Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frlmsnic Structured version   Visualization version   GIF version

Theorem frlmsnic 42521
Description: Given a free module with a singleton as the index set, that is, a free module of one-dimensional vectors, the function that maps each vector to its coordinate is a module isomorphism from that module to its ring of scalars seen as a module. (Contributed by Steven Nguyen, 18-Aug-2023.)
Hypotheses
Ref Expression
frlmsnic.w 𝑊 = (𝐾 freeLMod {𝐼})
frlmsnic.1 𝐹 = (𝑥 ∈ (Base‘𝑊) ↦ (𝑥𝐼))
Assertion
Ref Expression
frlmsnic ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐹 ∈ (𝑊 LMIso (ringLMod‘𝐾)))
Distinct variable groups:   𝑥,𝐼   𝑥,𝐾   𝑥,𝐹   𝑥,𝑊

Proof of Theorem frlmsnic
Dummy variables 𝑦 𝑢 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2729 . . 3 ( ·𝑠𝑊) = ( ·𝑠𝑊)
3 eqid 2729 . . 3 ( ·𝑠 ‘(ringLMod‘𝐾)) = ( ·𝑠 ‘(ringLMod‘𝐾))
4 eqid 2729 . . 3 (Scalar‘𝑊) = (Scalar‘𝑊)
5 eqid 2729 . . 3 (Scalar‘(ringLMod‘𝐾)) = (Scalar‘(ringLMod‘𝐾))
6 eqid 2729 . . 3 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
7 snex 5386 . . . . 5 {𝐼} ∈ V
8 frlmsnic.w . . . . . 6 𝑊 = (𝐾 freeLMod {𝐼})
98frlmlmod 21691 . . . . 5 ((𝐾 ∈ Ring ∧ {𝐼} ∈ V) → 𝑊 ∈ LMod)
107, 9mpan2 691 . . . 4 (𝐾 ∈ Ring → 𝑊 ∈ LMod)
1110adantr 480 . . 3 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝑊 ∈ LMod)
12 rlmlmod 21142 . . . 4 (𝐾 ∈ Ring → (ringLMod‘𝐾) ∈ LMod)
1312adantr 480 . . 3 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → (ringLMod‘𝐾) ∈ LMod)
14 rlmsca 21137 . . . . 5 (𝐾 ∈ Ring → 𝐾 = (Scalar‘(ringLMod‘𝐾)))
1514adantr 480 . . . 4 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐾 = (Scalar‘(ringLMod‘𝐾)))
168frlmsca 21695 . . . . . 6 ((𝐾 ∈ Ring ∧ {𝐼} ∈ V) → 𝐾 = (Scalar‘𝑊))
177, 16mpan2 691 . . . . 5 (𝐾 ∈ Ring → 𝐾 = (Scalar‘𝑊))
1817adantr 480 . . . 4 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐾 = (Scalar‘𝑊))
1915, 18eqtr3d 2766 . . 3 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → (Scalar‘(ringLMod‘𝐾)) = (Scalar‘𝑊))
20 rlmbas 21132 . . . 4 (Base‘𝐾) = (Base‘(ringLMod‘𝐾))
21 eqid 2729 . . . 4 (+g𝑊) = (+g𝑊)
22 rlmplusg 21133 . . . 4 (+g𝐾) = (+g‘(ringLMod‘𝐾))
23 lmodgrp 20805 . . . . 5 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
2411, 23syl 17 . . . 4 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝑊 ∈ Grp)
25 lmodgrp 20805 . . . . . 6 ((ringLMod‘𝐾) ∈ LMod → (ringLMod‘𝐾) ∈ Grp)
2612, 25syl 17 . . . . 5 (𝐾 ∈ Ring → (ringLMod‘𝐾) ∈ Grp)
2726adantr 480 . . . 4 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → (ringLMod‘𝐾) ∈ Grp)
28 eqid 2729 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
298, 28, 1frlmbasf 21702 . . . . . . . 8 (({𝐼} ∈ V ∧ 𝑥 ∈ (Base‘𝑊)) → 𝑥:{𝐼}⟶(Base‘𝐾))
307, 29mpan 690 . . . . . . 7 (𝑥 ∈ (Base‘𝑊) → 𝑥:{𝐼}⟶(Base‘𝐾))
3130adantl 481 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑥 ∈ (Base‘𝑊)) → 𝑥:{𝐼}⟶(Base‘𝐾))
32 snidg 4620 . . . . . . . 8 (𝐼 ∈ V → 𝐼 ∈ {𝐼})
3332adantl 481 . . . . . . 7 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐼 ∈ {𝐼})
3433adantr 480 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑥 ∈ (Base‘𝑊)) → 𝐼 ∈ {𝐼})
3531, 34ffvelcdmd 7039 . . . . 5 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥𝐼) ∈ (Base‘𝐾))
36 frlmsnic.1 . . . . 5 𝐹 = (𝑥 ∈ (Base‘𝑊) ↦ (𝑥𝐼))
3735, 36fmptd 7068 . . . 4 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐹:(Base‘𝑊)⟶(Base‘𝐾))
38 simpll 766 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝐾 ∈ Ring)
397a1i 11 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → {𝐼} ∈ V)
40 simprl 770 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑥 ∈ (Base‘𝑊))
41 simprr 772 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑦 ∈ (Base‘𝑊))
4233adantr 480 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝐼 ∈ {𝐼})
43 eqid 2729 . . . . . 6 (+g𝐾) = (+g𝐾)
448, 1, 38, 39, 40, 41, 42, 43, 21frlmvplusgvalc 21709 . . . . 5 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → ((𝑥(+g𝑊)𝑦)‘𝐼) = ((𝑥𝐼)(+g𝐾)(𝑦𝐼)))
4511adantr 480 . . . . . . 7 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑊 ∈ LMod)
461, 21lmodvacl 20813 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥(+g𝑊)𝑦) ∈ (Base‘𝑊))
4745, 40, 41, 46syl3anc 1373 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(+g𝑊)𝑦) ∈ (Base‘𝑊))
48 fveq1 6839 . . . . . . 7 (𝑡 = (𝑥(+g𝑊)𝑦) → (𝑡𝐼) = ((𝑥(+g𝑊)𝑦)‘𝐼))
49 fveq1 6839 . . . . . . . . 9 (𝑥 = 𝑡 → (𝑥𝐼) = (𝑡𝐼))
5049cbvmptv 5206 . . . . . . . 8 (𝑥 ∈ (Base‘𝑊) ↦ (𝑥𝐼)) = (𝑡 ∈ (Base‘𝑊) ↦ (𝑡𝐼))
5136, 50eqtri 2752 . . . . . . 7 𝐹 = (𝑡 ∈ (Base‘𝑊) ↦ (𝑡𝐼))
52 fvexd 6855 . . . . . . 7 (𝑡 ∈ (Base‘𝑊) → (𝑡𝐼) ∈ V)
5348, 51, 52fvmpt3 6954 . . . . . 6 ((𝑥(+g𝑊)𝑦) ∈ (Base‘𝑊) → (𝐹‘(𝑥(+g𝑊)𝑦)) = ((𝑥(+g𝑊)𝑦)‘𝐼))
5447, 53syl 17 . . . . 5 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐹‘(𝑥(+g𝑊)𝑦)) = ((𝑥(+g𝑊)𝑦)‘𝐼))
5536a1i 11 . . . . . . . 8 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝐹 = (𝑥 ∈ (Base‘𝑊) ↦ (𝑥𝐼)))
56 fvexd 6855 . . . . . . . 8 ((((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥𝐼) ∈ V)
5755, 56fvmpt2d 6963 . . . . . . 7 ((((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝐹𝑥) = (𝑥𝐼))
5840, 57mpdan 687 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐹𝑥) = (𝑥𝐼))
59 fveq1 6839 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝐼) = (𝑦𝐼))
60 fvexd 6855 . . . . . . . 8 (𝑥 ∈ (Base‘𝑊) → (𝑥𝐼) ∈ V)
6159, 36, 60fvmpt3 6954 . . . . . . 7 (𝑦 ∈ (Base‘𝑊) → (𝐹𝑦) = (𝑦𝐼))
6241, 61syl 17 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐹𝑦) = (𝑦𝐼))
6358, 62oveq12d 7387 . . . . 5 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → ((𝐹𝑥)(+g𝐾)(𝐹𝑦)) = ((𝑥𝐼)(+g𝐾)(𝑦𝐼)))
6444, 54, 633eqtr4d 2774 . . . 4 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐹‘(𝑥(+g𝑊)𝑦)) = ((𝐹𝑥)(+g𝐾)(𝐹𝑦)))
651, 20, 21, 22, 24, 27, 37, 64isghmd 19139 . . 3 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐹 ∈ (𝑊 GrpHom (ringLMod‘𝐾)))
667a1i 11 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → {𝐼} ∈ V)
6718eqcomd 2735 . . . . . . . . . 10 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → (Scalar‘𝑊) = 𝐾)
6867fveq2d 6844 . . . . . . . . 9 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → (Base‘(Scalar‘𝑊)) = (Base‘𝐾))
6968eleq2d 2814 . . . . . . . 8 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → (𝑥 ∈ (Base‘(Scalar‘𝑊)) ↔ 𝑥 ∈ (Base‘𝐾)))
7069biimpa 476 . . . . . . 7 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑊))) → 𝑥 ∈ (Base‘𝐾))
7170adantrr 717 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑥 ∈ (Base‘𝐾))
72 simprr 772 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑦 ∈ (Base‘𝑊))
7333adantr 480 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝐼 ∈ {𝐼})
74 eqid 2729 . . . . . 6 (.r𝐾) = (.r𝐾)
758, 1, 28, 66, 71, 72, 73, 2, 74frlmvscaval 21710 . . . . 5 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → ((𝑥( ·𝑠𝑊)𝑦)‘𝐼) = (𝑥(.r𝐾)(𝑦𝐼)))
76 rlmvsca 21139 . . . . . 6 (.r𝐾) = ( ·𝑠 ‘(ringLMod‘𝐾))
7776oveqi 7382 . . . . 5 (𝑥(.r𝐾)(𝑦𝐼)) = (𝑥( ·𝑠 ‘(ringLMod‘𝐾))(𝑦𝐼))
7875, 77eqtrdi 2780 . . . 4 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → ((𝑥( ·𝑠𝑊)𝑦)‘𝐼) = (𝑥( ·𝑠 ‘(ringLMod‘𝐾))(𝑦𝐼)))
79 fveq1 6839 . . . . . . 7 (𝑥 = 𝑢 → (𝑥𝐼) = (𝑢𝐼))
8079cbvmptv 5206 . . . . . 6 (𝑥 ∈ (Base‘𝑊) ↦ (𝑥𝐼)) = (𝑢 ∈ (Base‘𝑊) ↦ (𝑢𝐼))
8136, 80eqtri 2752 . . . . 5 𝐹 = (𝑢 ∈ (Base‘𝑊) ↦ (𝑢𝐼))
82 fveq1 6839 . . . . 5 (𝑢 = (𝑥( ·𝑠𝑊)𝑦) → (𝑢𝐼) = ((𝑥( ·𝑠𝑊)𝑦)‘𝐼))
837a1i 11 . . . . . . . 8 (𝐼 ∈ V → {𝐼} ∈ V)
8483, 9sylan2 593 . . . . . . 7 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝑊 ∈ LMod)
8584adantr 480 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑊 ∈ LMod)
86 simprl 770 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑥 ∈ (Base‘(Scalar‘𝑊)))
871, 4, 2, 6, 85, 86, 72lmodvscld 20817 . . . . 5 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥( ·𝑠𝑊)𝑦) ∈ (Base‘𝑊))
88 fvexd 6855 . . . . 5 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → ((𝑥( ·𝑠𝑊)𝑦)‘𝐼) ∈ V)
8981, 82, 87, 88fvmptd3 6973 . . . 4 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐹‘(𝑥( ·𝑠𝑊)𝑦)) = ((𝑥( ·𝑠𝑊)𝑦)‘𝐼))
90 fvex 6853 . . . . . . 7 (𝑥𝐼) ∈ V
9159, 36, 90fvmpt3i 6955 . . . . . 6 (𝑦 ∈ (Base‘𝑊) → (𝐹𝑦) = (𝑦𝐼))
9272, 91syl 17 . . . . 5 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐹𝑦) = (𝑦𝐼))
9392oveq2d 7385 . . . 4 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥( ·𝑠 ‘(ringLMod‘𝐾))(𝐹𝑦)) = (𝑥( ·𝑠 ‘(ringLMod‘𝐾))(𝑦𝐼)))
9478, 89, 933eqtr4d 2774 . . 3 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐹‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥( ·𝑠 ‘(ringLMod‘𝐾))(𝐹𝑦)))
951, 2, 3, 4, 5, 6, 11, 13, 19, 65, 94islmhmd 20978 . 2 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐹 ∈ (𝑊 LMHom (ringLMod‘𝐾)))
96 simplr 768 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑦 ∈ (Base‘𝐾)) → 𝐼 ∈ V)
97 simpr 484 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑦 ∈ (Base‘𝐾)) → 𝑦 ∈ (Base‘𝐾))
9896, 97fsnd 6825 . . . . 5 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑦 ∈ (Base‘𝐾)) → {⟨𝐼, 𝑦⟩}:{𝐼}⟶(Base‘𝐾))
99 simpll 766 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑦 ∈ (Base‘𝐾)) → 𝐾 ∈ Ring)
100 snfi 8991 . . . . . 6 {𝐼} ∈ Fin
1018, 28, 1frlmfielbas 42481 . . . . . 6 ((𝐾 ∈ Ring ∧ {𝐼} ∈ Fin) → ({⟨𝐼, 𝑦⟩} ∈ (Base‘𝑊) ↔ {⟨𝐼, 𝑦⟩}:{𝐼}⟶(Base‘𝐾)))
10299, 100, 101sylancl 586 . . . . 5 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑦 ∈ (Base‘𝐾)) → ({⟨𝐼, 𝑦⟩} ∈ (Base‘𝑊) ↔ {⟨𝐼, 𝑦⟩}:{𝐼}⟶(Base‘𝐾)))
10398, 102mpbird 257 . . . 4 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑦 ∈ (Base‘𝐾)) → {⟨𝐼, 𝑦⟩} ∈ (Base‘𝑊))
104 fveq1 6839 . . . . . . . 8 (𝑥 = {⟨𝐼, 𝑦⟩} → (𝑥𝐼) = ({⟨𝐼, 𝑦⟩}‘𝐼))
105104adantl 481 . . . . . . 7 ((((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑥 = {⟨𝐼, 𝑦⟩}) → (𝑥𝐼) = ({⟨𝐼, 𝑦⟩}‘𝐼))
106 simpllr 775 . . . . . . . 8 ((((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑥 = {⟨𝐼, 𝑦⟩}) → 𝐼 ∈ V)
107 vex 3448 . . . . . . . 8 𝑦 ∈ V
108 fvsng 7136 . . . . . . . 8 ((𝐼 ∈ V ∧ 𝑦 ∈ V) → ({⟨𝐼, 𝑦⟩}‘𝐼) = 𝑦)
109106, 107, 108sylancl 586 . . . . . . 7 ((((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑥 = {⟨𝐼, 𝑦⟩}) → ({⟨𝐼, 𝑦⟩}‘𝐼) = 𝑦)
110105, 109eqtr2d 2765 . . . . . 6 ((((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑥 = {⟨𝐼, 𝑦⟩}) → 𝑦 = (𝑥𝐼))
111110ex 412 . . . . 5 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥 = {⟨𝐼, 𝑦⟩} → 𝑦 = (𝑥𝐼)))
112 simplr 768 . . . . . . 7 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝐼 ∈ V)
11331adantrr 717 . . . . . . . 8 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝑥:{𝐼}⟶(Base‘𝐾))
114113ffnd 6671 . . . . . . 7 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝑥 Fn {𝐼})
115 fnsnbg 7120 . . . . . . . 8 (𝐼 ∈ V → (𝑥 Fn {𝐼} ↔ 𝑥 = {⟨𝐼, (𝑥𝐼)⟩}))
116115biimpd 229 . . . . . . 7 (𝐼 ∈ V → (𝑥 Fn {𝐼} → 𝑥 = {⟨𝐼, (𝑥𝐼)⟩}))
117112, 114, 116sylc 65 . . . . . 6 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝑥 = {⟨𝐼, (𝑥𝐼)⟩})
118 opeq2 4834 . . . . . . . 8 (𝑦 = (𝑥𝐼) → ⟨𝐼, 𝑦⟩ = ⟨𝐼, (𝑥𝐼)⟩)
119118sneqd 4597 . . . . . . 7 (𝑦 = (𝑥𝐼) → {⟨𝐼, 𝑦⟩} = {⟨𝐼, (𝑥𝐼)⟩})
120119eqeq2d 2740 . . . . . 6 (𝑦 = (𝑥𝐼) → (𝑥 = {⟨𝐼, 𝑦⟩} ↔ 𝑥 = {⟨𝐼, (𝑥𝐼)⟩}))
121117, 120syl5ibrcom 247 . . . . 5 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑦 = (𝑥𝐼) → 𝑥 = {⟨𝐼, 𝑦⟩}))
122111, 121impbid 212 . . . 4 (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥 = {⟨𝐼, 𝑦⟩} ↔ 𝑦 = (𝑥𝐼)))
12336, 35, 103, 122f1o2d 7623 . . 3 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐹:(Base‘𝑊)–1-1-onto→(Base‘𝐾))
12420a1i 11 . . . 4 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → (Base‘𝐾) = (Base‘(ringLMod‘𝐾)))
125124f1oeq3d 6779 . . 3 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → (𝐹:(Base‘𝑊)–1-1-onto→(Base‘𝐾) ↔ 𝐹:(Base‘𝑊)–1-1-onto→(Base‘(ringLMod‘𝐾))))
126123, 125mpbid 232 . 2 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐹:(Base‘𝑊)–1-1-onto→(Base‘(ringLMod‘𝐾)))
127 eqid 2729 . . 3 (Base‘(ringLMod‘𝐾)) = (Base‘(ringLMod‘𝐾))
1281, 127islmim 21001 . 2 (𝐹 ∈ (𝑊 LMIso (ringLMod‘𝐾)) ↔ (𝐹 ∈ (𝑊 LMHom (ringLMod‘𝐾)) ∧ 𝐹:(Base‘𝑊)–1-1-onto→(Base‘(ringLMod‘𝐾))))
12995, 126, 128sylanbrc 583 1 ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐹 ∈ (𝑊 LMIso (ringLMod‘𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  {csn 4585  cop 4591  cmpt 5183   Fn wfn 6494  wf 6495  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  Fincfn 8895  Basecbs 17155  +gcplusg 17196  .rcmulr 17197  Scalarcsca 17199   ·𝑠 cvsca 17200  Grpcgrp 18847  Ringcrg 20153  LModclmod 20798   LMHom clmhm 20958   LMIso clmim 20959  ringLModcrglmod 21111   freeLMod cfrlm 21688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-hom 17220  df-cco 17221  df-0g 17380  df-prds 17386  df-pws 17388  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-grp 18850  df-minusg 18851  df-sbg 18852  df-subg 19037  df-ghm 19127  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-subrg 20490  df-lmod 20800  df-lss 20870  df-lmhm 20961  df-lmim 20962  df-sra 21112  df-rgmod 21113  df-dsmm 21674  df-frlm 21689
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator