Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frlmsnic Structured version   Visualization version   GIF version

Theorem frlmsnic 42523
Description: Given a free module with a singleton as the index set, that is, a free module of one-dimensional vectors, the function that maps each vector to its coordinate is a module isomorphism from that module to its ring of scalars seen as a module. (Contributed by Steven Nguyen, 18-Aug-2023.)
Hypotheses
Ref Expression
frlmsnic.w 𝑊 = (𝐾 freeLMod {𝐼})
frlmsnic.1 𝐹 = (𝑥 ∈ (Base‘𝑊) ↦ (𝑥𝐼))
Assertion
Ref Expression
frlmsnic ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐹 ∈ (𝑊 LMIso (ringLMod‘𝐾)))
Distinct variable groups:   𝑥,𝐼   𝑥,𝐾   𝑥,𝐹   𝑥,𝑊

Proof of Theorem frlmsnic
Dummy variables 𝑦 𝑢 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2729 . . 3 ( ·𝑠𝑊) = ( ·𝑠𝑊)
3 eqid 2729 . . 3 ( ·𝑠 ‘(ringLMod‘𝐾)) = ( ·𝑠 ‘(ringLMod‘𝐾))
4 eqid 2729 . . 3 (Scalar‘𝑊) = (Scalar‘𝑊)
5 eqid 2729 . . 3 (Scalar‘(ringLMod‘𝐾)) = (Scalar‘(ringLMod‘𝐾))
6 eqid 2729 . . 3 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
7 snex 5375 . . . . 5 {𝐼} ∈ V
8 frlmsnic.w . . . . . 6 𝑊 = (𝐾 freeLMod {𝐼})
98frlmlmod 21656 . . . . 5 ((𝐾 ∈ Ring ∧ {𝐼} ∈ V) → 𝑊 ∈ LMod)
107, 9mpan2 691 . . . 4 (𝐾 ∈ Ring → 𝑊 ∈ LMod)
1110adantr 480 . . 3 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝑊 ∈ LMod)
12 rlmlmod 21107 . . . 4 (𝐾 ∈ Ring → (ringLMod‘𝐾) ∈ LMod)
1312adantr 480 . . 3 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → (ringLMod‘𝐾) ∈ LMod)
14 rlmsca 21102 . . . . 5 (𝐾 ∈ Ring → 𝐾 = (Scalar‘(ringLMod‘𝐾)))
1514adantr 480 . . . 4 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐾 = (Scalar‘(ringLMod‘𝐾)))
168frlmsca 21660 . . . . . 6 ((𝐾 ∈ Ring ∧ {𝐼} ∈ V) → 𝐾 = (Scalar‘𝑊))
177, 16mpan2 691 . . . . 5 (𝐾 ∈ Ring → 𝐾 = (Scalar‘𝑊))
1817adantr 480 . . . 4 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐾 = (Scalar‘𝑊))
1915, 18eqtr3d 2766 . . 3 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → (Scalar‘(ringLMod‘𝐾)) = (Scalar‘𝑊))
20 rlmbas 21097 . . . 4 (Base‘𝐾) = (Base‘(ringLMod‘𝐾))
21 eqid 2729 . . . 4 (+g𝑊) = (+g𝑊)
22 rlmplusg 21098 . . . 4 (+g𝐾) = (+g‘(ringLMod‘𝐾))
23 lmodgrp 20770 . . . . 5 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
2411, 23syl 17 . . . 4 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝑊 ∈ Grp)
25 lmodgrp 20770 . . . . . 6 ((ringLMod‘𝐾) ∈ LMod → (ringLMod‘𝐾) ∈ Grp)
2612, 25syl 17 . . . . 5 (𝐾 ∈ Ring → (ringLMod‘𝐾) ∈ Grp)
2726adantr 480 . . . 4 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → (ringLMod‘𝐾) ∈ Grp)
28 eqid 2729 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
298, 28, 1frlmbasf 21667 . . . . . . . 8 (({𝐼} ∈ V ∧ 𝑥 ∈ (Base‘𝑊)) → 𝑥:{𝐼}⟶(Base‘𝐾))
307, 29mpan 690 . . . . . . 7 (𝑥 ∈ (Base‘𝑊) → 𝑥:{𝐼}⟶(Base‘𝐾))
3130adantl 481 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑥 ∈ (Base‘𝑊)) → 𝑥:{𝐼}⟶(Base‘𝐾))
32 snidg 4612 . . . . . . . 8 (𝐼 ∈ V → 𝐼 ∈ {𝐼})
3332adantl 481 . . . . . . 7 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐼 ∈ {𝐼})
3433adantr 480 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑥 ∈ (Base‘𝑊)) → 𝐼 ∈ {𝐼})
3531, 34ffvelcdmd 7019 . . . . 5 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥𝐼) ∈ (Base‘𝐾))
36 frlmsnic.1 . . . . 5 𝐹 = (𝑥 ∈ (Base‘𝑊) ↦ (𝑥𝐼))
3735, 36fmptd 7048 . . . 4 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐹:(Base‘𝑊)⟶(Base‘𝐾))
38 simpll 766 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝐾 ∈ Ring)
397a1i 11 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → {𝐼} ∈ V)
40 simprl 770 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑥 ∈ (Base‘𝑊))
41 simprr 772 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑦 ∈ (Base‘𝑊))
4233adantr 480 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝐼 ∈ {𝐼})
43 eqid 2729 . . . . . 6 (+g𝐾) = (+g𝐾)
448, 1, 38, 39, 40, 41, 42, 43, 21frlmvplusgvalc 21674 . . . . 5 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → ((𝑥(+g𝑊)𝑦)‘𝐼) = ((𝑥𝐼)(+g𝐾)(𝑦𝐼)))
4511adantr 480 . . . . . . 7 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑊 ∈ LMod)
461, 21lmodvacl 20778 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥(+g𝑊)𝑦) ∈ (Base‘𝑊))
4745, 40, 41, 46syl3anc 1373 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(+g𝑊)𝑦) ∈ (Base‘𝑊))
48 fveq1 6821 . . . . . . 7 (𝑡 = (𝑥(+g𝑊)𝑦) → (𝑡𝐼) = ((𝑥(+g𝑊)𝑦)‘𝐼))
49 fveq1 6821 . . . . . . . . 9 (𝑥 = 𝑡 → (𝑥𝐼) = (𝑡𝐼))
5049cbvmptv 5196 . . . . . . . 8 (𝑥 ∈ (Base‘𝑊) ↦ (𝑥𝐼)) = (𝑡 ∈ (Base‘𝑊) ↦ (𝑡𝐼))
5136, 50eqtri 2752 . . . . . . 7 𝐹 = (𝑡 ∈ (Base‘𝑊) ↦ (𝑡𝐼))
52 fvexd 6837 . . . . . . 7 (𝑡 ∈ (Base‘𝑊) → (𝑡𝐼) ∈ V)
5348, 51, 52fvmpt3 6934 . . . . . 6 ((𝑥(+g𝑊)𝑦) ∈ (Base‘𝑊) → (𝐹‘(𝑥(+g𝑊)𝑦)) = ((𝑥(+g𝑊)𝑦)‘𝐼))
5447, 53syl 17 . . . . 5 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐹‘(𝑥(+g𝑊)𝑦)) = ((𝑥(+g𝑊)𝑦)‘𝐼))
5536a1i 11 . . . . . . . 8 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝐹 = (𝑥 ∈ (Base‘𝑊) ↦ (𝑥𝐼)))
56 fvexd 6837 . . . . . . . 8 ((((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥𝐼) ∈ V)
5755, 56fvmpt2d 6943 . . . . . . 7 ((((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝐹𝑥) = (𝑥𝐼))
5840, 57mpdan 687 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐹𝑥) = (𝑥𝐼))
59 fveq1 6821 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝐼) = (𝑦𝐼))
60 fvexd 6837 . . . . . . . 8 (𝑥 ∈ (Base‘𝑊) → (𝑥𝐼) ∈ V)
6159, 36, 60fvmpt3 6934 . . . . . . 7 (𝑦 ∈ (Base‘𝑊) → (𝐹𝑦) = (𝑦𝐼))
6241, 61syl 17 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐹𝑦) = (𝑦𝐼))
6358, 62oveq12d 7367 . . . . 5 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → ((𝐹𝑥)(+g𝐾)(𝐹𝑦)) = ((𝑥𝐼)(+g𝐾)(𝑦𝐼)))
6444, 54, 633eqtr4d 2774 . . . 4 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐹‘(𝑥(+g𝑊)𝑦)) = ((𝐹𝑥)(+g𝐾)(𝐹𝑦)))
651, 20, 21, 22, 24, 27, 37, 64isghmd 19104 . . 3 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐹 ∈ (𝑊 GrpHom (ringLMod‘𝐾)))
667a1i 11 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → {𝐼} ∈ V)
6718eqcomd 2735 . . . . . . . . . 10 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → (Scalar‘𝑊) = 𝐾)
6867fveq2d 6826 . . . . . . . . 9 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → (Base‘(Scalar‘𝑊)) = (Base‘𝐾))
6968eleq2d 2814 . . . . . . . 8 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → (𝑥 ∈ (Base‘(Scalar‘𝑊)) ↔ 𝑥 ∈ (Base‘𝐾)))
7069biimpa 476 . . . . . . 7 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑊))) → 𝑥 ∈ (Base‘𝐾))
7170adantrr 717 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑥 ∈ (Base‘𝐾))
72 simprr 772 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑦 ∈ (Base‘𝑊))
7333adantr 480 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝐼 ∈ {𝐼})
74 eqid 2729 . . . . . 6 (.r𝐾) = (.r𝐾)
758, 1, 28, 66, 71, 72, 73, 2, 74frlmvscaval 21675 . . . . 5 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → ((𝑥( ·𝑠𝑊)𝑦)‘𝐼) = (𝑥(.r𝐾)(𝑦𝐼)))
76 rlmvsca 21104 . . . . . 6 (.r𝐾) = ( ·𝑠 ‘(ringLMod‘𝐾))
7776oveqi 7362 . . . . 5 (𝑥(.r𝐾)(𝑦𝐼)) = (𝑥( ·𝑠 ‘(ringLMod‘𝐾))(𝑦𝐼))
7875, 77eqtrdi 2780 . . . 4 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → ((𝑥( ·𝑠𝑊)𝑦)‘𝐼) = (𝑥( ·𝑠 ‘(ringLMod‘𝐾))(𝑦𝐼)))
79 fveq1 6821 . . . . . . 7 (𝑥 = 𝑢 → (𝑥𝐼) = (𝑢𝐼))
8079cbvmptv 5196 . . . . . 6 (𝑥 ∈ (Base‘𝑊) ↦ (𝑥𝐼)) = (𝑢 ∈ (Base‘𝑊) ↦ (𝑢𝐼))
8136, 80eqtri 2752 . . . . 5 𝐹 = (𝑢 ∈ (Base‘𝑊) ↦ (𝑢𝐼))
82 fveq1 6821 . . . . 5 (𝑢 = (𝑥( ·𝑠𝑊)𝑦) → (𝑢𝐼) = ((𝑥( ·𝑠𝑊)𝑦)‘𝐼))
837a1i 11 . . . . . . . 8 (𝐼 ∈ V → {𝐼} ∈ V)
8483, 9sylan2 593 . . . . . . 7 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝑊 ∈ LMod)
8584adantr 480 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑊 ∈ LMod)
86 simprl 770 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑥 ∈ (Base‘(Scalar‘𝑊)))
871, 4, 2, 6, 85, 86, 72lmodvscld 20782 . . . . 5 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥( ·𝑠𝑊)𝑦) ∈ (Base‘𝑊))
88 fvexd 6837 . . . . 5 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → ((𝑥( ·𝑠𝑊)𝑦)‘𝐼) ∈ V)
8981, 82, 87, 88fvmptd3 6953 . . . 4 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐹‘(𝑥( ·𝑠𝑊)𝑦)) = ((𝑥( ·𝑠𝑊)𝑦)‘𝐼))
90 fvex 6835 . . . . . . 7 (𝑥𝐼) ∈ V
9159, 36, 90fvmpt3i 6935 . . . . . 6 (𝑦 ∈ (Base‘𝑊) → (𝐹𝑦) = (𝑦𝐼))
9272, 91syl 17 . . . . 5 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐹𝑦) = (𝑦𝐼))
9392oveq2d 7365 . . . 4 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥( ·𝑠 ‘(ringLMod‘𝐾))(𝐹𝑦)) = (𝑥( ·𝑠 ‘(ringLMod‘𝐾))(𝑦𝐼)))
9478, 89, 933eqtr4d 2774 . . 3 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐹‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥( ·𝑠 ‘(ringLMod‘𝐾))(𝐹𝑦)))
951, 2, 3, 4, 5, 6, 11, 13, 19, 65, 94islmhmd 20943 . 2 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐹 ∈ (𝑊 LMHom (ringLMod‘𝐾)))
96 simplr 768 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑦 ∈ (Base‘𝐾)) → 𝐼 ∈ V)
97 simpr 484 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑦 ∈ (Base‘𝐾)) → 𝑦 ∈ (Base‘𝐾))
9896, 97fsnd 6807 . . . . 5 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑦 ∈ (Base‘𝐾)) → {⟨𝐼, 𝑦⟩}:{𝐼}⟶(Base‘𝐾))
99 simpll 766 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑦 ∈ (Base‘𝐾)) → 𝐾 ∈ Ring)
100 snfi 8968 . . . . . 6 {𝐼} ∈ Fin
1018, 28, 1frlmfielbas 42483 . . . . . 6 ((𝐾 ∈ Ring ∧ {𝐼} ∈ Fin) → ({⟨𝐼, 𝑦⟩} ∈ (Base‘𝑊) ↔ {⟨𝐼, 𝑦⟩}:{𝐼}⟶(Base‘𝐾)))
10299, 100, 101sylancl 586 . . . . 5 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑦 ∈ (Base‘𝐾)) → ({⟨𝐼, 𝑦⟩} ∈ (Base‘𝑊) ↔ {⟨𝐼, 𝑦⟩}:{𝐼}⟶(Base‘𝐾)))
10398, 102mpbird 257 . . . 4 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑦 ∈ (Base‘𝐾)) → {⟨𝐼, 𝑦⟩} ∈ (Base‘𝑊))
104 fveq1 6821 . . . . . . . 8 (𝑥 = {⟨𝐼, 𝑦⟩} → (𝑥𝐼) = ({⟨𝐼, 𝑦⟩}‘𝐼))
105104adantl 481 . . . . . . 7 ((((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑥 = {⟨𝐼, 𝑦⟩}) → (𝑥𝐼) = ({⟨𝐼, 𝑦⟩}‘𝐼))
106 simpllr 775 . . . . . . . 8 ((((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑥 = {⟨𝐼, 𝑦⟩}) → 𝐼 ∈ V)
107 vex 3440 . . . . . . . 8 𝑦 ∈ V
108 fvsng 7116 . . . . . . . 8 ((𝐼 ∈ V ∧ 𝑦 ∈ V) → ({⟨𝐼, 𝑦⟩}‘𝐼) = 𝑦)
109106, 107, 108sylancl 586 . . . . . . 7 ((((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑥 = {⟨𝐼, 𝑦⟩}) → ({⟨𝐼, 𝑦⟩}‘𝐼) = 𝑦)
110105, 109eqtr2d 2765 . . . . . 6 ((((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑥 = {⟨𝐼, 𝑦⟩}) → 𝑦 = (𝑥𝐼))
111110ex 412 . . . . 5 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥 = {⟨𝐼, 𝑦⟩} → 𝑦 = (𝑥𝐼)))
112 simplr 768 . . . . . . 7 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝐼 ∈ V)
11331adantrr 717 . . . . . . . 8 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝑥:{𝐼}⟶(Base‘𝐾))
114113ffnd 6653 . . . . . . 7 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝑥 Fn {𝐼})
115 fnsnbg 7100 . . . . . . . 8 (𝐼 ∈ V → (𝑥 Fn {𝐼} ↔ 𝑥 = {⟨𝐼, (𝑥𝐼)⟩}))
116115biimpd 229 . . . . . . 7 (𝐼 ∈ V → (𝑥 Fn {𝐼} → 𝑥 = {⟨𝐼, (𝑥𝐼)⟩}))
117112, 114, 116sylc 65 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝑥 = {⟨𝐼, (𝑥𝐼)⟩})
118 opeq2 4825 . . . . . . . 8 (𝑦 = (𝑥𝐼) → ⟨𝐼, 𝑦⟩ = ⟨𝐼, (𝑥𝐼)⟩)
119118sneqd 4589 . . . . . . 7 (𝑦 = (𝑥𝐼) → {⟨𝐼, 𝑦⟩} = {⟨𝐼, (𝑥𝐼)⟩})
120119eqeq2d 2740 . . . . . 6 (𝑦 = (𝑥𝐼) → (𝑥 = {⟨𝐼, 𝑦⟩} ↔ 𝑥 = {⟨𝐼, (𝑥𝐼)⟩}))
121117, 120syl5ibrcom 247 . . . . 5 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑦 = (𝑥𝐼) → 𝑥 = {⟨𝐼, 𝑦⟩}))
122111, 121impbid 212 . . . 4 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥 = {⟨𝐼, 𝑦⟩} ↔ 𝑦 = (𝑥𝐼)))
12336, 35, 103, 122f1o2d 7603 . . 3 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐹:(Base‘𝑊)–1-1-onto→(Base‘𝐾))
12420a1i 11 . . . 4 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → (Base‘𝐾) = (Base‘(ringLMod‘𝐾)))
125124f1oeq3d 6761 . . 3 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → (𝐹:(Base‘𝑊)–1-1-onto→(Base‘𝐾) ↔ 𝐹:(Base‘𝑊)–1-1-onto→(Base‘(ringLMod‘𝐾))))
126123, 125mpbid 232 . 2 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐹:(Base‘𝑊)–1-1-onto→(Base‘(ringLMod‘𝐾)))
127 eqid 2729 . . 3 (Base‘(ringLMod‘𝐾)) = (Base‘(ringLMod‘𝐾))
1281, 127islmim 20966 . 2 (𝐹 ∈ (𝑊 LMIso (ringLMod‘𝐾)) ↔ (𝐹 ∈ (𝑊 LMHom (ringLMod‘𝐾)) ∧ 𝐹:(Base‘𝑊)–1-1-onto→(Base‘(ringLMod‘𝐾))))
12995, 126, 128sylanbrc 583 1 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐹 ∈ (𝑊 LMIso (ringLMod‘𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3436  {csn 4577  cop 4583  cmpt 5173   Fn wfn 6477  wf 6478  1-1-ontowf1o 6481  cfv 6482  (class class class)co 7349  Fincfn 8872  Basecbs 17120  +gcplusg 17161  .rcmulr 17162  Scalarcsca 17164   ·𝑠 cvsca 17165  Grpcgrp 18812  Ringcrg 20118  LModclmod 20763   LMHom clmhm 20923   LMIso clmim 20924  ringLModcrglmod 21076   freeLMod cfrlm 21653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-sup 9332  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-prds 17351  df-pws 17353  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-minusg 18816  df-sbg 18817  df-subg 19002  df-ghm 19092  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-subrg 20455  df-lmod 20765  df-lss 20835  df-lmhm 20926  df-lmim 20927  df-sra 21077  df-rgmod 21078  df-dsmm 21639  df-frlm 21654
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator