Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frlmsnic Structured version   Visualization version   GIF version

Theorem frlmsnic 41667
Description: Given a free module with a singleton as the index set, that is, a free module of one-dimensional vectors, the function that maps each vector to its coordinate is a module isomorphism from that module to its ring of scalars seen as a module. (Contributed by Steven Nguyen, 18-Aug-2023.)
Hypotheses
Ref Expression
frlmsnic.w 𝑊 = (𝐾 freeLMod {𝐼})
frlmsnic.1 𝐹 = (𝑥 ∈ (Base‘𝑊) ↦ (𝑥𝐼))
Assertion
Ref Expression
frlmsnic ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐹 ∈ (𝑊 LMIso (ringLMod‘𝐾)))
Distinct variable groups:   𝑥,𝐼   𝑥,𝐾   𝑥,𝐹   𝑥,𝑊

Proof of Theorem frlmsnic
Dummy variables 𝑦 𝑢 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2726 . . 3 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2726 . . 3 ( ·𝑠𝑊) = ( ·𝑠𝑊)
3 eqid 2726 . . 3 ( ·𝑠 ‘(ringLMod‘𝐾)) = ( ·𝑠 ‘(ringLMod‘𝐾))
4 eqid 2726 . . 3 (Scalar‘𝑊) = (Scalar‘𝑊)
5 eqid 2726 . . 3 (Scalar‘(ringLMod‘𝐾)) = (Scalar‘(ringLMod‘𝐾))
6 eqid 2726 . . 3 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
7 snex 5424 . . . . 5 {𝐼} ∈ V
8 frlmsnic.w . . . . . 6 𝑊 = (𝐾 freeLMod {𝐼})
98frlmlmod 21644 . . . . 5 ((𝐾 ∈ Ring ∧ {𝐼} ∈ V) → 𝑊 ∈ LMod)
107, 9mpan2 688 . . . 4 (𝐾 ∈ Ring → 𝑊 ∈ LMod)
1110adantr 480 . . 3 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝑊 ∈ LMod)
12 rlmlmod 21059 . . . 4 (𝐾 ∈ Ring → (ringLMod‘𝐾) ∈ LMod)
1312adantr 480 . . 3 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → (ringLMod‘𝐾) ∈ LMod)
14 rlmsca 21054 . . . . 5 (𝐾 ∈ Ring → 𝐾 = (Scalar‘(ringLMod‘𝐾)))
1514adantr 480 . . . 4 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐾 = (Scalar‘(ringLMod‘𝐾)))
168frlmsca 21648 . . . . . 6 ((𝐾 ∈ Ring ∧ {𝐼} ∈ V) → 𝐾 = (Scalar‘𝑊))
177, 16mpan2 688 . . . . 5 (𝐾 ∈ Ring → 𝐾 = (Scalar‘𝑊))
1817adantr 480 . . . 4 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐾 = (Scalar‘𝑊))
1915, 18eqtr3d 2768 . . 3 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → (Scalar‘(ringLMod‘𝐾)) = (Scalar‘𝑊))
20 rlmbas 21049 . . . 4 (Base‘𝐾) = (Base‘(ringLMod‘𝐾))
21 eqid 2726 . . . 4 (+g𝑊) = (+g𝑊)
22 rlmplusg 21050 . . . 4 (+g𝐾) = (+g‘(ringLMod‘𝐾))
23 lmodgrp 20713 . . . . 5 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
2411, 23syl 17 . . . 4 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝑊 ∈ Grp)
25 lmodgrp 20713 . . . . . 6 ((ringLMod‘𝐾) ∈ LMod → (ringLMod‘𝐾) ∈ Grp)
2612, 25syl 17 . . . . 5 (𝐾 ∈ Ring → (ringLMod‘𝐾) ∈ Grp)
2726adantr 480 . . . 4 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → (ringLMod‘𝐾) ∈ Grp)
28 eqid 2726 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
