐹‘(𝑘( ·𝑠𝑃)𝑏)))
111110an32s 649 . . . 4 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹‘(𝑘( ·𝑠𝑃)𝑎)) = (𝐹‘(𝑘( ·𝑠𝑃)𝑏)))
112111ex 412 . . 3 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑎𝑈𝑏𝑈)) → ((𝐹𝑎) = (𝐹𝑏) → (𝐹‘(𝑘( ·𝑠𝑃)𝑎)) = (𝐹‘(𝑘( ·𝑠𝑃)𝑏))))
1132, 101syl 17 . . 3 (𝜑𝑃 ∈ LMod)
1141, 13, 14, 75, 76, 77, 112, 113, 89imaslmhm 32757 . 2 (𝜑 → ((𝐹s 𝑃) ∈ LMod ∧ 𝐹 ∈ (𝑃 LMHom (𝐹s 𝑃))))
115114simprd 495 1 (𝜑𝐹 ∈ (𝑃 LMHom (𝐹s 𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2105  Vcvv 3473  cmpt 5231  cfv 6543  (class class class)co 7412  Basecbs 17151  +gcplusg 17204  Scalarcsca 17207   ·𝑠 cvsca 17208  s cimas 17457  Grpcgrp 18858  Abelcabl 19694  Ringcrg 20131  LModclmod 20618   LMHom clmhm 20778  Poly1cpl1 21933  Unic1pcuc1p 25893  rem1pcr1p 25895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-pre-sup 11194  ax-addf 11195  ax-mulf 11196
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7674  df-ofr 7675  df-om 7860  df-1st 7979  df-2nd 7980  df-supp 8152  df-tpos 8217  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-er 8709  df-map 8828  df-pm 8829  df-ixp 8898  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-fsupp 9368  df-sup 9443  df-inf 9444  df-oi 9511  df-card 9940  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-7 12287  df-8 12288  df-9 12289  df-n0 12480  df-z 12566  df-dec 12685  df-uz 12830  df-fz 13492  df-fzo 13635  df-seq 13974  df-hash 14298  df-struct 17087  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-plusg 17217  df-mulr 17218  df-starv 17219  df-sca 17220  df-vsca 17221  df-ip 17222  df-tset 17223  df-ple 17224  df-ds 17226  df-unif 17227  df-hom 17228  df-cco 17229  df-0g 17394  df-gsum 17395  df-prds 17400  df-pws 17402  df-imas 17461  df-mre 17537  df-mrc 17538  df-acs 17540  df-mgm 18568  df-sgrp 18647  df-mnd 18663  df-mhm 18708  df-submnd 18709  df-grp 18861  df-minusg 18862  df-sbg 18863  df-mulg 18991  df-subg 19043  df-ghm 19132  df-cntz 19226  df-cmn 19695  df-abl 19696  df-mgp 20033  df-rng 20051  df-ur 20080  df-ring 20133  df-cring 20134  df-oppr 20229  df-dvdsr 20252  df-unit 20253  df-invr 20283  df-subrng 20438  df-subrg 20463  df-lmod 20620  df-lss 20691  df-lmhm 20781  df-rlreg 21103  df-cnfld 21149  df-psr 21685  df-mvr 21686  df-mpl 21687  df-opsr 21689  df-psr1 21936  df-vr1 21937  df-ply1 21938  df-coe1 21939  df-mdeg 25819  df-deg1 25820  df-uc1p 25898  df-q1p 25899  df-r1p 25900
This theorem is referenced by:  r1pquslmic  32971  algextdeglem8  33084
  Copyright terms: Public domain W3C validator