| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2737 |
. . 3
⊢
(Base‘𝑊) =
(Base‘𝑊) |
| 2 | | eqid 2737 |
. . 3
⊢ (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑊) |
| 3 | | eqid 2737 |
. . 3
⊢ (
·𝑠 ‘(ringLMod‘𝐾)) = ( ·𝑠
‘(ringLMod‘𝐾)) |
| 4 | | eqid 2737 |
. . 3
⊢
(Scalar‘𝑊) =
(Scalar‘𝑊) |
| 5 | | eqid 2737 |
. . 3
⊢
(Scalar‘(ringLMod‘𝐾)) = (Scalar‘(ringLMod‘𝐾)) |
| 6 | | eqid 2737 |
. . 3
⊢
(Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) |
| 7 | | snex 5436 |
. . . . 5
⊢ {𝐼} ∈ V |
| 8 | | frlmsnic.w |
. . . . . 6
⊢ 𝑊 = (𝐾 freeLMod {𝐼}) |
| 9 | 8 | frlmlmod 21769 |
. . . . 5
⊢ ((𝐾 ∈ Ring ∧ {𝐼} ∈ V) → 𝑊 ∈ LMod) |
| 10 | 7, 9 | mpan2 691 |
. . . 4
⊢ (𝐾 ∈ Ring → 𝑊 ∈ LMod) |
| 11 | 10 | adantr 480 |
. . 3
⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝑊 ∈ LMod) |
| 12 | | rlmlmod 21210 |
. . . 4
⊢ (𝐾 ∈ Ring →
(ringLMod‘𝐾) ∈
LMod) |
| 13 | 12 | adantr 480 |
. . 3
⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) →
(ringLMod‘𝐾) ∈
LMod) |
| 14 | | rlmsca 21205 |
. . . . 5
⊢ (𝐾 ∈ Ring → 𝐾 =
(Scalar‘(ringLMod‘𝐾))) |
| 15 | 14 | adantr 480 |
. . . 4
⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐾 =
(Scalar‘(ringLMod‘𝐾))) |
| 16 | 8 | frlmsca 21773 |
. . . . . 6
⊢ ((𝐾 ∈ Ring ∧ {𝐼} ∈ V) → 𝐾 = (Scalar‘𝑊)) |
| 17 | 7, 16 | mpan2 691 |
. . . . 5
⊢ (𝐾 ∈ Ring → 𝐾 = (Scalar‘𝑊)) |
| 18 | 17 | adantr 480 |
. . . 4
⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐾 = (Scalar‘𝑊)) |
| 19 | 15, 18 | eqtr3d 2779 |
. . 3
⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) →
(Scalar‘(ringLMod‘𝐾)) = (Scalar‘𝑊)) |
| 20 | | rlmbas 21200 |
. . . 4
⊢
(Base‘𝐾) =
(Base‘(ringLMod‘𝐾)) |
| 21 | | eqid 2737 |
. . . 4
⊢
(+g‘𝑊) = (+g‘𝑊) |
| 22 | | rlmplusg 21201 |
. . . 4
⊢
(+g‘𝐾) =
(+g‘(ringLMod‘𝐾)) |
| 23 | | lmodgrp 20865 |
. . . . 5
⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) |
| 24 | 11, 23 | syl 17 |
. . . 4
⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝑊 ∈ Grp) |
| 25 | | lmodgrp 20865 |
. . . . . 6
⊢
((ringLMod‘𝐾)
∈ LMod → (ringLMod‘𝐾) ∈ Grp) |
| 26 | 12, 25 | syl 17 |
. . . . 5
⊢ (𝐾 ∈ Ring →
(ringLMod‘𝐾) ∈
Grp) |
| 27 | 26 | adantr 480 |
. . . 4
⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) →
(ringLMod‘𝐾) ∈
Grp) |
| 28 | | eqid 2737 |
. . . . . . . . 9
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 29 | 8, 28, 1 | frlmbasf 21780 |
. . . . . . . 8
⊢ (({𝐼} ∈ V ∧ 𝑥 ∈ (Base‘𝑊)) → 𝑥:{𝐼}⟶(Base‘𝐾)) |
| 30 | 7, 29 | mpan 690 |
. . . . . . 7
⊢ (𝑥 ∈ (Base‘𝑊) → 𝑥:{𝐼}⟶(Base‘𝐾)) |
| 31 | 30 | adantl 481 |
. . . . . 6
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑥 ∈ (Base‘𝑊)) → 𝑥:{𝐼}⟶(Base‘𝐾)) |
| 32 | | snidg 4660 |
. . . . . . . 8
⊢ (𝐼 ∈ V → 𝐼 ∈ {𝐼}) |
| 33 | 32 | adantl 481 |
. . . . . . 7
⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐼 ∈ {𝐼}) |
| 34 | 33 | adantr 480 |
. . . . . 6
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑥 ∈ (Base‘𝑊)) → 𝐼 ∈ {𝐼}) |
| 35 | 31, 34 | ffvelcdmd 7105 |
. . . . 5
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥‘𝐼) ∈ (Base‘𝐾)) |
| 36 | | frlmsnic.1 |
. . . . 5
⊢ 𝐹 = (𝑥 ∈ (Base‘𝑊) ↦ (𝑥‘𝐼)) |
| 37 | 35, 36 | fmptd 7134 |
. . . 4
⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐹:(Base‘𝑊)⟶(Base‘𝐾)) |
| 38 | | simpll 767 |
. . . . . 6
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝐾 ∈ Ring) |
| 39 | 7 | a1i 11 |
. . . . . 6
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → {𝐼} ∈ V) |
| 40 | | simprl 771 |
. . . . . 6
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑥 ∈ (Base‘𝑊)) |
| 41 | | simprr 773 |
. . . . . 6
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑦 ∈ (Base‘𝑊)) |
| 42 | 33 | adantr 480 |
. . . . . 6
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝐼 ∈ {𝐼}) |
| 43 | | eqid 2737 |
. . . . . 6
⊢
(+g‘𝐾) = (+g‘𝐾) |
| 44 | 8, 1, 38, 39, 40, 41, 42, 43, 21 | frlmvplusgvalc 21787 |
. . . . 5
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → ((𝑥(+g‘𝑊)𝑦)‘𝐼) = ((𝑥‘𝐼)(+g‘𝐾)(𝑦‘𝐼))) |
| 45 | 11 | adantr 480 |
. . . . . . 7
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑊 ∈ LMod) |
| 46 | 1, 21 | lmodvacl 20873 |
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥(+g‘𝑊)𝑦) ∈ (Base‘𝑊)) |
| 47 | 45, 40, 41, 46 | syl3anc 1373 |
. . . . . 6
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(+g‘𝑊)𝑦) ∈ (Base‘𝑊)) |
| 48 | | fveq1 6905 |
. . . . . . 7
⊢ (𝑡 = (𝑥(+g‘𝑊)𝑦) → (𝑡‘𝐼) = ((𝑥(+g‘𝑊)𝑦)‘𝐼)) |
| 49 | | fveq1 6905 |
. . . . . . . . 9
⊢ (𝑥 = 𝑡 → (𝑥‘𝐼) = (𝑡‘𝐼)) |
| 50 | 49 | cbvmptv 5255 |
. . . . . . . 8
⊢ (𝑥 ∈ (Base‘𝑊) ↦ (𝑥‘𝐼)) = (𝑡 ∈ (Base‘𝑊) ↦ (𝑡‘𝐼)) |
| 51 | 36, 50 | eqtri 2765 |
. . . . . . 7
⊢ 𝐹 = (𝑡 ∈ (Base‘𝑊) ↦ (𝑡‘𝐼)) |
| 52 | | fvexd 6921 |
. . . . . . 7
⊢ (𝑡 ∈ (Base‘𝑊) → (𝑡‘𝐼) ∈ V) |
| 53 | 48, 51, 52 | fvmpt3 7020 |
. . . . . 6
⊢ ((𝑥(+g‘𝑊)𝑦) ∈ (Base‘𝑊) → (𝐹‘(𝑥(+g‘𝑊)𝑦)) = ((𝑥(+g‘𝑊)𝑦)‘𝐼)) |
| 54 | 47, 53 | syl 17 |
. . . . 5
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐹‘(𝑥(+g‘𝑊)𝑦)) = ((𝑥(+g‘𝑊)𝑦)‘𝐼)) |
| 55 | 36 | a1i 11 |
. . . . . . . 8
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝐹 = (𝑥 ∈ (Base‘𝑊) ↦ (𝑥‘𝐼))) |
| 56 | | fvexd 6921 |
. . . . . . . 8
⊢ ((((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥‘𝐼) ∈ V) |
| 57 | 55, 56 | fvmpt2d 7029 |
. . . . . . 7
⊢ ((((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝐹‘𝑥) = (𝑥‘𝐼)) |
| 58 | 40, 57 | mpdan 687 |
