Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . 3
⊢
(Base‘𝑊) =
(Base‘𝑊) |
2 | | eqid 2738 |
. . 3
⊢ (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑊) |
3 | | eqid 2738 |
. . 3
⊢ (
·𝑠 ‘(ringLMod‘𝐾)) = ( ·𝑠
‘(ringLMod‘𝐾)) |
4 | | eqid 2738 |
. . 3
⊢
(Scalar‘𝑊) =
(Scalar‘𝑊) |
5 | | eqid 2738 |
. . 3
⊢
(Scalar‘(ringLMod‘𝐾)) = (Scalar‘(ringLMod‘𝐾)) |
6 | | eqid 2738 |
. . 3
⊢
(Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) |
7 | | snex 5354 |
. . . . 5
⊢ {𝐼} ∈ V |
8 | | frlmsnic.w |
. . . . . 6
⊢ 𝑊 = (𝐾 freeLMod {𝐼}) |
9 | 8 | frlmlmod 20956 |
. . . . 5
⊢ ((𝐾 ∈ Ring ∧ {𝐼} ∈ V) → 𝑊 ∈ LMod) |
10 | 7, 9 | mpan2 688 |
. . . 4
⊢ (𝐾 ∈ Ring → 𝑊 ∈ LMod) |
11 | 10 | adantr 481 |
. . 3
⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝑊 ∈ LMod) |
12 | | rlmlmod 20475 |
. . . 4
⊢ (𝐾 ∈ Ring →
(ringLMod‘𝐾) ∈
LMod) |
13 | 12 | adantr 481 |
. . 3
⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) →
(ringLMod‘𝐾) ∈
LMod) |
14 | | rlmsca 20470 |
. . . . 5
⊢ (𝐾 ∈ Ring → 𝐾 =
(Scalar‘(ringLMod‘𝐾))) |
15 | 14 | adantr 481 |
. . . 4
⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐾 =
(Scalar‘(ringLMod‘𝐾))) |
16 | 8 | frlmsca 20960 |
. . . . . 6
⊢ ((𝐾 ∈ Ring ∧ {𝐼} ∈ V) → 𝐾 = (Scalar‘𝑊)) |
17 | 7, 16 | mpan2 688 |
. . . . 5
⊢ (𝐾 ∈ Ring → 𝐾 = (Scalar‘𝑊)) |
18 | 17 | adantr 481 |
. . . 4
⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐾 = (Scalar‘𝑊)) |
19 | 15, 18 | eqtr3d 2780 |
. . 3
⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) →
(Scalar‘(ringLMod‘𝐾)) = (Scalar‘𝑊)) |
20 | | rlmbas 20465 |
. . . 4
⊢
(Base‘𝐾) =
(Base‘(ringLMod‘𝐾)) |
21 | | eqid 2738 |
. . . 4
⊢
(+g‘𝑊) = (+g‘𝑊) |
22 | | rlmplusg 20466 |
. . . 4
⊢
(+g‘𝐾) =
(+g‘(ringLMod‘𝐾)) |
23 | | lmodgrp 20130 |
. . . . 5
⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) |
24 | 11, 23 | syl 17 |
. . . 4
⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝑊 ∈ Grp) |
25 | | lmodgrp 20130 |
. . . . . 6
⊢
((ringLMod‘𝐾)
∈ LMod → (ringLMod‘𝐾) ∈ Grp) |
26 | 12, 25 | syl 17 |
. . . . 5
⊢ (𝐾 ∈ Ring →
(ringLMod‘𝐾) ∈
Grp) |
27 | 26 | adantr 481 |
. . . 4
⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) →
(ringLMod‘𝐾) ∈
Grp) |
28 | | eqid 2738 |
. . . . . . . . 9
⊢
(Base‘𝐾) =
(Base‘𝐾) |
29 | 8, 28, 1 | frlmbasf 20967 |
. . . . . . . 8
⊢ (({𝐼} ∈ V ∧ 𝑥 ∈ (Base‘𝑊)) → 𝑥:{𝐼}⟶(Base‘𝐾)) |
30 | 7, 29 | mpan 687 |
. . . . . . 7
⊢ (𝑥 ∈ (Base‘𝑊) → 𝑥:{𝐼}⟶(Base‘𝐾)) |
31 | 30 | adantl 482 |
. . . . . 6
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑥 ∈ (Base‘𝑊)) → 𝑥:{𝐼}⟶(Base‘𝐾)) |
32 | | snidg 4595 |
. . . . . . . 8
⊢ (𝐼 ∈ V → 𝐼 ∈ {𝐼}) |
33 | 32 | adantl 482 |
. . . . . . 7
⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐼 ∈ {𝐼}) |
34 | 33 | adantr 481 |
. . . . . 6
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑥 ∈ (Base‘𝑊)) → 𝐼 ∈ {𝐼}) |
35 | 31, 34 | ffvelrnd 6962 |
. . . . 5
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥‘𝐼) ∈ (Base‘𝐾)) |
36 | | frlmsnic.1 |
. . . . 5
⊢ 𝐹 = (𝑥 ∈ (Base‘𝑊) ↦ (𝑥‘𝐼)) |
37 | 35, 36 | fmptd 6988 |
. . . 4
⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐹:(Base‘𝑊)⟶(Base‘𝐾)) |
38 | | simpll 764 |
. . . . . 6
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝐾 ∈ Ring) |
39 | 7 | a1i 11 |
. . . . . 6
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → {𝐼} ∈ V) |
40 | | simprl 768 |
. . . . . 6
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑥 ∈ (Base‘𝑊)) |
41 | | simprr 770 |
. . . . . 6
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑦 ∈ (Base‘𝑊)) |
42 | 33 | adantr 481 |
. . . . . 6
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝐼 ∈ {𝐼}) |
43 | | eqid 2738 |
. . . . . 6
⊢
(+g‘𝐾) = (+g‘𝐾) |
44 | 8, 1, 38, 39, 40, 41, 42, 43, 21 | frlmvplusgvalc 20974 |
. . . . 5
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → ((𝑥(+g‘𝑊)𝑦)‘𝐼) = ((𝑥‘𝐼)(+g‘𝐾)(𝑦‘𝐼))) |
45 | 11 | adantr 481 |
. . . . . . 7
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑊 ∈ LMod) |
46 | 1, 21 | lmodvacl 20137 |
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥(+g‘𝑊)𝑦) ∈ (Base‘𝑊)) |
47 | 45, 40, 41, 46 | syl3anc 1370 |
. . . . . 6
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(+g‘𝑊)𝑦) ∈ (Base‘𝑊)) |
48 | | fveq1 6773 |
. . . . . . 7
⊢ (𝑡 = (𝑥(+g‘𝑊)𝑦) → (𝑡‘𝐼) = ((𝑥(+g‘𝑊)𝑦)‘𝐼)) |
49 | | fveq1 6773 |
. . . . . . . . 9
⊢ (𝑥 = 𝑡 → (𝑥‘𝐼) = (𝑡‘𝐼)) |
50 | 49 | cbvmptv 5187 |
. . . . . . . 8
⊢ (𝑥 ∈ (Base‘𝑊) ↦ (𝑥‘𝐼)) = (𝑡 ∈ (Base‘𝑊) ↦ (𝑡‘𝐼)) |
51 | 36, 50 | eqtri 2766 |
. . . . . . 7
⊢ 𝐹 = (𝑡 ∈ (Base‘𝑊) ↦ (𝑡‘𝐼)) |
52 | | fvexd 6789 |
. . . . . . 7
⊢ (𝑡 ∈ (Base‘𝑊) → (𝑡‘𝐼) ∈ V) |
53 | 48, 51, 52 | fvmpt3 6879 |
. . . . . 6
⊢ ((𝑥(+g‘𝑊)𝑦) ∈ (Base‘𝑊) → (𝐹‘(𝑥(+g‘𝑊)𝑦)) = ((𝑥(+g‘𝑊)𝑦)‘𝐼)) |
54 | 47, 53 | syl 17 |
. . . . 5
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐹‘(𝑥(+g‘𝑊)𝑦)) = ((𝑥(+g‘𝑊)𝑦)‘𝐼)) |
55 | 36 | a1i 11 |
. . . . . . . 8
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝐹 = (𝑥 ∈ (Base‘𝑊) ↦ (𝑥‘𝐼))) |
56 | | fvexd 6789 |
. . . . . . . 8
⊢ ((((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥‘𝐼) ∈ V) |
57 | 55, 56 | fvmpt2d 6888 |
. . . . . . 7
⊢ ((((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝐹‘𝑥) = (𝑥‘𝐼)) |
58 | 40, 57 | mpdan 684 |
. . . . . 6
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐹‘𝑥) = (𝑥‘𝐼)) |
59 | | fveq1 6773 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑥‘𝐼) = (𝑦‘𝐼)) |
60 | | fvexd 6789 |
. . . . . . . 8
⊢ (𝑥 ∈ (Base‘𝑊) → (𝑥‘𝐼) ∈ V) |
61 | 59, 36, 60 | fvmpt3 6879 |
. . . . . . 7
⊢ (𝑦 ∈ (Base‘𝑊) → (𝐹‘𝑦) = (𝑦‘𝐼)) |
62 | 41, 61 | syl 17 |
. . . . . 6
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐹‘𝑦) = (𝑦‘𝐼)) |
63 | 58, 62 | oveq12d 7293 |
. . . . 5
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → ((𝐹‘𝑥)(+g‘𝐾)(𝐹‘𝑦)) = ((𝑥‘𝐼)(+g‘𝐾)(𝑦‘𝐼))) |
64 | 44, 54, 63 | 3eqtr4d 2788 |
. . . 4
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐹‘(𝑥(+g‘𝑊)𝑦)) = ((𝐹‘𝑥)(+g‘𝐾)(𝐹‘𝑦))) |
65 | 1, 20, 21, 22, 24, 27, 37, 64 | isghmd 18843 |
. . 3
⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐹 ∈ (𝑊 GrpHom (ringLMod‘𝐾))) |
66 | 7 | a1i 11 |
. . . . . 6
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → {𝐼} ∈ V) |
67 | 18 | eqcomd 2744 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) →
(Scalar‘𝑊) = 𝐾) |
68 | 67 | fveq2d 6778 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) →
(Base‘(Scalar‘𝑊)) = (Base‘𝐾)) |
69 | 68 | eleq2d 2824 |
. . . . . . . 8
⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → (𝑥 ∈
(Base‘(Scalar‘𝑊)) ↔ 𝑥 ∈ (Base‘𝐾))) |
70 | 69 | biimpa 477 |
. . . . . . 7
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑥 ∈
(Base‘(Scalar‘𝑊))) → 𝑥 ∈ (Base‘𝐾)) |
71 | 70 | adantrr 714 |
. . . . . 6
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑥 ∈ (Base‘𝐾)) |
72 | | simprr 770 |
. . . . . 6
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑦 ∈ (Base‘𝑊)) |
73 | 33 | adantr 481 |
. . . . . 6
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝐼 ∈ {𝐼}) |
74 | | eqid 2738 |
. . . . . 6
⊢
(.r‘𝐾) = (.r‘𝐾) |
75 | 8, 1, 28, 66, 71, 72, 73, 2, 74 | frlmvscaval 20975 |
. . . . 5
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → ((𝑥( ·𝑠
‘𝑊)𝑦)‘𝐼) = (𝑥(.r‘𝐾)(𝑦‘𝐼))) |
76 | | rlmvsca 20472 |
. . . . . 6
⊢
(.r‘𝐾) = ( ·𝑠
‘(ringLMod‘𝐾)) |
77 | 76 | oveqi 7288 |
. . . . 5
⊢ (𝑥(.r‘𝐾)(𝑦‘𝐼)) = (𝑥( ·𝑠
‘(ringLMod‘𝐾))(𝑦‘𝐼)) |
78 | 75, 77 | eqtrdi 2794 |
. . . 4
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → ((𝑥( ·𝑠
‘𝑊)𝑦)‘𝐼) = (𝑥( ·𝑠
‘(ringLMod‘𝐾))(𝑦‘𝐼))) |
79 | | fveq1 6773 |
. . . . . . 7
⊢ (𝑥 = 𝑢 → (𝑥‘𝐼) = (𝑢‘𝐼)) |
80 | 79 | cbvmptv 5187 |
. . . . . 6
⊢ (𝑥 ∈ (Base‘𝑊) ↦ (𝑥‘𝐼)) = (𝑢 ∈ (Base‘𝑊) ↦ (𝑢‘𝐼)) |
81 | 36, 80 | eqtri 2766 |
. . . . 5
⊢ 𝐹 = (𝑢 ∈ (Base‘𝑊) ↦ (𝑢‘𝐼)) |
82 | | fveq1 6773 |
. . . . 5
⊢ (𝑢 = (𝑥( ·𝑠
‘𝑊)𝑦) → (𝑢‘𝐼) = ((𝑥( ·𝑠
‘𝑊)𝑦)‘𝐼)) |
83 | 7 | a1i 11 |
. . . . . . . 8
⊢ (𝐼 ∈ V → {𝐼} ∈ V) |
84 | 83, 9 | sylan2 593 |
. . . . . . 7
⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝑊 ∈ LMod) |
85 | 84 | adantr 481 |
. . . . . 6
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑊 ∈ LMod) |
86 | | simprl 768 |
. . . . . 6
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑥 ∈ (Base‘(Scalar‘𝑊))) |
87 | 1, 4, 2, 6 | lmodvscl 20140 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥( ·𝑠
‘𝑊)𝑦) ∈ (Base‘𝑊)) |
88 | 85, 86, 72, 87 | syl3anc 1370 |
. . . . 5
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥( ·𝑠
‘𝑊)𝑦) ∈ (Base‘𝑊)) |
89 | | fvexd 6789 |
. . . . 5
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → ((𝑥( ·𝑠
‘𝑊)𝑦)‘𝐼) ∈ V) |
90 | 81, 82, 88, 89 | fvmptd3 6898 |
. . . 4
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐹‘(𝑥( ·𝑠
‘𝑊)𝑦)) = ((𝑥( ·𝑠
‘𝑊)𝑦)‘𝐼)) |
91 | | fvex 6787 |
. . . . . . 7
⊢ (𝑥‘𝐼) ∈ V |
92 | 59, 36, 91 | fvmpt3i 6880 |
. . . . . 6
⊢ (𝑦 ∈ (Base‘𝑊) → (𝐹‘𝑦) = (𝑦‘𝐼)) |
93 | 72, 92 | syl 17 |
. . . . 5
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐹‘𝑦) = (𝑦‘𝐼)) |
94 | 93 | oveq2d 7291 |
. . . 4
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥( ·𝑠
‘(ringLMod‘𝐾))(𝐹‘𝑦)) = (𝑥( ·𝑠
‘(ringLMod‘𝐾))(𝑦‘𝐼))) |
95 | 78, 90, 94 | 3eqtr4d 2788 |
. . 3
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐹‘(𝑥( ·𝑠
‘𝑊)𝑦)) = (𝑥( ·𝑠
‘(ringLMod‘𝐾))(𝐹‘𝑦))) |
96 | 1, 2, 3, 4, 5, 6, 11, 13, 19, 65, 95 | islmhmd 20301 |
. 2
⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐹 ∈ (𝑊 LMHom (ringLMod‘𝐾))) |
97 | | simplr 766 |
. . . . . 6
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑦 ∈ (Base‘𝐾)) → 𝐼 ∈ V) |
98 | | simpr 485 |
. . . . . 6
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑦 ∈ (Base‘𝐾)) → 𝑦 ∈ (Base‘𝐾)) |
99 | 97, 98 | fsnd 6759 |
. . . . 5
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑦 ∈ (Base‘𝐾)) → {〈𝐼, 𝑦〉}:{𝐼}⟶(Base‘𝐾)) |
100 | | simpll 764 |
. . . . . 6
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑦 ∈ (Base‘𝐾)) → 𝐾 ∈ Ring) |
101 | | snfi 8834 |
. . . . . 6
⊢ {𝐼} ∈ Fin |
102 | 8, 28, 1 | frlmfielbas 40231 |
. . . . . 6
⊢ ((𝐾 ∈ Ring ∧ {𝐼} ∈ Fin) →
({〈𝐼, 𝑦〉} ∈ (Base‘𝑊) ↔ {〈𝐼, 𝑦〉}:{𝐼}⟶(Base‘𝐾))) |
103 | 100, 101,
102 | sylancl 586 |
. . . . 5
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑦 ∈ (Base‘𝐾)) → ({〈𝐼, 𝑦〉} ∈ (Base‘𝑊) ↔ {〈𝐼, 𝑦〉}:{𝐼}⟶(Base‘𝐾))) |
104 | 99, 103 | mpbird 256 |
. . . 4
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ 𝑦 ∈ (Base‘𝐾)) → {〈𝐼, 𝑦〉} ∈ (Base‘𝑊)) |
105 | | fveq1 6773 |
. . . . . . . 8
⊢ (𝑥 = {〈𝐼, 𝑦〉} → (𝑥‘𝐼) = ({〈𝐼, 𝑦〉}‘𝐼)) |
106 | 105 | adantl 482 |
. . . . . . 7
⊢ ((((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑥 = {〈𝐼, 𝑦〉}) → (𝑥‘𝐼) = ({〈𝐼, 𝑦〉}‘𝐼)) |
107 | | simpllr 773 |
. . . . . . . 8
⊢ ((((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑥 = {〈𝐼, 𝑦〉}) → 𝐼 ∈ V) |
108 | | vex 3436 |
. . . . . . . 8
⊢ 𝑦 ∈ V |
109 | | fvsng 7052 |
. . . . . . . 8
⊢ ((𝐼 ∈ V ∧ 𝑦 ∈ V) → ({〈𝐼, 𝑦〉}‘𝐼) = 𝑦) |
110 | 107, 108,
109 | sylancl 586 |
. . . . . . 7
⊢ ((((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑥 = {〈𝐼, 𝑦〉}) → ({〈𝐼, 𝑦〉}‘𝐼) = 𝑦) |
111 | 106, 110 | eqtr2d 2779 |
. . . . . 6
⊢ ((((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) ∧ 𝑥 = {〈𝐼, 𝑦〉}) → 𝑦 = (𝑥‘𝐼)) |
112 | 111 | ex 413 |
. . . . 5
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥 = {〈𝐼, 𝑦〉} → 𝑦 = (𝑥‘𝐼))) |
113 | | simplr 766 |
. . . . . . 7
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝐼 ∈ V) |
114 | 31 | adantrr 714 |
. . . . . . . 8
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝑥:{𝐼}⟶(Base‘𝐾)) |
115 | 114 | ffnd 6601 |
. . . . . . 7
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝑥 Fn {𝐼}) |
116 | | fnsnbt 40208 |
. . . . . . . 8
⊢ (𝐼 ∈ V → (𝑥 Fn {𝐼} ↔ 𝑥 = {〈𝐼, (𝑥‘𝐼)〉})) |
117 | 116 | biimpd 228 |
. . . . . . 7
⊢ (𝐼 ∈ V → (𝑥 Fn {𝐼} → 𝑥 = {〈𝐼, (𝑥‘𝐼)〉})) |
118 | 113, 115,
117 | sylc 65 |
. . . . . 6
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝑥 = {〈𝐼, (𝑥‘𝐼)〉}) |
119 | | opeq2 4805 |
. . . . . . . 8
⊢ (𝑦 = (𝑥‘𝐼) → 〈𝐼, 𝑦〉 = 〈𝐼, (𝑥‘𝐼)〉) |
120 | 119 | sneqd 4573 |
. . . . . . 7
⊢ (𝑦 = (𝑥‘𝐼) → {〈𝐼, 𝑦〉} = {〈𝐼, (𝑥‘𝐼)〉}) |
121 | 120 | eqeq2d 2749 |
. . . . . 6
⊢ (𝑦 = (𝑥‘𝐼) → (𝑥 = {〈𝐼, 𝑦〉} ↔ 𝑥 = {〈𝐼, (𝑥‘𝐼)〉})) |
122 | 118, 121 | syl5ibrcom 246 |
. . . . 5
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑦 = (𝑥‘𝐼) → 𝑥 = {〈𝐼, 𝑦〉})) |
123 | 112, 122 | impbid 211 |
. . . 4
⊢ (((𝐾 ∈ Ring ∧ 𝐼 ∈ V) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥 = {〈𝐼, 𝑦〉} ↔ 𝑦 = (𝑥‘𝐼))) |
124 | 36, 35, 104, 123 | f1o2d 7523 |
. . 3
⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐹:(Base‘𝑊)–1-1-onto→(Base‘𝐾)) |
125 | 20 | a1i 11 |
. . . 4
⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) →
(Base‘𝐾) =
(Base‘(ringLMod‘𝐾))) |
126 | 125 | f1oeq3d 6713 |
. . 3
⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → (𝐹:(Base‘𝑊)–1-1-onto→(Base‘𝐾) ↔ 𝐹:(Base‘𝑊)–1-1-onto→(Base‘(ringLMod‘𝐾)))) |
127 | 124, 126 | mpbid 231 |
. 2
⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐹:(Base‘𝑊)–1-1-onto→(Base‘(ringLMod‘𝐾))) |
128 | | eqid 2738 |
. . 3
⊢
(Base‘(ringLMod‘𝐾)) = (Base‘(ringLMod‘𝐾)) |
129 | 1, 128 | islmim 20324 |
. 2
⊢ (𝐹 ∈ (𝑊 LMIso (ringLMod‘𝐾)) ↔ (𝐹 ∈ (𝑊 LMHom (ringLMod‘𝐾)) ∧ 𝐹:(Base‘𝑊)–1-1-onto→(Base‘(ringLMod‘𝐾)))) |
130 | 96, 127, 129 | sylanbrc 583 |
1
⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐹 ∈ (𝑊 LMIso (ringLMod‘𝐾))) |