Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frlmsnic Structured version   Visualization version   GIF version

Theorem frlmsnic 39308
Description: Given a free module with a singleton as the index set, that is, a free module of one-dimensional vectors, the function that maps each vector to its coordinate is a module isomorphism from that module to its ring of scalars seen as a module. (Contributed by Steven Nguyen, 18-Aug-2023.)
Hypotheses
Ref Expression
frlmsnic.w 𝑊 = (𝐾 freeLMod {𝐼})
frlmsnic.1 𝐹 = (𝑥 ∈ (Base‘𝑊) ↦ (𝑥𝐼))
Assertion
Ref Expression
frlmsnic ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐹 ∈ (𝑊 LMIso (ringLMod‘𝐾)))
Distinct variable groups:   𝑥,𝐼   𝑥,𝐾   𝑥,𝐹   𝑥,𝑊

Proof of Theorem frlmsnic
Dummy variables 𝑦 𝑢 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2824 . . 3 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2824 . . 3 ( ·𝑠𝑊) = ( ·𝑠𝑊)
3 eqid 2824 . . 3 ( ·𝑠 ‘(ringLMod‘𝐾)) = ( ·𝑠 ‘(ringLMod‘𝐾))
4 eqid 2824 . . 3 (Scalar‘𝑊) = (Scalar‘𝑊)
5 eqid 2824 . . 3 (Scalar‘(ringLMod‘𝐾)) = (Scalar‘(ringLMod‘𝐾))
6 eqid 2824 . . 3 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
7 snex 5313 . . . . 5 {𝐼} ∈ V
8 frlmsnic.w . . . . . 6 𝑊 = (𝐾 freeLMod {𝐼})
98frlmlmod 20879 . . . . 5 ((𝐾 ∈ Ring ∧ {𝐼} ∈ V) → 𝑊 ∈ LMod)
107, 9mpan2 690 . . . 4 (𝐾 ∈ Ring → 𝑊 ∈ LMod)
1110adantr 484 . . 3 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝑊 ∈ LMod)
12 rlmlmod 19963 . . . 4 (𝐾 ∈ Ring → (ringLMod‘𝐾) ∈ LMod)
1312adantr 484 . . 3 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → (ringLMod‘𝐾) ∈ LMod)
14 rlmsca 19958 . . . . 5 (𝐾 ∈ Ring → 𝐾 = (Scalar‘(ringLMod‘𝐾)))
1514adantr 484 . . . 4 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐾 = (Scalar‘(ringLMod‘𝐾)))
168frlmsca 20883 . . . . . 6 ((𝐾 ∈ Ring ∧ {𝐼} ∈ V) → 𝐾 = (Scalar‘𝑊))
177, 16mpan2 690 . . . . 5 (𝐾 ∈ Ring → 𝐾 = (Scalar‘𝑊))
1817adantr 484 . . . 4 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐾 = (Scalar‘𝑊))
1915, 18eqtr3d 2861 . . 3 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → (Scalar‘(ringLMod‘𝐾)) = (Scalar‘𝑊))
20 rlmbas 19953 . . . 4 (Base‘𝐾) = (Base‘(ringLMod‘𝐾))
21 eqid 2824 . . . 4 (+g𝑊) = (+g𝑊)
22 rlmplusg 19954 . . . 4 (+g𝐾) = (+g‘(ringLMod‘𝐾))
23 lmodgrp 19627 . . . . 5 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
2411, 23syl 17 . . . 4 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝑊 ∈ Grp)
25 lmodgrp 19627 . . . . . 6 ((ringLMod‘𝐾) ∈ LMod → (ringLMod‘𝐾) ∈ Grp)
2612, 25syl 17 . . . . 5 (𝐾 ∈ Ring → (ringLMod‘𝐾) ∈ Grp)
2726adantr 484 . . . 4 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → (ringLMod‘𝐾) ∈ Grp)
28 eqid 2824 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
298, 28, 1frlmbasf 20890 . . . . . . . 8 (({𝐼} ∈ V ∧ 𝑥 ∈ (Base‘𝑊)) → 𝑥:{𝐼}⟶(Base‘𝐾))
307, 29mpan 689 . . . . . . 7 (𝑥 ∈ (Base‘𝑊) → 𝑥:{𝐼}⟶(Base‘𝐾))
3130adantl 485 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑥 ∈ (Base‘𝑊)) → 𝑥:{𝐼}⟶(Base‘𝐾))
32 snidg 4580 . . . . . . . 8 (𝐼 ∈ V → 𝐼 ∈ {𝐼})
3332adantl 485 . . . . . . 7 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐼 ∈ {𝐼})
3433adantr 484 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑥 ∈ (Base‘𝑊)) → 𝐼 ∈ {𝐼})
3531, 34ffvelrnd 6833 . . . . 5 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥𝐼) ∈ (Base‘𝐾))
36 frlmsnic.1 . . . . 5 𝐹 = (𝑥 ∈ (Base‘𝑊) ↦ (𝑥𝐼))
3735, 36fmptd 6859 . . . 4 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐹:(Base‘𝑊)⟶(Base‘𝐾))
38 simpll 766 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝐾 ∈ Ring)
397a1i 11 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → {𝐼} ∈ V)
40 simprl 770 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑥 ∈ (Base‘𝑊))
41 simprr 772 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑦 ∈ (Base‘𝑊))
4233adantr 484 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝐼 ∈ {𝐼})
43 eqid 2824 . . . . . 6 (+g𝐾) = (+g𝐾)
448, 1, 38, 39, 40, 41, 42, 43, 21frlmvplusgvalc 20897 . . . . 5 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → ((𝑥(+g𝑊)𝑦)‘𝐼) = ((𝑥𝐼)(+g𝐾)(𝑦𝐼)))
4511adantr 484 . . . . . . 7 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑊 ∈ LMod)
461, 21lmodvacl 19634 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥(+g𝑊)𝑦) ∈ (Base‘𝑊))
4745, 40, 41, 46syl3anc 1368 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(+g𝑊)𝑦) ∈ (Base‘𝑊))
48 fveq1 6650 . . . . . . 7 (𝑡 = (𝑥(+g𝑊)𝑦) → (𝑡𝐼) = ((𝑥(+g𝑊)𝑦)‘𝐼))
49 fveq1 6650 . . . . . . . . 9 (𝑥 = 𝑡 → (𝑥𝐼) = (𝑡𝐼))
5049cbvmptv 5150 . . . . . . . 8 (𝑥 ∈ (Base‘𝑊) ↦ (𝑥𝐼)) = (𝑡 ∈ (Base‘𝑊) ↦ (𝑡𝐼))
5136, 50eqtri 2847 . . . . . . 7 𝐹 = (𝑡 ∈ (Base‘𝑊) ↦ (𝑡𝐼))
52 fvexd 6666 . . . . . . 7 (𝑡 ∈ (Base‘𝑊) → (𝑡𝐼) ∈ V)
5348, 51, 52fvmpt3 6753 . . . . . 6 ((𝑥(+g𝑊)𝑦) ∈ (Base‘𝑊) → (𝐹‘(𝑥(+g𝑊)𝑦)) = ((𝑥(+g𝑊)𝑦)‘𝐼))
5447, 53syl 17 . . . . 5 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐹‘(𝑥(+g𝑊)𝑦)) = ((𝑥(+g𝑊)𝑦)‘𝐼))
5536a1i 11 . . . . . . . 8 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝐹 = (𝑥 ∈ (Base‘𝑊) ↦ (𝑥𝐼)))
56 fvexd 6666 . . . . . . . 8 ((((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥𝐼) ∈ V)
5755, 56fvmpt2d 6762 . . . . . . 7 ((((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝐹𝑥) = (𝑥𝐼))
5840, 57mpdan 686 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐹𝑥) = (𝑥𝐼))
59 fveq1 6650 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝐼) = (𝑦𝐼))
60 fvexd 6666 . . . . . . . 8 (𝑥 ∈ (Base‘𝑊) → (𝑥𝐼) ∈ V)
6159, 36, 60fvmpt3 6753 . . . . . . 7 (𝑦 ∈ (Base‘𝑊) → (𝐹𝑦) = (𝑦𝐼))
6241, 61syl 17 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐹𝑦) = (𝑦𝐼))
6358, 62oveq12d 7156 . . . . 5 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → ((𝐹𝑥)(+g𝐾)(𝐹𝑦)) = ((𝑥𝐼)(+g𝐾)(𝑦𝐼)))
6444, 54, 633eqtr4d 2869 . . . 4 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐹‘(𝑥(+g𝑊)𝑦)) = ((𝐹𝑥)(+g𝐾)(𝐹𝑦)))
651, 20, 21, 22, 24, 27, 37, 64isghmd 18356 . . 3 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐹 ∈ (𝑊 GrpHom (ringLMod‘𝐾)))
667a1i 11 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → {𝐼} ∈ V)
6718eqcomd 2830 . . . . . . . . . 10 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → (Scalar‘𝑊) = 𝐾)
6867fveq2d 6655 . . . . . . . . 9 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → (Base‘(Scalar‘𝑊)) = (Base‘𝐾))
6968eleq2d 2901 . . . . . . . 8 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → (𝑥 ∈ (Base‘(Scalar‘𝑊)) ↔ 𝑥 ∈ (Base‘𝐾)))
7069biimpa 480 . . . . . . 7 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑊))) → 𝑥 ∈ (Base‘𝐾))
7170adantrr 716 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑥 ∈ (Base‘𝐾))
72 simprr 772 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑦 ∈ (Base‘𝑊))
7333adantr 484 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝐼 ∈ {𝐼})
74 eqid 2824 . . . . . 6 (.r𝐾) = (.r𝐾)
758, 1, 28, 66, 71, 72, 73, 2, 74frlmvscaval 20898 . . . . 5 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → ((𝑥( ·𝑠𝑊)𝑦)‘𝐼) = (𝑥(.r𝐾)(𝑦𝐼)))
76 rlmvsca 19960 . . . . . 6 (.r𝐾) = ( ·𝑠 ‘(ringLMod‘𝐾))
7776oveqi 7151 . . . . 5 (𝑥(.r𝐾)(𝑦𝐼)) = (𝑥( ·𝑠 ‘(ringLMod‘𝐾))(𝑦𝐼))
7875, 77syl6eq 2875 . . . 4 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → ((𝑥( ·𝑠𝑊)𝑦)‘𝐼) = (𝑥( ·𝑠 ‘(ringLMod‘𝐾))(𝑦𝐼)))
79 fveq1 6650 . . . . . . 7 (𝑥 = 𝑢 → (𝑥𝐼) = (𝑢𝐼))
8079cbvmptv 5150 . . . . . 6 (𝑥 ∈ (Base‘𝑊) ↦ (𝑥𝐼)) = (𝑢 ∈ (Base‘𝑊) ↦ (𝑢𝐼))
8136, 80eqtri 2847 . . . . 5 𝐹 = (𝑢 ∈ (Base‘𝑊) ↦ (𝑢𝐼))
82 fveq1 6650 . . . . 5 (𝑢 = (𝑥( ·𝑠𝑊)𝑦) → (𝑢𝐼) = ((𝑥( ·𝑠𝑊)𝑦)‘𝐼))
837a1i 11 . . . . . . . 8 (𝐼 ∈ V → {𝐼} ∈ V)
8483, 9sylan2 595 . . . . . . 7 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝑊 ∈ LMod)
8584adantr 484 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑊 ∈ LMod)
86 simprl 770 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑥 ∈ (Base‘(Scalar‘𝑊)))
871, 4, 2, 6lmodvscl 19637 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥( ·𝑠𝑊)𝑦) ∈ (Base‘𝑊))
8885, 86, 72, 87syl3anc 1368 . . . . 5 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥( ·𝑠𝑊)𝑦) ∈ (Base‘𝑊))
89 fvexd 6666 . . . . 5 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → ((𝑥( ·𝑠𝑊)𝑦)‘𝐼) ∈ V)
9081, 82, 88, 89fvmptd3 6772 . . . 4 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐹‘(𝑥( ·𝑠𝑊)𝑦)) = ((𝑥( ·𝑠𝑊)𝑦)‘𝐼))
91 fvex 6664 . . . . . . 7 (𝑥𝐼) ∈ V
9259, 36, 91fvmpt3i 6754 . . . . . 6 (𝑦 ∈ (Base‘𝑊) → (𝐹𝑦) = (𝑦𝐼))
9372, 92syl 17 . . . . 5 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐹𝑦) = (𝑦𝐼))
9493oveq2d 7154 . . . 4 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥( ·𝑠 ‘(ringLMod‘𝐾))(𝐹𝑦)) = (𝑥( ·𝑠 ‘(ringLMod‘𝐾))(𝑦𝐼)))
9578, 90, 943eqtr4d 2869 . . 3 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐹‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥( ·𝑠 ‘(ringLMod‘𝐾))(𝐹𝑦)))
961, 2, 3, 4, 5, 6, 11, 13, 19, 65, 95islmhmd 19797 . 2 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐹 ∈ (𝑊 LMHom (ringLMod‘𝐾)))
97 simplr 768 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑦 ∈ (Base‘𝐾)) → 𝐼 ∈ V)
98 simpr 488 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑦 ∈ (Base‘𝐾)) → 𝑦 ∈ (Base‘𝐾))
9997, 98fsnd 6638 . . . . 5 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑦 ∈ (Base‘𝐾)) → {⟨𝐼, 𝑦⟩}:{𝐼}⟶(Base‘𝐾))
100 simpll 766 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑦 ∈ (Base‘𝐾)) → 𝐾 ∈ Ring)
101 snfi 8577 . . . . . 6 {𝐼} ∈ Fin
1028, 28, 1frlmfielbas 39290 . . . . . 6 ((𝐾 ∈ Ring ∧ {𝐼} ∈ Fin) → ({⟨𝐼, 𝑦⟩} ∈ (Base‘𝑊) ↔ {⟨𝐼, 𝑦⟩}:{𝐼}⟶(Base‘𝐾)))
103100, 101, 102sylancl 589 . . . . 5 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑦 ∈ (Base‘𝐾)) → ({⟨𝐼, 𝑦⟩} ∈ (Base‘𝑊) ↔ {⟨𝐼, 𝑦⟩}:{𝐼}⟶(Base‘𝐾)))
10499, 103mpbird 260 . . . 4 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑦 ∈ (Base‘𝐾)) → {⟨𝐼, 𝑦⟩} ∈ (Base‘𝑊))
105 fveq1 6650 . . . . . . . 8 (𝑥 = {⟨𝐼, 𝑦⟩} → (𝑥𝐼) = ({⟨𝐼, 𝑦⟩}‘𝐼))
106105adantl 485 . . . . . . 7 ((((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑥 = {⟨𝐼, 𝑦⟩}) → (𝑥𝐼) = ({⟨𝐼, 𝑦⟩}‘𝐼))
107 simpllr 775 . . . . . . . 8 ((((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑥 = {⟨𝐼, 𝑦⟩}) → 𝐼 ∈ V)
108 vex 3482 . . . . . . . 8 𝑦 ∈ V
109 fvsng 6923 . . . . . . . 8 ((𝐼 ∈ V ∧ 𝑦 ∈ V) → ({⟨𝐼, 𝑦⟩}‘𝐼) = 𝑦)
110107, 108, 109sylancl 589 . . . . . . 7 ((((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑥 = {⟨𝐼, 𝑦⟩}) → ({⟨𝐼, 𝑦⟩}‘𝐼) = 𝑦)
111106, 110eqtr2d 2860 . . . . . 6 ((((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑥 = {⟨𝐼, 𝑦⟩}) → 𝑦 = (𝑥𝐼))
112111ex 416 . . . . 5 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥 = {⟨𝐼, 𝑦⟩} → 𝑦 = (𝑥𝐼)))
113 simplr 768 . . . . . . 7 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝐼 ∈ V)
11431adantrr 716 . . . . . . . 8 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝑥:{𝐼}⟶(Base‘𝐾))
115114ffnd 6496 . . . . . . 7 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝑥 Fn {𝐼})
116 fnsnbt 39271 . . . . . . . 8 (𝐼 ∈ V → (𝑥 Fn {𝐼} ↔ 𝑥 = {⟨𝐼, (𝑥𝐼)⟩}))
117116biimpd 232 . . . . . . 7 (𝐼 ∈ V → (𝑥 Fn {𝐼} → 𝑥 = {⟨𝐼, (𝑥𝐼)⟩}))
118113, 115, 117sylc 65 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝑥 = {⟨𝐼, (𝑥𝐼)⟩})
119 opeq2 4785 . . . . . . . 8 (𝑦 = (𝑥𝐼) → ⟨𝐼, 𝑦⟩ = ⟨𝐼, (𝑥𝐼)⟩)
120119sneqd 4560 . . . . . . 7 (𝑦 = (𝑥𝐼) → {⟨𝐼, 𝑦⟩} = {⟨𝐼, (𝑥𝐼)⟩})
121120eqeq2d 2835 . . . . . 6 (𝑦 = (𝑥𝐼) → (𝑥 = {⟨𝐼, 𝑦⟩} ↔ 𝑥 = {⟨𝐼, (𝑥𝐼)⟩}))
122118, 121syl5ibrcom 250 . . . . 5 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑦 = (𝑥𝐼) → 𝑥 = {⟨𝐼, 𝑦⟩}))
123112, 122impbid 215 . . . 4 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥 = {⟨𝐼, 𝑦⟩} ↔ 𝑦 = (𝑥𝐼)))
12436, 35, 104, 123f1o2d 7382 . . 3 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐹:(Base‘𝑊)–1-1-onto→(Base‘𝐾))
12520a1i 11 . . . 4 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → (Base‘𝐾) = (Base‘(ringLMod‘𝐾)))
126125f1oeq3d 6593 . . 3 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → (𝐹:(Base‘𝑊)–1-1-onto→(Base‘𝐾) ↔ 𝐹:(Base‘𝑊)–1-1-onto→(Base‘(ringLMod‘𝐾))))
127124, 126mpbid 235 . 2 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐹:(Base‘𝑊)–1-1-onto→(Base‘(ringLMod‘𝐾)))
128 eqid 2824 . . 3 (Base‘(ringLMod‘𝐾)) = (Base‘(ringLMod‘𝐾))
1291, 128islmim 19820 . 2 (𝐹 ∈ (𝑊 LMIso (ringLMod‘𝐾)) ↔ (𝐹 ∈ (𝑊 LMHom (ringLMod‘𝐾)) ∧ 𝐹:(Base‘𝑊)–1-1-onto→(Base‘(ringLMod‘𝐾))))
13096, 127, 129sylanbrc 586 1 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐹 ∈ (𝑊 LMIso (ringLMod‘𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  Vcvv 3479  {csn 4548  cop 4554  cmpt 5127   Fn wfn 6331  wf 6332  1-1-ontowf1o 6335  cfv 6336  (class class class)co 7138  Fincfn 8492  Basecbs 16472  +gcplusg 16554  .rcmulr 16555  Scalarcsca 16557   ·𝑠 cvsca 16558  Grpcgrp 18092  Ringcrg 19286  LModclmod 19620   LMHom clmhm 19777   LMIso clmim 19778  ringLModcrglmod 19927   freeLMod cfrlm 20876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444  ax-cnex 10578  ax-resscn 10579  ax-1cn 10580  ax-icn 10581  ax-addcl 10582  ax-addrcl 10583  ax-mulcl 10584  ax-mulrcl 10585  ax-mulcom 10586  ax-addass 10587  ax-mulass 10588  ax-distr 10589  ax-i2m1 10590  ax-1ne0 10591  ax-1rid 10592  ax-rnegex 10593  ax-rrecex 10594  ax-cnre 10595  ax-pre-lttri 10596  ax-pre-lttrn 10597  ax-pre-ltadd 10598  ax-pre-mulgt0 10599
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rmo 3140  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4820  df-int 4858  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7096  df-ov 7141  df-oprab 7142  df-mpo 7143  df-of 7392  df-om 7564  df-1st 7672  df-2nd 7673  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-sup 8890  df-pnf 10662  df-mnf 10663  df-xr 10664  df-ltxr 10665  df-le 10666  df-sub 10857  df-neg 10858  df-nn 11624  df-2 11686  df-3 11687  df-4 11688  df-5 11689  df-6 11690  df-7 11691  df-8 11692  df-9 11693  df-n0 11884  df-z 11968  df-dec 12085  df-uz 12230  df-fz 12884  df-struct 16474  df-ndx 16475  df-slot 16476  df-base 16478  df-sets 16479  df-ress 16480  df-plusg 16567  df-mulr 16568  df-sca 16570  df-vsca 16571  df-ip 16572  df-tset 16573  df-ple 16574  df-ds 16576  df-hom 16578  df-cco 16579  df-0g 16704  df-prds 16710  df-pws 16712  df-mgm 17841  df-sgrp 17890  df-mnd 17901  df-grp 18095  df-minusg 18096  df-sbg 18097  df-subg 18265  df-ghm 18345  df-mgp 19229  df-ur 19241  df-ring 19288  df-subrg 19519  df-lmod 19622  df-lss 19690  df-lmhm 19780  df-lmim 19781  df-sra 19930  df-rgmod 19931  df-dsmm 20862  df-frlm 20877
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator