Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  r1pvsca Structured version   Visualization version   GIF version

Theorem r1pvsca 32965
Description: Scalar multiplication property of the polynomial remainder operation. (Contributed by Thierry Arnoux, 2-Apr-2025.)
Hypotheses
Ref Expression
r1padd1.p 𝑃 = (Poly1𝑅)
r1padd1.u 𝑈 = (Base‘𝑃)
r1padd1.n 𝑁 = (Unic1p𝑅)
r1padd1.e 𝐸 = (rem1p𝑅)
r1pvsca.6 (𝜑𝑅 ∈ Ring)
r1pvsca.7 (𝜑𝐴𝑈)
r1pvsca.10 (𝜑𝐷𝑁)
r1pvsca.1 × = ( ·𝑠𝑃)
r1pvsca.k 𝐾 = (Base‘𝑅)
r1pvsca.2 (𝜑𝐵𝐾)
Assertion
Ref Expression
r1pvsca (𝜑 → ((𝐵 × 𝐴)𝐸𝐷) = (𝐵 × (𝐴𝐸𝐷)))

Proof of Theorem r1pvsca
StepHypRef Expression
1 r1pvsca.6 . . . . 5 (𝜑𝑅 ∈ Ring)
2 r1pvsca.2 . . . . 5 (𝜑𝐵𝐾)
3 r1pvsca.7 . . . . . 6 (𝜑𝐴𝑈)
4 r1pvsca.10 . . . . . 6 (𝜑𝐷𝑁)
5 eqid 2731 . . . . . . 7 (quot1p𝑅) = (quot1p𝑅)
6 r1padd1.p . . . . . . 7 𝑃 = (Poly1𝑅)
7 r1padd1.u . . . . . . 7 𝑈 = (Base‘𝑃)
8 r1padd1.n . . . . . . 7 𝑁 = (Unic1p𝑅)
95, 6, 7, 8q1pcl 25922 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐴𝑈𝐷𝑁) → (𝐴(quot1p𝑅)𝐷) ∈ 𝑈)
101, 3, 4, 9syl3anc 1370 . . . . 5 (𝜑 → (𝐴(quot1p𝑅)𝐷) ∈ 𝑈)
116, 7, 8uc1pcl 25910 . . . . . 6 (𝐷𝑁𝐷𝑈)
124, 11syl 17 . . . . 5 (𝜑𝐷𝑈)
13 eqid 2731 . . . . . 6 (.r𝑃) = (.r𝑃)
14 r1pvsca.k . . . . . 6 𝐾 = (Base‘𝑅)
15 r1pvsca.1 . . . . . 6 × = ( ·𝑠𝑃)
166, 13, 7, 14, 15ply1ass23l 21982 . . . . 5 ((𝑅 ∈ Ring ∧ (𝐵𝐾 ∧ (𝐴(quot1p𝑅)𝐷) ∈ 𝑈𝐷𝑈)) → ((𝐵 × (𝐴(quot1p𝑅)𝐷))(.r𝑃)𝐷) = (𝐵 × ((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)))
171, 2, 10, 12, 16syl13anc 1371 . . . 4 (𝜑 → ((𝐵 × (𝐴(quot1p𝑅)𝐷))(.r𝑃)𝐷) = (𝐵 × ((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)))
1817oveq2d 7428 . . 3 (𝜑 → ((𝐵 × 𝐴)(-g𝑃)((𝐵 × (𝐴(quot1p𝑅)𝐷))(.r𝑃)𝐷)) = ((𝐵 × 𝐴)(-g𝑃)(𝐵 × ((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷))))
196, 7, 8, 5, 1, 3, 4, 15, 14, 2q1pvsca 32964 . . . . 5 (𝜑 → ((𝐵 × 𝐴)(quot1p𝑅)𝐷) = (𝐵 × (𝐴(quot1p𝑅)𝐷)))
2019oveq1d 7427 . . . 4 (𝜑 → (((𝐵 × 𝐴)(quot1p𝑅)𝐷)(.r𝑃)𝐷) = ((𝐵 × (𝐴(quot1p𝑅)𝐷))(.r𝑃)𝐷))
2120oveq2d 7428 . . 3 (𝜑 → ((𝐵 × 𝐴)(-g𝑃)(((𝐵 × 𝐴)(quot1p𝑅)𝐷)(.r𝑃)𝐷)) = ((𝐵 × 𝐴)(-g𝑃)((𝐵 × (𝐴(quot1p𝑅)𝐷))(.r𝑃)𝐷)))
22 eqid 2731 . . . 4 (Scalar‘𝑃) = (Scalar‘𝑃)
23 eqid 2731 . . . 4 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
24 eqid 2731 . . . 4 (-g𝑃) = (-g𝑃)
256ply1lmod 22007 . . . . 5 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
261, 25syl 17 . . . 4 (𝜑𝑃 ∈ LMod)
276ply1sca 22008 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃))
281, 27syl 17 . . . . . . 7 (𝜑𝑅 = (Scalar‘𝑃))
2928fveq2d 6895 . . . . . 6 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
3014, 29eqtrid 2783 . . . . 5 (𝜑𝐾 = (Base‘(Scalar‘𝑃)))
312, 30eleqtrd 2834 . . . 4 (𝜑𝐵 ∈ (Base‘(Scalar‘𝑃)))
326ply1ring 22003 . . . . . 6 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
331, 32syl 17 . . . . 5 (𝜑𝑃 ∈ Ring)
347, 13, 33, 10, 12ringcld 20155 . . . 4 (𝜑 → ((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷) ∈ 𝑈)
357, 15, 22, 23, 24, 26, 31, 3, 34lmodsubdi 20677 . . 3 (𝜑 → (𝐵 × (𝐴(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷))) = ((𝐵 × 𝐴)(-g𝑃)(𝐵 × ((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷))))
3618, 21, 353eqtr4d 2781 . 2 (𝜑 → ((𝐵 × 𝐴)(-g𝑃)(((𝐵 × 𝐴)(quot1p𝑅)𝐷)(.r𝑃)𝐷)) = (𝐵 × (𝐴(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷))))
377, 22, 15, 23, 26, 31, 3lmodvscld 20637 . . 3 (𝜑 → (𝐵 × 𝐴) ∈ 𝑈)
38 r1padd1.e . . . 4 𝐸 = (rem1p𝑅)
3938, 6, 7, 5, 13, 24r1pval 25923 . . 3 (((𝐵 × 𝐴) ∈ 𝑈𝐷𝑈) → ((𝐵 × 𝐴)𝐸𝐷) = ((𝐵 × 𝐴)(-g𝑃)(((𝐵 × 𝐴)(quot1p𝑅)𝐷)(.r𝑃)𝐷)))
4037, 12, 39syl2anc 583 . 2 (𝜑 → ((𝐵 × 𝐴)𝐸𝐷) = ((𝐵 × 𝐴)(-g𝑃)(((𝐵 × 𝐴)(quot1p𝑅)𝐷)(.r𝑃)𝐷)))
4138, 6, 7, 5, 13, 24r1pval 25923 . . . 4 ((𝐴𝑈𝐷𝑈) → (𝐴𝐸𝐷) = (𝐴(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)))
423, 12, 41syl2anc 583 . . 3 (𝜑 → (𝐴𝐸𝐷) = (𝐴(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)))
4342oveq2d 7428 . 2 (𝜑 → (𝐵 × (𝐴𝐸𝐷)) = (𝐵 × (𝐴(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷))))
4436, 40, 433eqtr4d 2781 1 (𝜑 → ((𝐵 × 𝐴)𝐸𝐷) = (𝐵 × (𝐴𝐸𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  cfv 6543  (class class class)co 7412  Basecbs 17151  .rcmulr 17205  Scalarcsca 17207   ·𝑠 cvsca 17208  -gcsg 18860  Ringcrg 20131  LModclmod 20618  Poly1cpl1 21933  Unic1pcuc1p 25893  quot1pcq1p 25894  rem1pcr1p 25895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-pre-sup 11194  ax-addf 11195  ax-mulf 11196
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7674  df-ofr 7675  df-om 7860  df-1st 7979  df-2nd 7980  df-supp 8152  df-tpos 8217  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-er 8709  df-map 8828  df-pm 8829  df-ixp 8898  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-fsupp 9368  df-sup 9443  df-oi 9511  df-card 9940  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-7 12287  df-8 12288  df-9 12289  df-n0 12480  df-z 12566  df-dec 12685  df-uz 12830  df-fz 13492  df-fzo 13635  df-seq 13974  df-hash 14298  df-struct 17087  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-plusg 17217  df-mulr 17218  df-starv 17219  df-sca 17220  df-vsca 17221  df-ip 17222  df-tset 17223  df-ple 17224  df-ds 17226  df-unif 17227  df-hom 17228  df-cco 17229  df-0g 17394  df-gsum 17395  df-prds 17400  df-pws 17402  df-mre 17537  df-mrc 17538  df-acs 17540  df-mgm 18568  df-sgrp 18647  df-mnd 18663  df-mhm 18708  df-submnd 18709  df-grp 18861  df-minusg 18862  df-sbg 18863  df-mulg 18991  df-subg 19043  df-ghm 19132  df-cntz 19226  df-cmn 19695  df-abl 19696  df-mgp 20033  df-rng 20051  df-ur 20080  df-ring 20133  df-cring 20134  df-oppr 20229  df-dvdsr 20252  df-unit 20253  df-invr 20283  df-subrng 20438  df-subrg 20463  df-lmod 20620  df-lss 20691  df-rlreg 21103  df-cnfld 21149  df-psr 21685  df-mvr 21686  df-mpl 21687  df-opsr 21689  df-psr1 21936  df-vr1 21937  df-ply1 21938  df-coe1 21939  df-mdeg 25819  df-deg1 25820  df-uc1p 25898  df-q1p 25899  df-r1p 25900
This theorem is referenced by:  r1p0  32966  r1plmhm  32970
  Copyright terms: Public domain W3C validator