298, 28, 1frlmbasf 21655 . . . . . . . 8 (({𝐼} ∈ V ∧ 𝑥 ∈ (Base‘𝑊)) → 𝑥:{𝐼}⟶(Base‘𝐾))
307, 29mpan 687 . . . . . . 7 (𝑥 ∈ (Base‘𝑊) → 𝑥:{𝐼}⟶(Base‘𝐾))
3130adantl 481 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑥 ∈ (Base‘𝑊)) → 𝑥:{𝐼}⟶(Base‘𝐾))
32 snidg 4657 . . . . . . . 8 (𝐼 ∈ V → 𝐼 ∈ {𝐼})
3332adantl 481 . . . . . . 7 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐼 ∈ {𝐼})
3433adantr 480 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑥 ∈ (Base‘𝑊)) → 𝐼 ∈ {𝐼})
3531, 34ffvelcdmd 7081 . . . . 5 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥𝐼) ∈ (Base‘𝐾))
36 frlmsnic.1 . . . . 5 𝐹 = (𝑥 ∈ (Base‘𝑊) ↦ (𝑥𝐼))
3735, 36fmptd 7109 . . . 4 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐹:(Base‘𝑊)⟶(Base‘𝐾))
38 simpll 764 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝐾 ∈ Ring)
397a1i 11 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → {𝐼} ∈ V)
40 simprl 768 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑥 ∈ (Base‘𝑊))
41 simprr 770 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑦 ∈ (Base‘𝑊))
4233adantr 480 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝐼 ∈ {𝐼})
43 eqid 2726 . . . . . 6 (+g𝐾) = (+g𝐾)
448, 1, 38, 39, 40, 41, 42, 43, 21frlmvplusgvalc 21662 . . . . 5 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → ((𝑥(+g𝑊)𝑦)‘𝐼) = ((𝑥𝐼)(+g𝐾)(𝑦𝐼)))
4511adantr 480 . . . . . . 7 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑊 ∈ LMod)
461, 21lmodvacl 20721 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥(+g𝑊)𝑦) ∈ (Base‘𝑊))
4745, 40, 41, 46syl3anc 1368 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(+g𝑊)𝑦) ∈ (Base‘𝑊))
48 fveq1 6884 . . . . . . 7 (𝑡 = (𝑥(+g𝑊)𝑦) → (𝑡𝐼) = ((𝑥(+g𝑊)𝑦)‘𝐼))
49 fveq1 6884 . . . . . . . . 9 (𝑥 = 𝑡 → (𝑥𝐼) = (𝑡𝐼))
5049cbvmptv 5254 . . . . . . . 8 (𝑥 ∈ (Base‘𝑊) ↦ (𝑥𝐼)) = (𝑡 ∈ (Base‘𝑊) ↦ (𝑡𝐼))
5136, 50eqtri 2754 . . . . . . 7 𝐹 = (𝑡 ∈ (Base‘𝑊) ↦ (𝑡𝐼))
52 fvexd 6900 . . . . . . 7 (𝑡 ∈ (Base‘𝑊) → (𝑡𝐼) ∈ V)
5348, 51, 52fvmpt3 6996 . . . . . 6 ((𝑥(+g𝑊)𝑦) ∈ (Base‘𝑊) → (𝐹‘(𝑥(+g𝑊)𝑦)) = ((𝑥(+g𝑊)𝑦)‘𝐼))
5447, 53syl 17 . . . . 5 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐹‘(𝑥(+g𝑊)𝑦)) = ((𝑥(+g𝑊)𝑦)‘𝐼))
5536a1i 11 . . . . . . . 8 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝐹 = (𝑥 ∈ (Base‘𝑊) ↦ (𝑥𝐼)))
56 fvexd 6900 . . . . . . . 8 ((((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥𝐼) ∈ V)
5755, 56fvmpt2d 7005 . . . . . . 7 ((((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝐹𝑥) = (𝑥𝐼))
5840, 57mpdan 684 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐹𝑥) = (𝑥𝐼))
59 fveq1 6884 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝐼) = (𝑦𝐼))
60 fvexd 6900 . . . . . . . 8 (𝑥 ∈ (Base‘𝑊) → (𝑥𝐼) ∈ V)
6159, 36, 60fvmpt3 6996 . . . . . . 7 (𝑦 ∈ (Base‘𝑊) → (𝐹𝑦) = (𝑦𝐼))
6241, 61syl 17 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐹𝑦) = (𝑦𝐼))
6358, 62oveq12d 7423 . . . . 5 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → ((𝐹𝑥)(+g𝐾)(𝐹𝑦)) = ((𝑥𝐼)(+g𝐾)(𝑦𝐼)))
6444, 54, 633eqtr4d 2776 . . . 4 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐹‘(𝑥(+g𝑊)𝑦)) = ((𝐹𝑥)(+g𝐾)(𝐹𝑦)))
651, 20, 21, 22, 24, 27, 37, 64isghmd 19150 . . 3 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐹 ∈ (𝑊 GrpHom (ringLMod‘𝐾)))
667a1i 11 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → {𝐼} ∈ V)
6718eqcomd 2732 . . . . . . . . . 10 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → (Scalar‘𝑊) = 𝐾)
6867fveq2d 6889 . . . . . . . . 9 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → (Base‘(Scalar‘𝑊)) = (Base‘𝐾))
6968eleq2d 2813 . . . . . . . 8 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → (𝑥 ∈ (Base‘(Scalar‘𝑊)) ↔ 𝑥 ∈ (Base‘𝐾)))
7069biimpa 476 . . . . . . 7 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑊))) → 𝑥 ∈ (Base‘𝐾))
7170adantrr 714 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑥 ∈ (Base‘𝐾))
72 simprr 770 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑦 ∈ (Base‘𝑊))
7333adantr 480 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝐼 ∈ {𝐼})
74 eqid 2726 . . . . . 6 (.r𝐾) = (.r𝐾)
758, 1, 28, 66, 71, 72, 73, 2, 74frlmvscaval 21663 . . . . 5 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → ((𝑥( ·𝑠𝑊)𝑦)‘𝐼) = (𝑥(.r𝐾)(𝑦𝐼)))
76 rlmvsca 21056 . . . . . 6 (.r𝐾) = ( ·𝑠 ‘(ringLMod‘𝐾))
7776oveqi 7418 . . . . 5 (𝑥(.r𝐾)(𝑦𝐼)) = (𝑥( ·𝑠 ‘(ringLMod‘𝐾))(𝑦𝐼))
7875, 77eqtrdi 2782 . . . 4 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → ((𝑥( ·𝑠𝑊)𝑦)‘𝐼) = (𝑥( ·𝑠 ‘(ringLMod‘𝐾))(𝑦𝐼)))
79 fveq1 6884 . . . . . . 7 (𝑥 = 𝑢 → (𝑥𝐼) = (𝑢𝐼))
8079cbvmptv 5254 . . . . . 6 (𝑥 ∈ (Base‘𝑊) ↦ (𝑥𝐼)) = (𝑢 ∈ (Base‘𝑊) ↦ (𝑢𝐼))
8136, 80eqtri 2754 . . . . 5 𝐹 = (𝑢 ∈ (Base‘𝑊) ↦ (𝑢𝐼))
82 fveq1 6884 . . . . 5 (𝑢 = (𝑥( ·𝑠𝑊)𝑦) → (𝑢𝐼) = ((𝑥( ·𝑠𝑊)𝑦)‘𝐼))
837a1i 11 . . . . . . . 8 (𝐼 ∈ V → {𝐼} ∈ V)
8483, 9sylan2 592 . . . . . . 7 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝑊 ∈ LMod)
8584adantr 480 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑊 ∈ LMod)
86 simprl 768 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑥 ∈ (Base‘(Scalar‘𝑊)))
871, 4, 2, 6, 85, 86, 72lmodvscld 20725 . . . . 5 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥( ·𝑠𝑊)𝑦) ∈ (Base‘𝑊))
88 fvexd 6900 . . . . 5 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → ((𝑥( ·𝑠𝑊)𝑦)‘𝐼) ∈ V)
8981, 82, 87, 88fvmptd3 7015 . . . 4 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐹‘(𝑥( ·𝑠𝑊)𝑦)) = ((𝑥( ·𝑠𝑊)𝑦)‘𝐼))
90 fvex 6898 . . . . . . 7 (𝑥𝐼) ∈ V
9159, 36, 90fvmpt3i 6997 . . . . . 6 (𝑦 ∈ (Base‘𝑊) → (𝐹𝑦) = (𝑦𝐼))
9272, 91syl 17 . . . . 5 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐹𝑦) = (𝑦𝐼))
9392oveq2d 7421 . . . 4 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥( ·𝑠 ‘(ringLMod‘𝐾))(𝐹𝑦)) = (𝑥( ·𝑠 ‘(ringLMod‘𝐾))(𝑦𝐼)))
9478, 89, 933eqtr4d 2776 . . 3 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐹‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥( ·𝑠 ‘(ringLMod‘𝐾))(𝐹𝑦)))
951, 2, 3, 4, 5, 6, 11, 13, 19, 65, 94islmhmd 20887 . 2 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐹 ∈ (𝑊 LMHom (ringLMod‘𝐾)))
96 simplr 766 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑦 ∈ (Base‘𝐾)) → 𝐼 ∈ V)
97 simpr 484 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑦 ∈ (Base‘𝐾)) → 𝑦 ∈ (Base‘𝐾))
9896, 97fsnd 6870 . . . . 5 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑦 ∈ (Base‘𝐾)) → {⟨𝐼, 𝑦⟩}:{𝐼}⟶(Base‘𝐾))
99 simpll 764 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑦 ∈ (Base‘𝐾)) → 𝐾 ∈ Ring)
100 snfi 9046 . . . . . 6 {𝐼} ∈ Fin
1018, 28, 1frlmfielbas 41635 . . . . . 6 ((𝐾 ∈ Ring ∧ {𝐼} ∈ Fin) → ({⟨𝐼, 𝑦⟩} ∈ (Base‘𝑊) ↔ {⟨𝐼, 𝑦⟩}:{𝐼}⟶(Base‘𝐾)))
10299, 100, 101sylancl 585 . . . . 5 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑦 ∈ (Base‘𝐾)) → ({⟨𝐼, 𝑦⟩} ∈ (Base‘𝑊) ↔ {⟨𝐼, 𝑦⟩}:{𝐼}⟶(Base‘𝐾)))
10398, 102mpbird 257 . . . 4 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑦 ∈ (Base‘𝐾)) → {⟨𝐼, 𝑦⟩} ∈ (Base‘𝑊))
104 fveq1 6884 . . . . . . . 8 (𝑥 = {⟨𝐼, 𝑦⟩} → (𝑥𝐼) = ({⟨𝐼, 𝑦⟩}‘𝐼))
105104adantl 481 . . . . . . 7 ((((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑥 = {⟨𝐼, 𝑦⟩}) → (𝑥𝐼) = ({⟨𝐼, 𝑦⟩}‘𝐼))
106 simpllr 773 . . . . . . . 8 ((((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑥 = {⟨𝐼, 𝑦⟩}) → 𝐼 ∈ V)
107 vex 3472 . . . . . . . 8 𝑦 ∈ V
108 fvsng 7174 . . . . . . . 8 ((𝐼 ∈ V ∧ 𝑦 ∈ V) → ({⟨𝐼, 𝑦⟩}‘𝐼) = 𝑦)
109106, 107, 108sylancl 585 . . . . . . 7 ((((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑥 = {⟨𝐼, 𝑦⟩}) → ({⟨𝐼, 𝑦⟩}‘𝐼) = 𝑦)
110105, 109eqtr2d 2767 . . . . . 6 ((((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑥 = {⟨𝐼, 𝑦⟩}) → 𝑦 = (𝑥𝐼))
111110ex 412 . . . . 5 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥 = {⟨𝐼, 𝑦⟩} → 𝑦 = (𝑥𝐼)))
112 simplr 766 . . . . . . 7 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝐼 ∈ V)
11331adantrr 714 . . . . . . . 8 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝑥:{𝐼}⟶(Base‘𝐾))
114113ffnd 6712 . . . . . . 7 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝑥 Fn {𝐼})
115 fnsnbt 41612 . . . . . . . 8 (𝐼 ∈ V → (𝑥 Fn {𝐼} ↔ 𝑥 = {⟨𝐼, (𝑥𝐼)⟩}))
116115biimpd 228 . . . . . . 7 (𝐼 ∈ V → (𝑥 Fn {𝐼} → 𝑥 = {⟨𝐼, (𝑥𝐼)⟩}))
117112, 114, 116sylc 65 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝑥 = {⟨𝐼, (𝑥𝐼)⟩})
118 opeq2 4869 . . . . . . . 8 (𝑦 = (𝑥𝐼) → ⟨𝐼, 𝑦⟩ = ⟨𝐼, (𝑥𝐼)⟩)
119118sneqd 4635 . . . . . . 7 (𝑦 = (𝑥𝐼) → {⟨𝐼, 𝑦⟩} = {⟨𝐼, (𝑥𝐼)⟩})
120119eqeq2d 2737 . . . . . 6 (𝑦 = (𝑥𝐼) → (𝑥 = {⟨𝐼, 𝑦⟩} ↔ 𝑥 = {⟨𝐼, (𝑥𝐼)⟩}))
121117, 120syl5ibrcom 246 . . . . 5 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑦 = (𝑥𝐼) → 𝑥 = {⟨𝐼, 𝑦⟩}))
122111, 121impbid 211 . . . 4 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥 = {⟨𝐼, 𝑦⟩} ↔ 𝑦 = (𝑥𝐼)))
12336, 35, 103, 122f1o2d 7657 . . 3 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐹:(Base‘𝑊)–1-1-onto→(Base‘𝐾))
12420a1i 11 . . . 4 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → (Base‘𝐾) = (Base‘(ringLMod‘𝐾)))
125124f1oeq3d 6824 . . 3 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → (𝐹:(Base‘𝑊)–1-1-onto→(Base‘𝐾) ↔ 𝐹:(Base‘𝑊)–1-1-onto→(Base‘(ringLMod‘𝐾))))
126123, 125mpbid 231 . 2 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐹:(Base‘𝑊)–1-1-onto→(Base‘(ringLMod‘𝐾)))
127 eqid 2726 . . 3 (Base‘(ringLMod‘𝐾)) = (Base‘(ringLMod‘𝐾))
1281, 127islmim 20910 . 2 (𝐹 ∈ (𝑊 LMIso (ringLMod‘𝐾)) ↔ (𝐹 ∈ (𝑊 LMHom (ringLMod‘𝐾)) ∧ 𝐹:(Base‘𝑊)–1-1-onto→(Base‘(ringLMod‘𝐾))))
12995, 126, 128sylanbrc 582 1 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐹 ∈ (𝑊 LMIso (ringLMod‘𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  Vcvv 3468  {csn 4623  cop 4629  cmpt 5224   Fn wfn 6532  wf 6533  1-1-ontowf1o 6536  cfv 6537  (class class class)co 7405  Fincfn 8941  Basecbs 17153  +gcplusg 17206  .rcmulr 17207  Scalarcsca 17209   ·𝑠 cvsca 17210  Grpcgrp 18863  Ringcrg 20138  LModclmod 20706   LMHom clmhm 20867   LMIso clmim 20868  ringLModcrglmod 21020   freeLMod cfrlm 21641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7667  df-om 7853  df-1st 7974  df-2nd 7975  df-supp 8147  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-er 8705  df-map 8824  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fsupp 9364  df-sup 9439  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-z 12563  df-dec 12682  df-uz 12827  df-fz 13491  df-struct 17089  df-sets 17106  df-slot 17124  df-ndx 17136  df-base 17154  df-ress 17183  df-plusg 17219  df-mulr 17220  df-sca 17222  df-vsca 17223  df-ip 17224  df-tset 17225  df-ple 17226  df-ds 17228  df-hom 17230  df-cco 17231  df-0g 17396  df-prds 17402  df-pws 17404  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-grp 18866  df-minusg 18867  df-sbg 18868  df-subg 19050  df-ghm 19139  df-cmn 19702  df-abl 19703  df-mgp 20040  df-rng 20058  df-ur 20087  df-ring 20140  df-subrg 20471  df-lmod 20708  df-lss 20779  df-lmhm 20870  df-lmim 20871  df-sra 21021  df-rgmod 21022  df-dsmm 21627  df-frlm 21642
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator