![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > r1pvsca | Structured version Visualization version GIF version |
Description: Scalar multiplication property of the polynomial remainder operation. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
Ref | Expression |
---|---|
r1padd1.p | β’ π = (Poly1βπ ) |
r1padd1.u | β’ π = (Baseβπ) |
r1padd1.n | β’ π = (Unic1pβπ ) |
r1padd1.e | β’ πΈ = (rem1pβπ ) |
r1pvsca.6 | β’ (π β π β Ring) |
r1pvsca.7 | β’ (π β π΄ β π) |
r1pvsca.10 | β’ (π β π· β π) |
r1pvsca.1 | β’ Γ = ( Β·π βπ) |
r1pvsca.k | β’ πΎ = (Baseβπ ) |
r1pvsca.2 | β’ (π β π΅ β πΎ) |
Ref | Expression |
---|---|
r1pvsca | β’ (π β ((π΅ Γ π΄)πΈπ·) = (π΅ Γ (π΄πΈπ·))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r1pvsca.6 | . . . . 5 β’ (π β π β Ring) | |
2 | r1pvsca.2 | . . . . 5 β’ (π β π΅ β πΎ) | |
3 | r1pvsca.7 | . . . . . 6 β’ (π β π΄ β π) | |
4 | r1pvsca.10 | . . . . . 6 β’ (π β π· β π) | |
5 | eqid 2730 | . . . . . . 7 β’ (quot1pβπ ) = (quot1pβπ ) | |
6 | r1padd1.p | . . . . . . 7 β’ π = (Poly1βπ ) | |
7 | r1padd1.u | . . . . . . 7 β’ π = (Baseβπ) | |
8 | r1padd1.n | . . . . . . 7 β’ π = (Unic1pβπ ) | |
9 | 5, 6, 7, 8 | q1pcl 25908 | . . . . . 6 β’ ((π β Ring β§ π΄ β π β§ π· β π) β (π΄(quot1pβπ )π·) β π) |
10 | 1, 3, 4, 9 | syl3anc 1369 | . . . . 5 β’ (π β (π΄(quot1pβπ )π·) β π) |
11 | 6, 7, 8 | uc1pcl 25896 | . . . . . 6 β’ (π· β π β π· β π) |
12 | 4, 11 | syl 17 | . . . . 5 β’ (π β π· β π) |
13 | eqid 2730 | . . . . . 6 β’ (.rβπ) = (.rβπ) | |
14 | r1pvsca.k | . . . . . 6 β’ πΎ = (Baseβπ ) | |
15 | r1pvsca.1 | . . . . . 6 β’ Γ = ( Β·π βπ) | |
16 | 6, 13, 7, 14, 15 | ply1ass23l 21969 | . . . . 5 β’ ((π β Ring β§ (π΅ β πΎ β§ (π΄(quot1pβπ )π·) β π β§ π· β π)) β ((π΅ Γ (π΄(quot1pβπ )π·))(.rβπ)π·) = (π΅ Γ ((π΄(quot1pβπ )π·)(.rβπ)π·))) |
17 | 1, 2, 10, 12, 16 | syl13anc 1370 | . . . 4 β’ (π β ((π΅ Γ (π΄(quot1pβπ )π·))(.rβπ)π·) = (π΅ Γ ((π΄(quot1pβπ )π·)(.rβπ)π·))) |
18 | 17 | oveq2d 7427 | . . 3 β’ (π β ((π΅ Γ π΄)(-gβπ)((π΅ Γ (π΄(quot1pβπ )π·))(.rβπ)π·)) = ((π΅ Γ π΄)(-gβπ)(π΅ Γ ((π΄(quot1pβπ )π·)(.rβπ)π·)))) |
19 | 6, 7, 8, 5, 1, 3, 4, 15, 14, 2 | q1pvsca 32949 | . . . . 5 β’ (π β ((π΅ Γ π΄)(quot1pβπ )π·) = (π΅ Γ (π΄(quot1pβπ )π·))) |
20 | 19 | oveq1d 7426 | . . . 4 β’ (π β (((π΅ Γ π΄)(quot1pβπ )π·)(.rβπ)π·) = ((π΅ Γ (π΄(quot1pβπ )π·))(.rβπ)π·)) |
21 | 20 | oveq2d 7427 | . . 3 β’ (π β ((π΅ Γ π΄)(-gβπ)(((π΅ Γ π΄)(quot1pβπ )π·)(.rβπ)π·)) = ((π΅ Γ π΄)(-gβπ)((π΅ Γ (π΄(quot1pβπ )π·))(.rβπ)π·))) |
22 | eqid 2730 | . . . 4 β’ (Scalarβπ) = (Scalarβπ) | |
23 | eqid 2730 | . . . 4 β’ (Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) | |
24 | eqid 2730 | . . . 4 β’ (-gβπ) = (-gβπ) | |
25 | 6 | ply1lmod 21994 | . . . . 5 β’ (π β Ring β π β LMod) |
26 | 1, 25 | syl 17 | . . . 4 β’ (π β π β LMod) |
27 | 6 | ply1sca 21995 | . . . . . . . 8 β’ (π β Ring β π = (Scalarβπ)) |
28 | 1, 27 | syl 17 | . . . . . . 7 β’ (π β π = (Scalarβπ)) |
29 | 28 | fveq2d 6894 | . . . . . 6 β’ (π β (Baseβπ ) = (Baseβ(Scalarβπ))) |
30 | 14, 29 | eqtrid 2782 | . . . . 5 β’ (π β πΎ = (Baseβ(Scalarβπ))) |
31 | 2, 30 | eleqtrd 2833 | . . . 4 β’ (π β π΅ β (Baseβ(Scalarβπ))) |
32 | 6 | ply1ring 21990 | . . . . . 6 β’ (π β Ring β π β Ring) |
33 | 1, 32 | syl 17 | . . . . 5 β’ (π β π β Ring) |
34 | 7, 13, 33, 10, 12 | ringcld 20151 | . . . 4 β’ (π β ((π΄(quot1pβπ )π·)(.rβπ)π·) β π) |
35 | 7, 15, 22, 23, 24, 26, 31, 3, 34 | lmodsubdi 20673 | . . 3 β’ (π β (π΅ Γ (π΄(-gβπ)((π΄(quot1pβπ )π·)(.rβπ)π·))) = ((π΅ Γ π΄)(-gβπ)(π΅ Γ ((π΄(quot1pβπ )π·)(.rβπ)π·)))) |
36 | 18, 21, 35 | 3eqtr4d 2780 | . 2 β’ (π β ((π΅ Γ π΄)(-gβπ)(((π΅ Γ π΄)(quot1pβπ )π·)(.rβπ)π·)) = (π΅ Γ (π΄(-gβπ)((π΄(quot1pβπ )π·)(.rβπ)π·)))) |
37 | 7, 22, 15, 23, 26, 31, 3 | lmodvscld 20633 | . . 3 β’ (π β (π΅ Γ π΄) β π) |
38 | r1padd1.e | . . . 4 β’ πΈ = (rem1pβπ ) | |
39 | 38, 6, 7, 5, 13, 24 | r1pval 25909 | . . 3 β’ (((π΅ Γ π΄) β π β§ π· β π) β ((π΅ Γ π΄)πΈπ·) = ((π΅ Γ π΄)(-gβπ)(((π΅ Γ π΄)(quot1pβπ )π·)(.rβπ)π·))) |
40 | 37, 12, 39 | syl2anc 582 | . 2 β’ (π β ((π΅ Γ π΄)πΈπ·) = ((π΅ Γ π΄)(-gβπ)(((π΅ Γ π΄)(quot1pβπ )π·)(.rβπ)π·))) |
41 | 38, 6, 7, 5, 13, 24 | r1pval 25909 | . . . 4 β’ ((π΄ β π β§ π· β π) β (π΄πΈπ·) = (π΄(-gβπ)((π΄(quot1pβπ )π·)(.rβπ)π·))) |
42 | 3, 12, 41 | syl2anc 582 | . . 3 β’ (π β (π΄πΈπ·) = (π΄(-gβπ)((π΄(quot1pβπ )π·)(.rβπ)π·))) |
43 | 42 | oveq2d 7427 | . 2 β’ (π β (π΅ Γ (π΄πΈπ·)) = (π΅ Γ (π΄(-gβπ)((π΄(quot1pβπ )π·)(.rβπ)π·)))) |
44 | 36, 40, 43 | 3eqtr4d 2780 | 1 β’ (π β ((π΅ Γ π΄)πΈπ·) = (π΅ Γ (π΄πΈπ·))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1539 β wcel 2104 βcfv 6542 (class class class)co 7411 Basecbs 17148 .rcmulr 17202 Scalarcsca 17204 Β·π cvsca 17205 -gcsg 18857 Ringcrg 20127 LModclmod 20614 Poly1cpl1 21920 Unic1pcuc1p 25879 quot1pcq1p 25880 rem1pcr1p 25881 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 ax-addf 11191 ax-mulf 11192 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-of 7672 df-ofr 7673 df-om 7858 df-1st 7977 df-2nd 7978 df-supp 8149 df-tpos 8213 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-map 8824 df-pm 8825 df-ixp 8894 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fsupp 9364 df-sup 9439 df-oi 9507 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-fz 13489 df-fzo 13632 df-seq 13971 df-hash 14295 df-struct 17084 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-ress 17178 df-plusg 17214 df-mulr 17215 df-starv 17216 df-sca 17217 df-vsca 17218 df-ip 17219 df-tset 17220 df-ple 17221 df-ds 17223 df-unif 17224 df-hom 17225 df-cco 17226 df-0g 17391 df-gsum 17392 df-prds 17397 df-pws 17399 df-mre 17534 df-mrc 17535 df-acs 17537 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-mhm 18705 df-submnd 18706 df-grp 18858 df-minusg 18859 df-sbg 18860 df-mulg 18987 df-subg 19039 df-ghm 19128 df-cntz 19222 df-cmn 19691 df-abl 19692 df-mgp 20029 df-rng 20047 df-ur 20076 df-ring 20129 df-cring 20130 df-oppr 20225 df-dvdsr 20248 df-unit 20249 df-invr 20279 df-subrng 20434 df-subrg 20459 df-lmod 20616 df-lss 20687 df-rlreg 21099 df-cnfld 21145 df-psr 21681 df-mvr 21682 df-mpl 21683 df-opsr 21685 df-psr1 21923 df-vr1 21924 df-ply1 21925 df-coe1 21926 df-mdeg 25805 df-deg1 25806 df-uc1p 25884 df-q1p 25885 df-r1p 25886 |
This theorem is referenced by: r1p0 32951 r1plmhm 32955 |
Copyright terms: Public domain | W3C validator |