. . . . . 6
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐹‘𝑥) = (𝑥‘𝐼)) |
| 59 | | fveq1 6905 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑥‘𝐼) = (𝑦‘𝐼)) |
| 60 | | fvexd 6921 |
. . . . . . . 8
⊢ (𝑥 ∈ (Base‘𝑊) → (𝑥‘𝐼) ∈ V) |
| 61 | 59, 36, 60 | fvmpt3 7020 |
. . . . . . 7
⊢ (𝑦 ∈ (Base‘𝑊) → (𝐹‘𝑦) = (𝑦‘𝐼)) |
| 62 | 41, 61 | syl 17 |
. . . . . 6
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐹‘𝑦) = (𝑦‘𝐼)) |
| 63 | 58, 62 | oveq12d 7449 |
. . . . 5
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → ((𝐹‘𝑥)(+g‘𝐾)(𝐹‘𝑦)) = ((𝑥‘𝐼)(+g‘𝐾)(𝑦‘𝐼))) |
| 64 | 44, 54, 63 | 3eqtr4d 2787 |
. . . 4
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐹‘(𝑥(+g‘𝑊)𝑦)) = ((𝐹‘𝑥)(+g‘𝐾)(𝐹‘𝑦))) |
| 65 | 1, 20, 21, 22, 24, 27, 37, 64 | isghmd 19243 |
. . 3
⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐹 ∈ (𝑊 GrpHom (ringLMod‘𝐾))) |
| 66 | 7 | a1i 11 |
. . . . . 6
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → {𝐼} ∈ V) |
| 67 | 18 | eqcomd 2743 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) →
(Scalar‘𝑊) = 𝐾) |
| 68 | 67 | fveq2d 6910 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) →
(Base‘(Scalar‘𝑊)) = (Base‘𝐾)) |
| 69 | 68 | eleq2d 2827 |
. . . . . . . 8
⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → (𝑥 ∈
(Base‘(Scalar‘𝑊)) ↔ 𝑥 ∈ (Base‘𝐾))) |
| 70 | 69 | biimpa 476 |
. . . . . . 7
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑥 ∈
(Base‘(Scalar‘𝑊))) → 𝑥 ∈ (Base‘𝐾)) |
| 71 | 70 | adantrr 717 |
. . . . . 6
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑥 ∈ (Base‘𝐾)) |
| 72 | | simprr 773 |
. . . . . 6
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑦 ∈ (Base‘𝑊)) |
| 73 | 33 | adantr 480 |
. . . . . 6
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝐼 ∈ {𝐼}) |
| 74 | | eqid 2737 |
. . . . . 6
⊢
(.r‘𝐾) = (.r‘𝐾) |
| 75 | 8, 1, 28, 66, 71, 72, 73, 2, 74 | frlmvscaval 21788 |
. . . . 5
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → ((𝑥( ·𝑠
‘𝑊)𝑦)‘𝐼) = (𝑥(.r‘𝐾)(𝑦‘𝐼))) |
| 76 | | rlmvsca 21207 |
. . . . . 6
⊢
(.r‘𝐾) = ( ·𝑠
‘(ringLMod‘𝐾)) |
| 77 | 76 | oveqi 7444 |
. . . . 5
⊢ (𝑥(.r‘𝐾)(𝑦‘𝐼)) = (𝑥( ·𝑠
‘(ringLMod‘𝐾))(𝑦‘𝐼)) |
| 78 | 75, 77 | eqtrdi 2793 |
. . . 4
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → ((𝑥( ·𝑠
‘𝑊)𝑦)‘𝐼) = (𝑥( ·𝑠
‘(ringLMod‘𝐾))(𝑦‘𝐼))) |
| 79 | | fveq1 6905 |
. . . . . . 7
⊢ (𝑥 = 𝑢 → (𝑥‘𝐼) = (𝑢‘𝐼)) |
| 80 | 79 | cbvmptv 5255 |
. . . . . 6
⊢ (𝑥 ∈ (Base‘𝑊) ↦ (𝑥‘𝐼)) = (𝑢 ∈ (Base‘𝑊) ↦ (𝑢‘𝐼)) |
| 81 | 36, 80 | eqtri 2765 |
. . . . 5
⊢ 𝐹 = (𝑢 ∈ (Base‘𝑊) ↦ (𝑢‘𝐼)) |
| 82 | | fveq1 6905 |
. . . . 5
⊢ (𝑢 = (𝑥( ·𝑠
‘𝑊)𝑦) → (𝑢‘𝐼) = ((𝑥( ·𝑠
‘𝑊)𝑦)‘𝐼)) |
| 83 | 7 | a1i 11 |
. . . . . . . 8
⊢ (𝐼 ∈ V → {𝐼} ∈ V) |
| 84 | 83, 9 | sylan2 593 |
. . . . . . 7
⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝑊 ∈ LMod) |
| 85 | 84 | adantr 480 |
. . . . . 6
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑊 ∈ LMod) |
| 86 | | simprl 771 |
. . . . . 6
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑥 ∈ (Base‘(Scalar‘𝑊))) |
| 87 | 1, 4, 2, 6, 85, 86, 72 | lmodvscld 20877 |
. . . . 5
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥( ·𝑠
‘𝑊)𝑦) ∈ (Base‘𝑊)) |
| 88 | | fvexd 6921 |
. . . . 5
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → ((𝑥( ·𝑠
‘𝑊)𝑦)‘𝐼) ∈ V) |
| 89 | 81, 82, 87, 88 | fvmptd3 7039 |
. . . 4
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐹‘(𝑥( ·𝑠
‘𝑊)𝑦)) = ((𝑥( ·𝑠
‘𝑊)𝑦)‘𝐼)) |
| 90 | | fvex 6919 |
. . . . . . 7
⊢ (𝑥‘𝐼) ∈ V |
| 91 | 59, 36, 90 | fvmpt3i 7021 |
. . . . . 6
⊢ (𝑦 ∈ (Base‘𝑊) → (𝐹‘𝑦) = (𝑦‘𝐼)) |
| 92 | 72, 91 | syl 17 |
. . . . 5
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐹‘𝑦) = (𝑦‘𝐼)) |
| 93 | 92 | oveq2d 7447 |
. . . 4
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥( ·𝑠
‘(ringLMod‘𝐾))(𝐹‘𝑦)) = (𝑥( ·𝑠
‘(ringLMod‘𝐾))(𝑦‘𝐼))) |
| 94 | 78, 89, 93 | 3eqtr4d 2787 |
. . 3
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐹‘(𝑥( ·𝑠
‘𝑊)𝑦)) = (𝑥( ·𝑠
‘(ringLMod‘𝐾))(𝐹‘𝑦))) |
| 95 | 1, 2, 3, 4, 5, 6, 11, 13, 19, 65, 94 | islmhmd 21038 |
. 2
⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐹 ∈ (𝑊 LMHom (ringLMod‘𝐾))) |
| 96 | | simplr 769 |
. . . . . 6
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑦 ∈ (Base‘𝐾)) → 𝐼 ∈ V) |
| 97 | | simpr 484 |
. . . . . 6
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑦 ∈ (Base‘𝐾)) → 𝑦 ∈ (Base‘𝐾)) |
| 98 | 96, 97 | fsnd 6891 |
. . . . 5
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑦 ∈ (Base‘𝐾)) → {〈𝐼, 𝑦〉}:{𝐼}⟶(Base‘𝐾)) |
| 99 | | simpll 767 |
. . . . . 6
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑦 ∈ (Base‘𝐾)) → 𝐾 ∈ Ring) |
| 100 | | snfi 9083 |
. . . . . 6
⊢ {𝐼} ∈ Fin |
| 101 | 8, 28, 1 | frlmfielbas 42510 |
. . . . . 6
⊢ ((𝐾 ∈ Ring ∧ {𝐼} ∈ Fin) →
({〈𝐼, 𝑦〉} ∈ (Base‘𝑊) ↔ {〈𝐼, 𝑦〉}:{𝐼}⟶(Base‘𝐾))) |
| 102 | 99, 100, 101 | sylancl 586 |
. . . . 5
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑦 ∈ (Base‘𝐾)) → ({〈𝐼, 𝑦〉} ∈ (Base‘𝑊) ↔ {〈𝐼, 𝑦〉}:{𝐼}⟶(Base‘𝐾))) |
| 103 | 98, 102 | mpbird 257 |
. . . 4
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑦 ∈ (Base‘𝐾)) → {〈𝐼, 𝑦〉} ∈ (Base‘𝑊)) |
| 104 | | fveq1 6905 |
. . . . . . . 8
⊢ (𝑥 = {〈𝐼, 𝑦〉} → (𝑥‘𝐼) = ({〈𝐼, 𝑦〉}‘𝐼)) |
| 105 | 104 | adantl 481 |
. . . . . . 7
⊢ ((((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑥 = {〈𝐼, 𝑦〉}) → (𝑥‘𝐼) = ({〈𝐼, 𝑦〉}‘𝐼)) |
| 106 | | simpllr 776 |
. . . . . . . 8
