Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frlmsnic Structured version   Visualization version   GIF version

Theorem frlmsnic 42527
Description: Given a free module with a singleton as the index set, that is, a free module of one-dimensional vectors, the function that maps each vector to its coordinate is a module isomorphism from that module to its ring of scalars seen as a module. (Contributed by Steven Nguyen, 18-Aug-2023.)
Hypotheses
Ref Expression
frlmsnic.w 𝑊 = (𝐾 freeLMod {𝐼})
frlmsnic.1 𝐹 = (𝑥 ∈ (Base‘𝑊) ↦ (𝑥𝐼))
Assertion
Ref Expression
frlmsnic ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐹 ∈ (𝑊 LMIso (ringLMod‘𝐾)))
Distinct variable groups:   𝑥,𝐼   𝑥,𝐾   𝑥,𝐹   𝑥,𝑊

Proof of Theorem frlmsnic
Dummy variables 𝑦 𝑢 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . 3 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2735 . . 3 ( ·𝑠𝑊) = ( ·𝑠𝑊)
3 eqid 2735 . . 3 ( ·𝑠 ‘(ringLMod‘𝐾)) = ( ·𝑠 ‘(ringLMod‘𝐾))
4 eqid 2735 . . 3 (Scalar‘𝑊) = (Scalar‘𝑊)
5 eqid 2735 . . 3 (Scalar‘(ringLMod‘𝐾)) = (Scalar‘(ringLMod‘𝐾))
6 eqid 2735 . . 3 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
7 snex 5442 . . . . 5 {𝐼} ∈ V
8 frlmsnic.w . . . . . 6 𝑊 = (𝐾 freeLMod {𝐼})
98frlmlmod 21787 . . . . 5 ((𝐾 ∈ Ring ∧ {𝐼} ∈ V) → 𝑊 ∈ LMod)
107, 9mpan2 691 . . . 4 (𝐾 ∈ Ring → 𝑊 ∈ LMod)
1110adantr 480 . . 3 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝑊 ∈ LMod)
12 rlmlmod 21228 . . . 4 (𝐾 ∈ Ring → (ringLMod‘𝐾) ∈ LMod)
1312adantr 480 . . 3 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → (ringLMod‘𝐾) ∈ LMod)
14 rlmsca 21223 . . . . 5 (𝐾 ∈ Ring → 𝐾 = (Scalar‘(ringLMod‘𝐾)))
1514adantr 480 . . . 4 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐾 = (Scalar‘(ringLMod‘𝐾)))
168frlmsca 21791 . . . . . 6 ((𝐾 ∈ Ring ∧ {𝐼} ∈ V) → 𝐾 = (Scalar‘𝑊))
177, 16mpan2 691 . . . . 5 (𝐾 ∈ Ring → 𝐾 = (Scalar‘𝑊))
1817adantr 480 . . . 4 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐾 = (Scalar‘𝑊))
1915, 18eqtr3d 2777 . . 3 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → (Scalar‘(ringLMod‘𝐾)) = (Scalar‘𝑊))
20 rlmbas 21218 . . . 4 (Base‘𝐾) = (Base‘(ringLMod‘𝐾))
21 eqid 2735 . . . 4 (+g𝑊) = (+g𝑊)
22 rlmplusg 21219 . . . 4 (+g𝐾) = (+g‘(ringLMod‘𝐾))
23 lmodgrp 20882 . . . . 5 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
2411, 23syl 17 . . . 4 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝑊 ∈ Grp)
25 lmodgrp 20882 . . . . . 6 ((ringLMod‘𝐾) ∈ LMod → (ringLMod‘𝐾) ∈ Grp)
2612, 25syl 17 . . . . 5 (𝐾 ∈ Ring → (ringLMod‘𝐾) ∈ Grp)
2726adantr 480 . . . 4 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → (ringLMod‘𝐾) ∈ Grp)
