Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  r1pvsca Structured version   Visualization version   GIF version

Theorem r1pvsca 33625
Description: Scalar multiplication property of the polynomial remainder operation. (Contributed by Thierry Arnoux, 2-Apr-2025.)
Hypotheses
Ref Expression
r1padd1.p 𝑃 = (Poly1𝑅)
r1padd1.u 𝑈 = (Base‘𝑃)
r1padd1.n 𝑁 = (Unic1p𝑅)
r1padd1.e 𝐸 = (rem1p𝑅)
r1pvsca.6 (𝜑𝑅 ∈ Ring)
r1pvsca.7 (𝜑𝐴𝑈)
r1pvsca.10 (𝜑𝐷𝑁)
r1pvsca.1 × = ( ·𝑠𝑃)
r1pvsca.k 𝐾 = (Base‘𝑅)
r1pvsca.2 (𝜑𝐵𝐾)
Assertion
Ref Expression
r1pvsca (𝜑 → ((𝐵 × 𝐴)𝐸𝐷) = (𝐵 × (𝐴𝐸𝐷)))

Proof of Theorem r1pvsca
StepHypRef Expression
1 r1pvsca.6 . . . . 5 (𝜑𝑅 ∈ Ring)
2 r1pvsca.2 . . . . 5 (𝜑𝐵𝐾)
3 r1pvsca.7 . . . . . 6 (𝜑𝐴𝑈)
4 r1pvsca.10 . . . . . 6 (𝜑𝐷𝑁)
5 eqid 2737 . . . . . . 7 (quot1p𝑅) = (quot1p𝑅)
6 r1padd1.p . . . . . . 7 𝑃 = (Poly1𝑅)
7 r1padd1.u . . . . . . 7 𝑈 = (Base‘𝑃)
8 r1padd1.n . . . . . . 7 𝑁 = (Unic1p𝑅)
95, 6, 7, 8q1pcl 26196 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐴𝑈𝐷𝑁) → (𝐴(quot1p𝑅)𝐷) ∈ 𝑈)
101, 3, 4, 9syl3anc 1373 . . . . 5 (𝜑 → (𝐴(quot1p𝑅)𝐷) ∈ 𝑈)
116, 7, 8uc1pcl 26183 . . . . . 6 (𝐷𝑁𝐷𝑈)
124, 11syl 17 . . . . 5 (𝜑𝐷𝑈)
13 eqid 2737 . . . . . 6 (.r𝑃) = (.r𝑃)
14 r1pvsca.k . . . . . 6 𝐾 = (Base‘𝑅)
15 r1pvsca.1 . . . . . 6 × = ( ·𝑠𝑃)
166, 13, 7, 14, 15ply1ass23l 22228 . . . . 5 ((𝑅 ∈ Ring ∧ (𝐵𝐾 ∧ (𝐴(quot1p𝑅)𝐷) ∈ 𝑈𝐷𝑈)) → ((𝐵 × (𝐴(quot1p𝑅)𝐷))(.r𝑃)𝐷) = (𝐵 × ((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)))
171, 2, 10, 12, 16syl13anc 1374 . . . 4 (𝜑 → ((𝐵 × (𝐴(quot1p𝑅)𝐷))(.r𝑃)𝐷) = (𝐵 × ((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)))
1817oveq2d 7447 . . 3 (𝜑 → ((𝐵 × 𝐴)(-g𝑃)((𝐵 × (𝐴(quot1p𝑅)𝐷))(.r𝑃)𝐷)) = ((𝐵 × 𝐴)(-g𝑃)(𝐵 × ((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷))))
196, 7, 8, 5, 1, 3, 4, 15, 14, 2q1pvsca 33624 . . . . 5 (𝜑 → ((𝐵 × 𝐴)(quot1p𝑅)𝐷) = (𝐵 × (𝐴(quot1p𝑅)𝐷)))
2019oveq1d 7446 . . . 4 (𝜑 → (((𝐵 × 𝐴)(quot1p𝑅)𝐷)(.r𝑃)𝐷) = ((𝐵 × (𝐴(quot1p𝑅)𝐷))(.r𝑃)𝐷))
2120oveq2d 7447 . . 3 (𝜑 → ((𝐵 × 𝐴)(-g𝑃)(((𝐵 × 𝐴)(quot1p𝑅)𝐷)(.r𝑃)𝐷)) = ((𝐵 × 𝐴)(-g𝑃)((𝐵 × (𝐴(quot1p𝑅)𝐷))(.r𝑃)𝐷)))
22 eqid 2737 . . . 4 (Scalar‘𝑃) = (Scalar‘𝑃)
23 eqid 2737 . . . 4 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
24 eqid 2737 . . . 4 (-g𝑃) = (-g𝑃)
256ply1lmod 22253 . . . . 5 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
261, 25syl 17 . . . 4 (𝜑𝑃 ∈ LMod)
276ply1sca 22254 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃))
281, 27syl 17 . . . . . . 7 (𝜑𝑅 = (Scalar‘𝑃))
2928fveq2d 6910 . . . . . 6 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
3014, 29eqtrid 2789 . . . . 5 (𝜑𝐾 = (Base‘(Scalar‘𝑃)))
312, 30eleqtrd 2843 . . . 4 (𝜑𝐵 ∈ (Base‘(Scalar‘𝑃)))
326ply1ring 22249 . . . . . 6 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
331, 32syl 17 . . . . 5 (𝜑𝑃 ∈ Ring)
347, 13, 33, 10, 12ringcld 20257 . . . 4 (𝜑 → ((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷) ∈ 𝑈)
357, 15, 22, 23, 24, 26, 31, 3, 34lmodsubdi 20917 . . 3 (𝜑 → (𝐵 × (𝐴(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷))) = ((𝐵 × 𝐴)(-g𝑃)(𝐵 × ((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷))))
3618, 21, 353eqtr4d 2787 . 2 (𝜑 → ((𝐵 × 𝐴)(-g𝑃)(((𝐵 × 𝐴)(quot1p𝑅)𝐷)(.r𝑃)𝐷)) = (𝐵 × (𝐴(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷))))
377, 22, 15, 23, 26, 31, 3lmodvscld 20877 . . 3 (𝜑 → (𝐵 × 𝐴) ∈ 𝑈)
38 r1padd1.e . . . 4 𝐸 = (rem1p𝑅)
3938, 6, 7, 5, 13, 24r1pval 26197 . . 3 (((𝐵 × 𝐴) ∈ 𝑈𝐷𝑈) → ((𝐵 × 𝐴)𝐸𝐷) = ((𝐵 × 𝐴)(-g𝑃)(((𝐵 × 𝐴)(quot1p𝑅)𝐷)(.r𝑃)𝐷)))
4037, 12, 39syl2anc 584 . 2 (𝜑 → ((𝐵 × 𝐴)𝐸𝐷) = ((𝐵 × 𝐴)(-g𝑃)(((𝐵 × 𝐴)(quot1p𝑅)𝐷)(.r𝑃)𝐷)))
4138, 6, 7, 5, 13, 24r1pval 26197 . . . 4 ((𝐴𝑈𝐷𝑈) → (𝐴𝐸𝐷) = (𝐴(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)))
423, 12, 41syl2anc 584 . . 3 (𝜑 → (𝐴𝐸𝐷) = (𝐴(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)))
4342oveq2d 7447 . 2 (𝜑 → (𝐵 × (𝐴𝐸𝐷)) = (𝐵 × (𝐴(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷))))
4436, 40, 433eqtr4d 2787 1 (𝜑 → ((𝐵 × 𝐴)𝐸𝐷) = (𝐵 × (𝐴𝐸𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  cfv 6561  (class class class)co 7431  Basecbs 17247  .rcmulr 17298  Scalarcsca 17300   ·𝑠 cvsca 17301  -gcsg 18953  Ringcrg 20230  LModclmod 20858  Poly1cpl1 22178  Unic1pcuc1p 26166  quot1pcq1p 26167  rem1pcr1p 26168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-fzo 13695  df-seq 14043  df-hash 14370  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-0g 17486  df-gsum 17487  df-prds 17492  df-pws 17494  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-ghm 19231  df-cntz 19335  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-cring 20233  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-subrng 20546  df-subrg 20570  df-rlreg 20694  df-lmod 20860  df-lss 20930  df-cnfld 21365  df-psr 21929  df-mvr 21930  df-mpl 21931  df-opsr 21933  df-psr1 22181  df-vr1 22182  df-ply1 22183  df-coe1 22184  df-mdeg 26094  df-deg1 26095  df-uc1p 26171  df-q1p 26172  df-r1p 26173
This theorem is referenced by:  r1p0  33626  r1plmhm  33630
  Copyright terms: Public domain W3C validator