⊢ ((((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑥 = {〈𝐼, 𝑦〉}) → 𝐼 ∈ V) |
| 107 | | vex 3484 |
. . . . . . . 8
⊢ 𝑦 ∈ V |
| 108 | | fvsng 7200 |
. . . . . . . 8
⊢ ((𝐼 ∈ V ∧ 𝑦 ∈ V) → ({〈𝐼, 𝑦〉}‘𝐼) = 𝑦) |
| 109 | 106, 107,
108 | sylancl 586 |
. . . . . . 7
⊢ ((((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑥 = {〈𝐼, 𝑦〉}) → ({〈𝐼, 𝑦〉}‘𝐼) = 𝑦) |
| 110 | 105, 109 | eqtr2d 2778 |
. . . . . 6
⊢ ((((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑥 = {〈𝐼, 𝑦〉}) → 𝑦 = (𝑥‘𝐼)) |
| 111 | 110 | ex 412 |
. . . . 5
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥 = {〈𝐼, 𝑦〉} → 𝑦 = (𝑥‘𝐼))) |
| 112 | | simplr 769 |
. . . . . . 7
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝐼 ∈ V) |
| 113 | 31 | adantrr 717 |
. . . . . . . 8
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝑥:{𝐼}⟶(Base‘𝐾)) |
| 114 | 113 | ffnd 6737 |
. . . . . . 7
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝑥 Fn {𝐼}) |
| 115 | | fnsnbt 42271 |
. . . . . . . 8
⊢ (𝐼 ∈ V → (𝑥 Fn {𝐼} ↔ 𝑥 = {〈𝐼, (𝑥‘𝐼)〉})) |
| 116 | 115 | biimpd 229 |
. . . . . . 7
⊢ (𝐼 ∈ V → (𝑥 Fn {𝐼} → 𝑥 = {〈𝐼, (𝑥‘𝐼)〉})) |
| 117 | 112, 114,
116 | sylc 65 |
. . . . . 6
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝑥 = {〈𝐼, (𝑥‘𝐼)〉}) |
| 118 | | opeq2 4874 |
. . . . . . . 8
⊢ (𝑦 = (𝑥‘𝐼) → 〈𝐼, 𝑦〉 = 〈𝐼, (𝑥‘𝐼)〉) |
| 119 | 118 | sneqd 4638 |
. . . . . . 7
⊢ (𝑦 = (𝑥‘𝐼) → {〈𝐼, 𝑦〉} = {〈𝐼, (𝑥‘𝐼)〉}) |
| 120 | 119 | eqeq2d 2748 |
. . . . . 6
⊢ (𝑦 = (𝑥‘𝐼) → (𝑥 = {〈𝐼, 𝑦〉} ↔ 𝑥 = {〈𝐼, (𝑥‘𝐼)〉})) |
| 121 | 117, 120 | syl5ibrcom 247 |
. . . . 5
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑦 = (𝑥‘𝐼) → 𝑥 = {〈𝐼, 𝑦〉})) |
| 122 | 111, 121 | impbid 212 |
. . . 4
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥 = {〈𝐼, 𝑦〉} ↔ 𝑦 = (𝑥‘𝐼))) |
| 123 | 36, 35, 103, 122 | f1o2d 7687 |
. . 3
⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐹:(Base‘𝑊)–1-1-onto→(Base‘𝐾)) |
| 124 | 20 | a1i 11 |
. . . 4
⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) →
(Base‘𝐾) =
(Base‘(ringLMod‘𝐾))) |
| 125 | 124 | f1oeq3d 6845 |
. . 3
⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → (𝐹:(Base‘𝑊)–1-1-onto→(Base‘𝐾) ↔ 𝐹:(Base‘𝑊)–1-1-onto→(Base‘(ringLMod‘𝐾)))) |
| 126 | 123, 125 | mpbid 232 |
. 2
⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐹:(Base‘𝑊)–1-1-onto→(Base‘(ringLMod‘𝐾))) |
| 127 | | eqid 2737 |
. . 3
⊢
(Base‘(ringLMod‘𝐾)) = (Base‘(ringLMod‘𝐾)) |
| 128 | 1, 127 | islmim 21061 |
. 2
⊢ (𝐹 ∈ (𝑊 LMIso (ringLMod‘𝐾)) ↔ (𝐹 ∈ (𝑊 LMHom (ringLMod‘𝐾)) ∧ 𝐹:(Base‘𝑊)–1-1-onto→(Base‘(ringLMod‘𝐾)))) |
| 129 | 95, 126, 128 | sylanbrc 583 |
1
⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐹 ∈ (𝑊 LMIso (ringLMod‘𝐾))) |