28 eqid 2735 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
298, 28, 1frlmbasf 21798 . . . . . . . 8 (({𝐼} ∈ V ∧ 𝑥 ∈ (Base‘𝑊)) → 𝑥:{𝐼}⟶(Base‘𝐾))
307, 29mpan 690 . . . . . . 7 (𝑥 ∈ (Base‘𝑊) → 𝑥:{𝐼}⟶(Base‘𝐾))
3130adantl 481 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑥 ∈ (Base‘𝑊)) → 𝑥:{𝐼}⟶(Base‘𝐾))
32 snidg 4665 . . . . . . . 8 (𝐼 ∈ V → 𝐼 ∈ {𝐼})
3332adantl 481 . . . . . . 7 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐼 ∈ {𝐼})
3433adantr 480 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑥 ∈ (Base‘𝑊)) → 𝐼 ∈ {𝐼})
3531, 34ffvelcdmd 7105 . . . . 5 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥𝐼) ∈ (Base‘𝐾))
36 frlmsnic.1 . . . . 5 𝐹 = (𝑥 ∈ (Base‘𝑊) ↦ (𝑥𝐼))
3735, 36fmptd 7134 . . . 4 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐹:(Base‘𝑊)⟶(Base‘𝐾))
38 simpll 767 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝐾 ∈ Ring)
397a1i 11 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → {𝐼} ∈ V)
40 simprl 771 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑥 ∈ (Base‘𝑊))
41 simprr 773 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑦 ∈ (Base‘𝑊))
4233adantr 480 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝐼 ∈ {𝐼})
43 eqid 2735 . . . . . 6 (+g𝐾) = (+g𝐾)
448, 1, 38, 39, 40, 41, 42, 43, 21frlmvplusgvalc 21805 . . . . 5 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → ((𝑥(+g𝑊)𝑦)‘𝐼) = ((𝑥𝐼)(+g𝐾)(𝑦𝐼)))
4511adantr 480 . . . . . . 7 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑊 ∈ LMod)
461, 21lmodvacl 20890 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥(+g𝑊)𝑦) ∈ (Base‘𝑊))
4745, 40, 41, 46syl3anc 1370 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(+g𝑊)𝑦) ∈ (Base‘𝑊))
48 fveq1 6906 . . . . . . 7 (𝑡 = (𝑥(+g𝑊)𝑦) → (𝑡𝐼) = ((𝑥(+g𝑊)𝑦)‘𝐼))
49 fveq1 6906 . . . . . . . . 9 (𝑥 = 𝑡 → (𝑥𝐼) = (𝑡𝐼))
5049cbvmptv 5261 . . . . . . . 8 (𝑥 ∈ (Base‘𝑊) ↦ (𝑥𝐼)) = (𝑡 ∈ (Base‘𝑊) ↦ (𝑡𝐼))
5136, 50eqtri 2763 . . . . . . 7 𝐹 = (𝑡 ∈ (Base‘𝑊) ↦ (𝑡𝐼))
52 fvexd 6922 . . . . . . 7 (𝑡 ∈ (Base‘𝑊) → (𝑡𝐼) ∈ V)
5348, 51, 52fvmpt3 7020 . . . . . 6 ((𝑥(+g𝑊)𝑦) ∈ (Base‘𝑊) → (𝐹‘(𝑥(+g𝑊)𝑦)) = ((𝑥(+g𝑊)𝑦)‘𝐼))
5447, 53syl 17 . . . . 5 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐹‘(𝑥(+g𝑊)𝑦)) = ((𝑥(+g𝑊)𝑦)‘𝐼))
5536a1i 11 . . . . . . . 8 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝐹 = (𝑥 ∈ (Base‘𝑊) ↦ (𝑥𝐼)))
56 fvexd 6922 . . . . . . . 8 ((((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥𝐼) ∈ V)
5755, 56fvmpt2d 7029 . . . . . . 7 ((((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝐹𝑥) = (𝑥𝐼))
5840, 57mpdan 687 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐹𝑥) = (𝑥𝐼))
59 fveq1 6906 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝐼) = (𝑦𝐼))
60 fvexd 6922 . . . . . . . 8 (𝑥 ∈ (Base‘𝑊) → (𝑥𝐼) ∈ V)
6159, 36, 60fvmpt3 7020 . . . . . . 7 (𝑦 ∈ (Base‘𝑊) → (𝐹𝑦) = (𝑦𝐼))
6241, 61syl 17 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐹𝑦) = (𝑦𝐼))
6358, 62oveq12d 7449 . . . . 5 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → ((𝐹𝑥)(+g𝐾)(𝐹𝑦)) = ((𝑥𝐼)(+g𝐾)(𝑦𝐼)))
6444, 54, 633eqtr4d 2785 . . . 4 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐹‘(𝑥(+g𝑊)𝑦)) = ((𝐹𝑥)(+g𝐾)(𝐹𝑦)))
651, 20, 21, 22, 24, 27, 37, 64isghmd 19256 . . 3 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐹 ∈ (𝑊 GrpHom (ringLMod‘𝐾)))
667a1i 11 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → {𝐼} ∈ V)
6718eqcomd 2741 . . . . . . . . . 10 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → (Scalar‘𝑊) = 𝐾)
6867fveq2d 6911 . . . . . . . . 9 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → (Base‘(Scalar‘𝑊)) = (Base‘𝐾))
6968eleq2d 2825 . . . . . . . 8 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → (𝑥 ∈ (Base‘(Scalar‘𝑊)) ↔ 𝑥 ∈ (Base‘𝐾)))
7069biimpa 476 . . . . . . 7 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑊))) → 𝑥 ∈ (Base‘𝐾))
7170adantrr 717 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑥 ∈ (Base‘𝐾))
72 simprr 773 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑦 ∈ (Base‘𝑊))
7333adantr 480 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝐼 ∈ {𝐼})
74 eqid 2735 . . . . . 6 (.r𝐾) = (.r𝐾)
758, 1, 28, 66, 71, 72, 73, 2, 74frlmvscaval 21806 . . . . 5 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → ((𝑥( ·𝑠𝑊)𝑦)‘𝐼) = (𝑥(.r𝐾)(𝑦𝐼)))
76 rlmvsca 21225 . . . . . 6 (.r𝐾) = ( ·𝑠 ‘(ringLMod‘𝐾))
7776oveqi 7444 . . . . 5 (𝑥(.r𝐾)(𝑦𝐼)) = (𝑥( ·𝑠 ‘(ringLMod‘𝐾))(𝑦𝐼))
7875, 77eqtrdi 2791 . . . 4 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → ((𝑥( ·𝑠𝑊)𝑦)‘𝐼) = (𝑥( ·𝑠 ‘(ringLMod‘𝐾))(𝑦𝐼)))
79 fveq1 6906 . . . . . . 7 (𝑥 = 𝑢 → (𝑥𝐼) = (𝑢𝐼))
8079cbvmptv 5261 . . . . . 6 (𝑥 ∈ (Base‘𝑊) ↦ (𝑥𝐼)) = (𝑢 ∈ (Base‘𝑊) ↦ (𝑢𝐼))
8136, 80eqtri 2763 . . . . 5 𝐹 = (𝑢 ∈ (Base‘𝑊) ↦ (𝑢𝐼))
82 fveq1 6906 . . . . 5 (𝑢 = (𝑥( ·𝑠𝑊)𝑦) → (𝑢𝐼) = ((𝑥( ·𝑠𝑊)𝑦)‘𝐼))
837a1i 11 . . . . . . . 8 (𝐼 ∈ V → {𝐼} ∈ V)
8483, 9sylan2 593 . . . . . . 7 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝑊 ∈ LMod)
8584adantr 480 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑊 ∈ LMod)
86 simprl 771 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑥 ∈ (Base‘(Scalar‘𝑊)))
