Step | Hyp | Ref
| Expression |
1 | | eqid 2732 |
. . 3
⊢
(Base‘𝑊) =
(Base‘𝑊) |
2 | | eqid 2732 |
. . 3
⊢ (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑊) |
3 | | eqid 2732 |
. . 3
⊢ (
·𝑠 ‘(ringLMod‘𝐾)) = ( ·𝑠
‘(ringLMod‘𝐾)) |
4 | | eqid 2732 |
. . 3
⊢
(Scalar‘𝑊) =
(Scalar‘𝑊) |
5 | | eqid 2732 |
. . 3
⊢
(Scalar‘(ringLMod‘𝐾)) = (Scalar‘(ringLMod‘𝐾)) |
6 | | eqid 2732 |
. . 3
⊢
(Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) |
7 | | snex 5431 |
. . . . 5
⊢ {𝐼} ∈ V |
8 | | frlmsnic.w |
. . . . . 6
⊢ 𝑊 = (𝐾 freeLMod {𝐼}) |
9 | 8 | frlmlmod 21303 |
. . . . 5
⊢ ((𝐾 ∈ Ring ∧ {𝐼} ∈ V) → 𝑊 ∈ LMod) |
10 | 7, 9 | mpan2 689 |
. . . 4
⊢ (𝐾 ∈ Ring → 𝑊 ∈ LMod) |
11 | 10 | adantr 481 |
. . 3
⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝑊 ∈ LMod) |
12 | | rlmlmod 20826 |
. . . 4
⊢ (𝐾 ∈ Ring →
(ringLMod‘𝐾) ∈
LMod) |
13 | 12 | adantr 481 |
. . 3
⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) →
(ringLMod‘𝐾) ∈
LMod) |
14 | | rlmsca 20821 |
. . . . 5
⊢ (𝐾 ∈ Ring → 𝐾 =
(Scalar‘(ringLMod‘𝐾))) |
15 | 14 | adantr 481 |
. . . 4
⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐾 =
(Scalar‘(ringLMod‘𝐾))) |
16 | 8 | frlmsca 21307 |
. . . . . 6
⊢ ((𝐾 ∈ Ring ∧ {𝐼} ∈ V) → 𝐾 = (Scalar‘𝑊)) |
17 | 7, 16 | mpan2 689 |
. . . . 5
⊢ (𝐾 ∈ Ring → 𝐾 = (Scalar‘𝑊)) |
18 | 17 | adantr 481 |
. . . 4
⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐾 = (Scalar‘𝑊)) |
19 | 15, 18 | eqtr3d 2774 |
. . 3
⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) →
(Scalar‘(ringLMod‘𝐾)) = (Scalar‘𝑊)) |
20 | | rlmbas 20816 |
. . . 4
⊢
(Base‘𝐾) =
(Base‘(ringLMod‘𝐾)) |
21 | | eqid 2732 |
. . . 4
⊢
(+g‘𝑊) = (+g‘𝑊) |
22 | | rlmplusg 20817 |
. . . 4
⊢
(+g‘𝐾) =
(+g‘(ringLMod‘𝐾)) |
23 | | lmodgrp 20477 |
. . . . 5
⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) |
24 | 11, 23 | syl 17 |
. . . 4
⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝑊 ∈ Grp) |
25 | | lmodgrp 20477 |
. . . . . 6
⊢
((ringLMod‘𝐾)
∈ LMod → (ringLMod‘𝐾) ∈ Grp) |
26 | 12, 25 | syl 17 |
. . . . 5
⊢ (𝐾 ∈ Ring →
(ringLMod‘𝐾) ∈
Grp) |
27 | 26 | adantr 481 |
. . . 4
⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) →
(ringLMod‘𝐾) ∈
Grp) |
28 | | eqid 2732 |
. . . . . . . . 9
⊢
(Base‘𝐾) =
(Base‘𝐾) |
29 | 8, 28, 1 | frlmbasf 21314 |
. . . . . . . 8
⊢ (({𝐼} ∈ V ∧ 𝑥 ∈ (Base‘𝑊)) → 𝑥:{𝐼}⟶(Base‘𝐾)) |
30 | 7, 29 | mpan 688 |
. . . . . . 7
⊢ (𝑥 ∈ (Base‘𝑊) → 𝑥:{𝐼}⟶(Base‘𝐾)) |
31 | 30 | adantl 482 |
. . . . . 6
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑥 ∈ (Base‘𝑊)) → 𝑥:{𝐼}⟶(Base‘𝐾)) |
32 | | snidg 4662 |
. . . . . . . 8
⊢ (𝐼 ∈ V → 𝐼 ∈ {𝐼}) |
33 | 32 | adantl 482 |
. . . . . . 7
⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐼 ∈ {𝐼}) |
34 | 33 | adantr 481 |
. . . . . 6
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑥 ∈ (Base‘𝑊)) → 𝐼 ∈ {𝐼}) |
35 | 31, 34 | ffvelcdmd 7087 |
. . . . 5
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥‘𝐼) ∈ (Base‘𝐾)) |
36 | | frlmsnic.1 |
. . . . 5
⊢ 𝐹 = (𝑥 ∈ (Base‘𝑊) ↦ (𝑥‘𝐼)) |
37 | 35, 36 | fmptd 7113 |
. . . 4
⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐹:(Base‘𝑊)⟶(Base‘𝐾)) |
38 | | simpll 765 |
. . . . . 6
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝐾 ∈ Ring) |
39 | 7 | a1i 11 |
. . . . . 6
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → {𝐼} ∈ V) |
40 | | simprl 769 |
. . . . . 6
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑥 ∈ (Base‘𝑊)) |
41 | | simprr 771 |
. . . . . 6
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑦 ∈ (Base‘𝑊)) |
42 | 33 | adantr 481 |
. . . . . 6
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝐼 ∈ {𝐼}) |
43 | | eqid 2732 |
. . . . . 6
⊢
(+g‘𝐾) = (+g‘𝐾) |
44 | 8, 1, 38, 39, 40, 41, 42, 43, 21 | frlmvplusgvalc 21321 |
. . . . 5
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → ((𝑥(+g‘𝑊)𝑦)‘𝐼) = ((𝑥‘𝐼)(+g‘𝐾)(𝑦‘𝐼))) |
45 | 11 | adantr 481 |
. . . . . . 7
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑊 ∈ LMod) |
46 | 1, 21 | lmodvacl 20485 |
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥(+g‘𝑊)𝑦) ∈ (Base‘𝑊)) |
47 | 45, 40, 41, 46 | syl3anc 1371 |
. . . . . 6
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(+g‘𝑊)𝑦) ∈ (Base‘𝑊)) |
48 | | fveq1 6890 |
. . . . . . 7
⊢ (𝑡 = (𝑥(+g‘𝑊)𝑦) → (𝑡‘𝐼) = ((𝑥(+g‘𝑊)𝑦)‘𝐼)) |
49 | | fveq1 6890 |
. . . . . . . . 9
⊢ (𝑥 = 𝑡 → (𝑥‘𝐼) = (𝑡‘𝐼)) |
50 | 49 | cbvmptv 5261 |
. . . . . . . 8
⊢ (𝑥 ∈ (Base‘𝑊) ↦ (𝑥‘𝐼)) = (𝑡 ∈ (Base‘𝑊) ↦ (𝑡‘𝐼)) |
51 | 36, 50 | eqtri 2760 |
. . . . . . 7
⊢ 𝐹 = (𝑡 ∈ (Base‘𝑊) ↦ (𝑡‘𝐼)) |
52 | | fvexd 6906 |
. . . . . . 7
⊢ (𝑡 ∈ (Base‘𝑊) → (𝑡‘𝐼) ∈ V) |
53 | 48, 51, 52 | fvmpt3 7002 |
. . . . . 6
⊢ ((𝑥(+g‘𝑊)𝑦) ∈ (Base‘𝑊) → (𝐹‘(𝑥(+g‘𝑊)𝑦)) = ((𝑥(+g‘𝑊)𝑦)‘𝐼)) |
54 | 47, 53 | syl 17 |
. . . . 5
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐹‘(𝑥(+g‘𝑊)𝑦)) = ((𝑥(+g‘𝑊)𝑦)‘𝐼)) |
55 | 36 | a1i 11 |
. . . . . . . 8
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝐹 = (𝑥 ∈ (Base‘𝑊) ↦ (𝑥‘𝐼))) |
56 | | fvexd 6906 |
. . . . . . . 8
⊢ ((((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥‘𝐼) ∈ V) |
57 | 55, 56 | fvmpt2d 7011 |
. . . . . . 7
⊢ ((((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝐹‘𝑥) = (𝑥‘𝐼)) |
58 | 40, 57 | mpdan 685 |
. . . . . 6
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐹‘𝑥) = (𝑥‘𝐼)) |
59 | | fveq1 6890 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑥‘𝐼) = (𝑦‘𝐼)) |
60 | | fvexd 6906 |
. . . . . . . 8
⊢ (𝑥 ∈ (Base‘𝑊) → (𝑥‘𝐼) ∈ V) |
61 | 59, 36, 60 | fvmpt3 7002 |
. . . . . . 7
⊢ (𝑦 ∈ (Base‘𝑊) → (𝐹‘𝑦) = (𝑦‘𝐼)) |
62 | 41, 61 | syl 17 |
. . . . . 6
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐹‘𝑦) = (𝑦‘𝐼)) |
63 | 58, 62 | oveq12d 7426 |
. . . . 5
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → ((𝐹‘𝑥)(+g‘𝐾)(𝐹‘𝑦)) = ((𝑥‘𝐼)(+g‘𝐾)(𝑦‘𝐼))) |
64 | 44, 54, 63 | 3eqtr4d 2782 |
. . . 4
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐹‘(𝑥(+g‘𝑊)𝑦)) = ((𝐹‘𝑥)(+g‘𝐾)(𝐹‘𝑦))) |
65 | 1, 20, 21, 22, 24, 27, 37, 64 | isghmd 19100 |
. . 3
⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐹 ∈ (𝑊 GrpHom (ringLMod‘𝐾))) |
66 | 7 | a1i 11 |
. . . . . 6
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → {𝐼} ∈ V) |
67 | 18 | eqcomd 2738 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) →
(Scalar‘𝑊) = 𝐾) |
68 | 67 | fveq2d 6895 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) →
(Base‘(Scalar‘𝑊)) = (Base‘𝐾)) |
69 | 68 | eleq2d 2819 |
. . . . . . . 8
⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → (𝑥 ∈
(Base‘(Scalar‘𝑊)) ↔ 𝑥 ∈ (Base‘𝐾))) |
70 | 69 | biimpa 477 |
. . . . . . 7
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑥 ∈
(Base‘(Scalar‘𝑊))) → 𝑥 ∈ (Base‘𝐾)) |
71 | 70 | adantrr 715 |
. . . . . 6
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑥 ∈ (Base‘𝐾)) |
72 | | simprr 771 |
. . . . . 6
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑦 ∈ (Base‘𝑊)) |
73 | 33 | adantr 481 |
. . . . . 6
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝐼 ∈ {𝐼}) |
74 | | eqid 2732 |
. . . . . 6
⊢
(.r‘𝐾) = (.r‘𝐾) |
75 | 8, 1, 28, 66, 71, 72, 73, 2, 74 | frlmvscaval 21322 |
. . . . 5
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → ((𝑥( ·𝑠
‘𝑊)𝑦)‘𝐼) = (𝑥(.r‘𝐾)(𝑦‘𝐼))) |
76 | | rlmvsca 20823 |
. . . . . 6
⊢
(.r‘𝐾) = ( ·𝑠
‘(ringLMod‘𝐾)) |
77 | 76 | oveqi 7421 |
. . . . 5
⊢ (𝑥(.r‘𝐾)(𝑦‘𝐼)) = (𝑥( ·𝑠
‘(ringLMod‘𝐾))(𝑦‘𝐼)) |
78 | 75, 77 | eqtrdi 2788 |
. . . 4
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → ((𝑥( ·𝑠
‘𝑊)𝑦)‘𝐼) = (𝑥( ·𝑠
‘(ringLMod‘𝐾))(𝑦‘𝐼))) |
79 | | fveq1 6890 |
. . . . . . 7
⊢ (𝑥 = 𝑢 → (𝑥‘𝐼) = (𝑢‘𝐼)) |
80 | 79 | cbvmptv 5261 |
. . . . . 6
⊢ (𝑥 ∈ (Base‘𝑊) ↦ (𝑥‘𝐼)) = (𝑢 ∈ (Base‘𝑊) ↦ (𝑢‘𝐼)) |
81 | 36, 80 | eqtri 2760 |
. . . . 5
⊢ 𝐹 = (𝑢 ∈ (Base‘𝑊) ↦ (𝑢‘𝐼)) |
82 | | fveq1 6890 |
. . . . 5
⊢ (𝑢 = (𝑥( ·𝑠
‘𝑊)𝑦) → (𝑢‘𝐼) = ((𝑥( ·𝑠
‘𝑊)𝑦)‘𝐼)) |
83 | 7 | a1i 11 |
. . . . . . . 8
⊢ (𝐼 ∈ V → {𝐼} ∈ V) |
84 | 83, 9 | sylan2 593 |
. . . . . . 7
⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝑊 ∈ LMod) |
85 | 84 | adantr 481 |
. . . . . 6
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑊 ∈ LMod) |
86 | | simprl 769 |
. . . . . 6
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑥 ∈ (Base‘(Scalar‘𝑊))) |
87 | 1, 4, 2, 6, 85, 86, 72 | lmodvscld 41106 |
. . . . 5
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥( ·𝑠
‘𝑊)𝑦) ∈ (Base‘𝑊)) |
88 | | fvexd 6906 |
. . . . 5
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → ((𝑥( ·𝑠
‘𝑊)𝑦)‘𝐼) ∈ V) |
89 | 81, 82, 87, 88 | fvmptd3 7021 |
. . . 4
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐹‘(𝑥( ·𝑠
‘𝑊)𝑦)) = ((𝑥( ·𝑠
‘𝑊)𝑦)‘𝐼)) |
90 | | fvex 6904 |
. . . . . . 7
⊢ (𝑥‘𝐼) ∈ V |
91 | 59, 36, 90 | fvmpt3i 7003 |
. . . . . 6
⊢ (𝑦 ∈ (Base‘𝑊) → (𝐹‘𝑦) = (𝑦‘𝐼)) |
92 | 72, 91 | syl 17 |
. . . . 5
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐹‘𝑦) = (𝑦‘𝐼)) |
93 | 92 | oveq2d 7424 |
. . . 4
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥( ·𝑠
‘(ringLMod‘𝐾))(𝐹‘𝑦)) = (𝑥( ·𝑠
‘(ringLMod‘𝐾))(𝑦‘𝐼))) |
94 | 78, 89, 93 | 3eqtr4d 2782 |
. . 3
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐹‘(𝑥( ·𝑠
‘𝑊)𝑦)) = (𝑥( ·𝑠
‘(ringLMod‘𝐾))(𝐹‘𝑦))) |
95 | 1, 2, 3, 4, 5, 6, 11, 13, 19, 65, 94 | islmhmd 20649 |
. 2
⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐹 ∈ (𝑊 LMHom (ringLMod‘𝐾))) |
96 | | simplr 767 |
. . . . . 6
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑦 ∈ (Base‘𝐾)) → 𝐼 ∈ V) |
97 | | simpr 485 |
. . . . . 6
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑦 ∈ (Base‘𝐾)) → 𝑦 ∈ (Base‘𝐾)) |
98 | 96, 97 | fsnd 6876 |
. . . . 5
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑦 ∈ (Base‘𝐾)) → {⟨𝐼, 𝑦⟩}:{𝐼}⟶(Base‘𝐾)) |
99 | | simpll 765 |
. . . . . 6
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑦 ∈ (Base‘𝐾)) → 𝐾 ∈ Ring) |
100 | | snfi 9043 |
. . . . . 6
⊢ {𝐼} ∈ Fin |
101 | 8, 28, 1 | frlmfielbas 41076 |
. . . . . 6
⊢ ((𝐾 ∈ Ring ∧ {𝐼} ∈ Fin) →
({⟨𝐼, 𝑦⟩} ∈ (Base‘𝑊) ↔ {⟨𝐼, 𝑦⟩}:{𝐼}⟶(Base‘𝐾))) |
102 | 99, 100, 101 | sylancl 586 |
. . . . 5
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑦 ∈ (Base‘𝐾)) → ({⟨𝐼, 𝑦⟩} ∈ (Base‘𝑊) ↔ {⟨𝐼, 𝑦⟩}:{𝐼}⟶(Base‘𝐾))) |
103 | 98, 102 | mpbird 256 |
. . . 4
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑦 ∈ (Base‘𝐾)) → {⟨𝐼, 𝑦⟩} ∈ (Base‘𝑊)) |
104 | | fveq1 6890 |
. . . . . . . 8
⊢ (𝑥 = {⟨𝐼, 𝑦⟩} → (𝑥‘𝐼) = ({⟨𝐼, 𝑦⟩}‘𝐼)) |
105 | 104 | adantl 482 |
. . . . . . 7
⊢ ((((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑥 = {⟨𝐼, 𝑦⟩}) → (𝑥‘𝐼) = ({⟨𝐼, 𝑦⟩}‘𝐼)) |
106 | | simpllr 774 |
. . . . . . . 8
⊢ ((((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑥 = {⟨𝐼, 𝑦⟩}) → 𝐼 ∈ V) |
107 | | vex 3478 |
. . . . . . . 8
⊢ 𝑦 ∈ V |
108 | | fvsng 7177 |
. . . . . . . 8
⊢ ((𝐼 ∈ V ∧ 𝑦 ∈ V) → ({⟨𝐼, 𝑦⟩}‘𝐼) = 𝑦) |
109 | 106, 107,
108 | sylancl 586 |
. . . . . . 7
⊢ ((((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑥 = {⟨𝐼, 𝑦⟩}) → ({⟨𝐼, 𝑦⟩}‘𝐼) = 𝑦) |
110 | 105, 109 | eqtr2d 2773 |
. . . . . 6
⊢ ((((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑥 = {⟨𝐼, 𝑦⟩}) → 𝑦 = (𝑥‘𝐼)) |
111 | 110 | ex 413 |
. . . . 5
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥 = {⟨𝐼, 𝑦⟩} → 𝑦 = (𝑥‘𝐼))) |
112 | | simplr 767 |
. . . . . . 7
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝐼 ∈ V) |
113 | 31 | adantrr 715 |
. . . . . . . 8
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝑥:{𝐼}⟶(Base‘𝐾)) |
114 | 113 | ffnd 6718 |
. . . . . . 7
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝑥 Fn {𝐼}) |
115 | | fnsnbt 41053 |
. . . . . . . 8
⊢ (𝐼 ∈ V → (𝑥 Fn {𝐼} ↔ 𝑥 = {⟨𝐼, (𝑥‘𝐼)⟩})) |
116 | 115 | biimpd 228 |
. . . . . . 7
⊢ (𝐼 ∈ V → (𝑥 Fn {𝐼} → 𝑥 = {⟨𝐼, (𝑥‘𝐼)⟩})) |
117 | 112, 114,
116 | sylc 65 |
. . . . . 6
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝑥 = {⟨𝐼, (𝑥‘𝐼)⟩}) |
118 | | opeq2 4874 |
. . . . . . . 8
⊢ (𝑦 = (𝑥‘𝐼) → ⟨𝐼, 𝑦⟩ = ⟨𝐼, (𝑥‘𝐼)⟩) |
119 | 118 | sneqd 4640 |
. . . . . . 7
⊢ (𝑦 = (𝑥‘𝐼) → {⟨𝐼, 𝑦⟩} = {⟨𝐼, (𝑥‘𝐼)⟩}) |
120 | 119 | eqeq2d 2743 |
. . . . . 6
⊢ (𝑦 = (𝑥‘𝐼) → (𝑥 = {⟨𝐼, 𝑦⟩} ↔ 𝑥 = {⟨𝐼, (𝑥‘𝐼)⟩})) |
121 | 117, 120 | syl5ibrcom 246 |
. . . . 5
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑦 = (𝑥‘𝐼) → 𝑥 = {⟨𝐼, 𝑦⟩})) |
122 | 111, 121 | impbid 211 |
. . . 4
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥 = {⟨𝐼, 𝑦⟩} ↔ 𝑦 = (𝑥‘𝐼))) |
123 | 36, 35, 103, 122 | f1o2d 7659 |
. . 3
⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐹:(Base‘𝑊)–1-1-onto→(Base‘𝐾)) |
124 | 20 | a1i 11 |
. . . 4
⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) →
(Base‘𝐾) =
(Base‘(ringLMod‘𝐾))) |
125 | 124 | f1oeq3d 6830 |
. . 3
⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → (𝐹:(Base‘𝑊)–1-1-onto→(Base‘𝐾) ↔ 𝐹:(Base‘𝑊)–1-1-onto→(Base‘(ringLMod‘𝐾)))) |
126 | 123, 125 | mpbid 231 |
. 2
⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐹:(Base‘𝑊)–1-1-onto→(Base‘(ringLMod‘𝐾))) |
127 | | eqid 2732 |
. . 3
⊢
(Base‘(ringLMod‘𝐾)) = (Base‘(ringLMod‘𝐾)) |
128 | 1, 127 | islmim 20672 |
. 2
⊢ (𝐹 ∈ (𝑊 LMIso (ringLMod‘𝐾)) ↔ (𝐹 ∈ (𝑊 LMHom (ringLMod‘𝐾)) ∧ 𝐹:(Base‘𝑊)–1-1-onto→(Base‘(ringLMod‘𝐾)))) |
129 | 95, 126, 128 | sylanbrc 583 |
1
⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐹 ∈ (𝑊 LMIso (ringLMod‘𝐾))) |