Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  r1pvsca Structured version   Visualization version   GIF version

Theorem r1pvsca 33605
Description: Scalar multiplication property of the polynomial remainder operation. (Contributed by Thierry Arnoux, 2-Apr-2025.)
Hypotheses
Ref Expression
r1padd1.p 𝑃 = (Poly1𝑅)
r1padd1.u 𝑈 = (Base‘𝑃)
r1padd1.n 𝑁 = (Unic1p𝑅)
r1padd1.e 𝐸 = (rem1p𝑅)
r1pvsca.6 (𝜑𝑅 ∈ Ring)
r1pvsca.7 (𝜑𝐴𝑈)
r1pvsca.10 (𝜑𝐷𝑁)
r1pvsca.1 × = ( ·𝑠𝑃)
r1pvsca.k 𝐾 = (Base‘𝑅)
r1pvsca.2 (𝜑𝐵𝐾)
Assertion
Ref Expression
r1pvsca (𝜑 → ((𝐵 × 𝐴)𝐸𝐷) = (𝐵 × (𝐴𝐸𝐷)))

Proof of Theorem r1pvsca
StepHypRef Expression
1 r1pvsca.6 . . . . 5 (𝜑𝑅 ∈ Ring)
2 r1pvsca.2 . . . . 5 (𝜑𝐵𝐾)
3 r1pvsca.7 . . . . . 6 (𝜑𝐴𝑈)
4 r1pvsca.10 . . . . . 6 (𝜑𝐷𝑁)
5 eqid 2735 . . . . . . 7 (quot1p𝑅) = (quot1p𝑅)
6 r1padd1.p . . . . . . 7 𝑃 = (Poly1𝑅)
7 r1padd1.u . . . . . . 7 𝑈 = (Base‘𝑃)
8 r1padd1.n . . . . . . 7 𝑁 = (Unic1p𝑅)
95, 6, 7, 8q1pcl 26211 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐴𝑈𝐷𝑁) → (𝐴(quot1p𝑅)𝐷) ∈ 𝑈)
101, 3, 4, 9syl3anc 1370 . . . . 5 (𝜑 → (𝐴(quot1p𝑅)𝐷) ∈ 𝑈)
116, 7, 8uc1pcl 26198 . . . . . 6 (𝐷𝑁𝐷𝑈)
124, 11syl 17 . . . . 5 (𝜑𝐷𝑈)
13 eqid 2735 . . . . . 6 (.r𝑃) = (.r𝑃)
14 r1pvsca.k . . . . . 6 𝐾 = (Base‘𝑅)
15 r1pvsca.1 . . . . . 6 × = ( ·𝑠𝑃)
166, 13, 7, 14, 15ply1ass23l 22244 . . . . 5 ((𝑅 ∈ Ring ∧ (𝐵𝐾 ∧ (𝐴(quot1p𝑅)𝐷) ∈ 𝑈𝐷𝑈)) → ((𝐵 × (𝐴(quot1p𝑅)𝐷))(.r𝑃)𝐷) = (𝐵 × ((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)))
171, 2, 10, 12, 16syl13anc 1371 . . . 4 (𝜑 → ((𝐵 × (𝐴(quot1p𝑅)𝐷))(.r𝑃)𝐷) = (𝐵 × ((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)))
1817oveq2d 7447 . . 3 (𝜑 → ((𝐵 × 𝐴)(-g𝑃)((𝐵 × (𝐴(quot1p𝑅)𝐷))(.r𝑃)𝐷)) = ((𝐵 × 𝐴)(-g𝑃)(𝐵 × ((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷))))
196, 7, 8, 5, 1, 3, 4, 15, 14, 2q1pvsca 33604 . . . . 5 (𝜑 → ((𝐵 × 𝐴)(quot1p𝑅)𝐷) = (𝐵 × (𝐴(quot1p𝑅)𝐷)))
2019oveq1d 7446 . . . 4 (𝜑 → (((𝐵 × 𝐴)(quot1p𝑅)𝐷)(.r𝑃)𝐷) = ((𝐵 × (𝐴(quot1p𝑅)𝐷))(.r𝑃)𝐷))
2120oveq2d 7447 . . 3 (𝜑 → ((𝐵 × 𝐴)(-g𝑃)(((𝐵 × 𝐴)(quot1p𝑅)𝐷)(.r𝑃)𝐷)) = ((𝐵 × 𝐴)(-g𝑃)((𝐵 × (𝐴(quot1p𝑅)𝐷))(.r𝑃)𝐷)))
22 eqid 2735 . . . 4 (Scalar‘𝑃) = (Scalar‘𝑃)
23 eqid 2735 . . . 4 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
24 eqid 2735 . . . 4 (-g𝑃) = (-g𝑃)
256ply1lmod 22269 . . . . 5 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
261, 25syl 17 . . . 4 (𝜑𝑃 ∈ LMod)
276ply1sca 22270 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃))
281, 27syl 17 . . . . . . 7 (𝜑𝑅 = (Scalar‘𝑃))
2928fveq2d 6911 . . . . . 6 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
3014, 29eqtrid 2787 . . . . 5 (𝜑𝐾 = (Base‘(Scalar‘𝑃)))
312, 30eleqtrd 2841 . . . 4 (𝜑𝐵 ∈ (Base‘(Scalar‘𝑃)))
326ply1ring 22265 . . . . . 6 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
331, 32syl 17 . . . . 5 (𝜑𝑃 ∈ Ring)
347, 13, 33, 10, 12ringcld 20277 . . . 4 (𝜑 → ((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷) ∈ 𝑈)
357, 15, 22, 23, 24, 26, 31, 3, 34lmodsubdi 20934 . . 3 (𝜑 → (𝐵 × (𝐴(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷))) = ((𝐵 × 𝐴)(-g𝑃)(𝐵 × ((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷))))
3618, 21, 353eqtr4d 2785 . 2 (𝜑 → ((𝐵 × 𝐴)(-g𝑃)(((𝐵 × 𝐴)(quot1p𝑅)𝐷)(.r𝑃)𝐷)) = (𝐵 × (𝐴(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷))))
377, 22, 15, 23, 26, 31, 3lmodvscld 20894 . . 3 (𝜑 → (𝐵 × 𝐴) ∈ 𝑈)
38 r1padd1.e . . . 4 𝐸 = (rem1p𝑅)
3938, 6, 7, 5, 13, 24r1pval 26212 . . 3 (((𝐵 × 𝐴) ∈ 𝑈𝐷𝑈) → ((𝐵 × 𝐴)𝐸𝐷) = ((𝐵 × 𝐴)(-g𝑃)(((𝐵 × 𝐴)(quot1p𝑅)𝐷)(.r𝑃)𝐷)))
4037, 12, 39syl2anc 584 . 2 (𝜑 → ((𝐵 × 𝐴)𝐸𝐷) = ((𝐵 × 𝐴)(-g𝑃)(((𝐵 × 𝐴)(quot1p𝑅)𝐷)(.r𝑃)𝐷)))
4138, 6, 7, 5, 13, 24r1pval 26212 . . . 4 ((𝐴𝑈𝐷𝑈) → (𝐴𝐸𝐷) = (𝐴(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)))
423, 12, 41syl2anc 584 . . 3 (𝜑 → (𝐴𝐸𝐷) = (𝐴(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)))
4342oveq2d 7447 . 2 (𝜑 → (𝐵 × (𝐴𝐸𝐷)) = (𝐵 × (𝐴(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷))))
4436, 40, 433eqtr4d 2785 1 (𝜑 → ((𝐵 × 𝐴)𝐸𝐷) = (𝐵 × (𝐴𝐸𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  cfv 6563  (class class class)co 7431  Basecbs 17245  .rcmulr 17299  Scalarcsca 17301   ·𝑠 cvsca 17302  -gcsg 18966  Ringcrg 20251  LModclmod 20875  Poly1cpl1 22194  Unic1pcuc1p 26181  quot1pcq1p 26182  rem1pcr1p 26183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-fzo 13692  df-seq 14040  df-hash 14367  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-0g 17488  df-gsum 17489  df-prds 17494  df-pws 17496  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-ghm 19244  df-cntz 19348  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-cring 20254  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-subrng 20563  df-subrg 20587  df-rlreg 20711  df-lmod 20877  df-lss 20948  df-cnfld 21383  df-psr 21947  df-mvr 21948  df-mpl 21949  df-opsr 21951  df-psr1 22197  df-vr1 22198  df-ply1 22199  df-coe1 22200  df-mdeg 26109  df-deg1 26110  df-uc1p 26186  df-q1p 26187  df-r1p 26188
This theorem is referenced by:  r1p0  33606  r1plmhm  33610
  Copyright terms: Public domain W3C validator