871, 4, 2, 6, 85, 86, 72lmodvscld 20894 . . . . 5 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥( ·𝑠𝑊)𝑦) ∈ (Base‘𝑊))
88 fvexd 6922 . . . . 5 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → ((𝑥( ·𝑠𝑊)𝑦)‘𝐼) ∈ V)
8981, 82, 87, 88fvmptd3 7039 . . . 4 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐹‘(𝑥( ·𝑠𝑊)𝑦)) = ((𝑥( ·𝑠𝑊)𝑦)‘𝐼))
90 fvex 6920 . . . . . . 7 (𝑥𝐼) ∈ V
9159, 36, 90fvmpt3i 7021 . . . . . 6 (𝑦 ∈ (Base‘𝑊) → (𝐹𝑦) = (𝑦𝐼))
9272, 91syl 17 . . . . 5 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐹𝑦) = (𝑦𝐼))
9392oveq2d 7447 . . . 4 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥( ·𝑠 ‘(ringLMod‘𝐾))(𝐹𝑦)) = (𝑥( ·𝑠 ‘(ringLMod‘𝐾))(𝑦𝐼)))
9478, 89, 933eqtr4d 2785 . . 3 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐹‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥( ·𝑠 ‘(ringLMod‘𝐾))(𝐹𝑦)))
951, 2, 3, 4, 5, 6, 11, 13, 19, 65, 94islmhmd 21056 . 2 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐹 ∈ (𝑊 LMHom (ringLMod‘𝐾)))
96 simplr 769 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑦 ∈ (Base‘𝐾)) → 𝐼 ∈ V)
97 simpr 484 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑦 ∈ (Base‘𝐾)) → 𝑦 ∈ (Base‘𝐾))
9896, 97fsnd 6892 . . . . 5 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑦 ∈ (Base‘𝐾)) → {⟨𝐼, 𝑦⟩}:{𝐼}⟶(Base‘𝐾))
99 simpll 767 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑦 ∈ (Base‘𝐾)) → 𝐾 ∈ Ring)
100 snfi 9082 . . . . . 6 {𝐼} ∈ Fin
1018, 28, 1frlmfielbas 42487 . . . . . 6 ((𝐾 ∈ Ring ∧ {𝐼} ∈ Fin) → ({⟨𝐼, 𝑦⟩} ∈ (Base‘𝑊) ↔ {⟨𝐼, 𝑦⟩}:{𝐼}⟶(Base‘𝐾)))
10299, 100, 101sylancl 586 . . . . 5 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑦 ∈ (Base‘𝐾)) → ({⟨𝐼, 𝑦⟩} ∈ (Base‘𝑊) ↔ {⟨𝐼, 𝑦⟩}:{𝐼}⟶(Base‘𝐾)))
10398, 102mpbird 257 . . . 4 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑦 ∈ (Base‘𝐾)) → {⟨𝐼, 𝑦⟩} ∈ (Base‘𝑊))
104 fveq1 6906 . . . . . . . 8 (𝑥 = {⟨𝐼, 𝑦⟩} → (𝑥𝐼) = ({⟨𝐼, 𝑦⟩}‘𝐼))
105104adantl 481 . . . . . . 7 ((((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑥 = {⟨𝐼, 𝑦⟩}) → (𝑥𝐼) = ({⟨𝐼, 𝑦⟩}‘𝐼))
106 simpllr 776 . . . . . . . 8 ((((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑥 = {⟨𝐼, 𝑦⟩}) → 𝐼 ∈ V)
107 vex 3482 . . . . . . . 8 𝑦 ∈ V
108 fvsng 7200 . . . . . . . 8 ((𝐼 ∈ V ∧ 𝑦 ∈ V) → ({⟨𝐼, 𝑦⟩}‘𝐼) = 𝑦)
109106, 107, 108sylancl 586 . . . . . . 7 ((((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑥 = {⟨𝐼, 𝑦⟩}) → ({⟨𝐼, 𝑦⟩}‘𝐼) = 𝑦)
110105, 109eqtr2d 2776 . . . . . 6 ((((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑥 = {⟨𝐼, 𝑦⟩}) → 𝑦 = (𝑥𝐼))
111110ex 412 . . . . 5 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥 = {⟨𝐼, 𝑦⟩} → 𝑦 = (𝑥𝐼)))
112 simplr 769 . . . . . . 7 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝐼 ∈ V)
11331adantrr 717 . . . . . . . 8 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝑥:{𝐼}⟶(Base‘𝐾))
114113ffnd 6738 . . . . . . 7 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝑥 Fn {𝐼})
115 fnsnbt 42250 . . . . . . . 8 (𝐼 ∈ V → (𝑥 Fn {𝐼} ↔ 𝑥 = {⟨𝐼, (𝑥𝐼)⟩}))
116115biimpd 229 . . . . . . 7 (𝐼 ∈ V → (𝑥 Fn {𝐼} → 𝑥 = {⟨𝐼, (𝑥𝐼)⟩}))
117112, 114, 116sylc 65 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝑥 = {⟨𝐼, (𝑥𝐼)⟩})
118 opeq2 4879 . . . . . . . 8 (𝑦 = (𝑥𝐼) → ⟨𝐼, 𝑦⟩ = ⟨𝐼, (𝑥𝐼)⟩)
119118sneqd 4643 . . . . . . 7 (𝑦 = (𝑥𝐼) → {⟨𝐼, 𝑦⟩} = {⟨𝐼, (𝑥𝐼)⟩})
120119eqeq2d 2746 . . . . . 6 (𝑦 = (𝑥𝐼) → (𝑥 = {⟨𝐼, 𝑦⟩} ↔ 𝑥 = {⟨𝐼, (𝑥𝐼)⟩}))
121117, 120syl5ibrcom 247 . . . . 5 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑦 = (𝑥𝐼) → 𝑥 = {⟨𝐼, 𝑦⟩}))
122111, 121impbid 212 . . . 4 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥 = {⟨𝐼, 𝑦⟩} ↔ 𝑦 = (𝑥𝐼)))
12336, 35, 103, 122f1o2d 7687 . . 3 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐹:(Base‘𝑊)–1-1-onto→(Base‘𝐾))
12420a1i 11 . . . 4 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → (Base‘𝐾) = (Base‘(ringLMod‘𝐾)))
125124f1oeq3d 6846 . . 3 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → (𝐹:(Base‘𝑊)–1-1-onto→(Base‘𝐾) ↔ 𝐹:(Base‘𝑊)–1-1-onto→(Base‘(ringLMod‘𝐾))))
126123, 125mpbid 232 . 2 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐹:(Base‘𝑊)–1-1-onto→(Base‘(ringLMod‘𝐾)))
127 eqid 2735 . . 3 (Base‘(ringLMod‘𝐾)) = (Base‘(ringLMod‘𝐾))
1281, 127islmim 21079 . 2 (𝐹 ∈ (𝑊 LMIso (ringLMod‘𝐾)) ↔ (𝐹 ∈ (𝑊 LMHom (ringLMod‘𝐾)) ∧ 𝐹:(Base‘𝑊)–1-1-onto→(Base‘(ringLMod‘𝐾))))
12995, 126, 128sylanbrc 583 1 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐹 ∈ (𝑊 LMIso (ringLMod‘𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  {csn 4631  cop 4637  cmpt 5231   Fn wfn 6558  wf 6559  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431  Fincfn 8984  Basecbs 17245  +gcplusg 17298  .rcmulr 17299  Scalarcsca 17301   ·𝑠 cvsca 17302  Grpcgrp 18964  Ringcrg 20251  LModclmod 20875   LMHom clmhm 21036   LMIso clmim 21037  ringLModcrglmod 21189   freeLMod cfrlm 21784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17488  df-prds 17494  df-pws 17496  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-sbg 18969  df-subg 19154  df-ghm 19244  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-subrg 20587  df-lmod 20877  df-lss 20948  df-lmhm 21039  df-lmim 21040  df-sra 21190  df-rgmod 21191  df-dsmm 21770  df-frlm 21785
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator