| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > r1pvsca | Structured version Visualization version GIF version | ||
| Description: Scalar multiplication property of the polynomial remainder operation. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
| Ref | Expression |
|---|---|
| r1padd1.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| r1padd1.u | ⊢ 𝑈 = (Base‘𝑃) |
| r1padd1.n | ⊢ 𝑁 = (Unic1p‘𝑅) |
| r1padd1.e | ⊢ 𝐸 = (rem1p‘𝑅) |
| r1pvsca.6 | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| r1pvsca.7 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| r1pvsca.10 | ⊢ (𝜑 → 𝐷 ∈ 𝑁) |
| r1pvsca.1 | ⊢ × = ( ·𝑠 ‘𝑃) |
| r1pvsca.k | ⊢ 𝐾 = (Base‘𝑅) |
| r1pvsca.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐾) |
| Ref | Expression |
|---|---|
| r1pvsca | ⊢ (𝜑 → ((𝐵 × 𝐴)𝐸𝐷) = (𝐵 × (𝐴𝐸𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1pvsca.6 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 2 | r1pvsca.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝐾) | |
| 3 | r1pvsca.7 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
| 4 | r1pvsca.10 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ 𝑁) | |
| 5 | eqid 2729 | . . . . . . 7 ⊢ (quot1p‘𝑅) = (quot1p‘𝑅) | |
| 6 | r1padd1.p | . . . . . . 7 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 7 | r1padd1.u | . . . . . . 7 ⊢ 𝑈 = (Base‘𝑃) | |
| 8 | r1padd1.n | . . . . . . 7 ⊢ 𝑁 = (Unic1p‘𝑅) | |
| 9 | 5, 6, 7, 8 | q1pcl 26095 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑈 ∧ 𝐷 ∈ 𝑁) → (𝐴(quot1p‘𝑅)𝐷) ∈ 𝑈) |
| 10 | 1, 3, 4, 9 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝐴(quot1p‘𝑅)𝐷) ∈ 𝑈) |
| 11 | 6, 7, 8 | uc1pcl 26082 | . . . . . 6 ⊢ (𝐷 ∈ 𝑁 → 𝐷 ∈ 𝑈) |
| 12 | 4, 11 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ 𝑈) |
| 13 | eqid 2729 | . . . . . 6 ⊢ (.r‘𝑃) = (.r‘𝑃) | |
| 14 | r1pvsca.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝑅) | |
| 15 | r1pvsca.1 | . . . . . 6 ⊢ × = ( ·𝑠 ‘𝑃) | |
| 16 | 6, 13, 7, 14, 15 | ply1ass23l 22144 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝐵 ∈ 𝐾 ∧ (𝐴(quot1p‘𝑅)𝐷) ∈ 𝑈 ∧ 𝐷 ∈ 𝑈)) → ((𝐵 × (𝐴(quot1p‘𝑅)𝐷))(.r‘𝑃)𝐷) = (𝐵 × ((𝐴(quot1p‘𝑅)𝐷)(.r‘𝑃)𝐷))) |
| 17 | 1, 2, 10, 12, 16 | syl13anc 1374 | . . . 4 ⊢ (𝜑 → ((𝐵 × (𝐴(quot1p‘𝑅)𝐷))(.r‘𝑃)𝐷) = (𝐵 × ((𝐴(quot1p‘𝑅)𝐷)(.r‘𝑃)𝐷))) |
| 18 | 17 | oveq2d 7385 | . . 3 ⊢ (𝜑 → ((𝐵 × 𝐴)(-g‘𝑃)((𝐵 × (𝐴(quot1p‘𝑅)𝐷))(.r‘𝑃)𝐷)) = ((𝐵 × 𝐴)(-g‘𝑃)(𝐵 × ((𝐴(quot1p‘𝑅)𝐷)(.r‘𝑃)𝐷)))) |
| 19 | 6, 7, 8, 5, 1, 3, 4, 15, 14, 2 | q1pvsca 33562 | . . . . 5 ⊢ (𝜑 → ((𝐵 × 𝐴)(quot1p‘𝑅)𝐷) = (𝐵 × (𝐴(quot1p‘𝑅)𝐷))) |
| 20 | 19 | oveq1d 7384 | . . . 4 ⊢ (𝜑 → (((𝐵 × 𝐴)(quot1p‘𝑅)𝐷)(.r‘𝑃)𝐷) = ((𝐵 × (𝐴(quot1p‘𝑅)𝐷))(.r‘𝑃)𝐷)) |
| 21 | 20 | oveq2d 7385 | . . 3 ⊢ (𝜑 → ((𝐵 × 𝐴)(-g‘𝑃)(((𝐵 × 𝐴)(quot1p‘𝑅)𝐷)(.r‘𝑃)𝐷)) = ((𝐵 × 𝐴)(-g‘𝑃)((𝐵 × (𝐴(quot1p‘𝑅)𝐷))(.r‘𝑃)𝐷))) |
| 22 | eqid 2729 | . . . 4 ⊢ (Scalar‘𝑃) = (Scalar‘𝑃) | |
| 23 | eqid 2729 | . . . 4 ⊢ (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃)) | |
| 24 | eqid 2729 | . . . 4 ⊢ (-g‘𝑃) = (-g‘𝑃) | |
| 25 | 6 | ply1lmod 22169 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ LMod) |
| 26 | 1, 25 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ LMod) |
| 27 | 6 | ply1sca 22170 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃)) |
| 28 | 1, 27 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑅 = (Scalar‘𝑃)) |
| 29 | 28 | fveq2d 6844 | . . . . . 6 ⊢ (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑃))) |
| 30 | 14, 29 | eqtrid 2776 | . . . . 5 ⊢ (𝜑 → 𝐾 = (Base‘(Scalar‘𝑃))) |
| 31 | 2, 30 | eleqtrd 2830 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (Base‘(Scalar‘𝑃))) |
| 32 | 6 | ply1ring 22165 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
| 33 | 1, 32 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ Ring) |
| 34 | 7, 13, 33, 10, 12 | ringcld 20180 | . . . 4 ⊢ (𝜑 → ((𝐴(quot1p‘𝑅)𝐷)(.r‘𝑃)𝐷) ∈ 𝑈) |
| 35 | 7, 15, 22, 23, 24, 26, 31, 3, 34 | lmodsubdi 20857 | . . 3 ⊢ (𝜑 → (𝐵 × (𝐴(-g‘𝑃)((𝐴(quot1p‘𝑅)𝐷)(.r‘𝑃)𝐷))) = ((𝐵 × 𝐴)(-g‘𝑃)(𝐵 × ((𝐴(quot1p‘𝑅)𝐷)(.r‘𝑃)𝐷)))) |
| 36 | 18, 21, 35 | 3eqtr4d 2774 | . 2 ⊢ (𝜑 → ((𝐵 × 𝐴)(-g‘𝑃)(((𝐵 × 𝐴)(quot1p‘𝑅)𝐷)(.r‘𝑃)𝐷)) = (𝐵 × (𝐴(-g‘𝑃)((𝐴(quot1p‘𝑅)𝐷)(.r‘𝑃)𝐷)))) |
| 37 | 7, 22, 15, 23, 26, 31, 3 | lmodvscld 20817 | . . 3 ⊢ (𝜑 → (𝐵 × 𝐴) ∈ 𝑈) |
| 38 | r1padd1.e | . . . 4 ⊢ 𝐸 = (rem1p‘𝑅) | |
| 39 | 38, 6, 7, 5, 13, 24 | r1pval 26096 | . . 3 ⊢ (((𝐵 × 𝐴) ∈ 𝑈 ∧ 𝐷 ∈ 𝑈) → ((𝐵 × 𝐴)𝐸𝐷) = ((𝐵 × 𝐴)(-g‘𝑃)(((𝐵 × 𝐴)(quot1p‘𝑅)𝐷)(.r‘𝑃)𝐷))) |
| 40 | 37, 12, 39 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝐵 × 𝐴)𝐸𝐷) = ((𝐵 × 𝐴)(-g‘𝑃)(((𝐵 × 𝐴)(quot1p‘𝑅)𝐷)(.r‘𝑃)𝐷))) |
| 41 | 38, 6, 7, 5, 13, 24 | r1pval 26096 | . . . 4 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐷 ∈ 𝑈) → (𝐴𝐸𝐷) = (𝐴(-g‘𝑃)((𝐴(quot1p‘𝑅)𝐷)(.r‘𝑃)𝐷))) |
| 42 | 3, 12, 41 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐴𝐸𝐷) = (𝐴(-g‘𝑃)((𝐴(quot1p‘𝑅)𝐷)(.r‘𝑃)𝐷))) |
| 43 | 42 | oveq2d 7385 | . 2 ⊢ (𝜑 → (𝐵 × (𝐴𝐸𝐷)) = (𝐵 × (𝐴(-g‘𝑃)((𝐴(quot1p‘𝑅)𝐷)(.r‘𝑃)𝐷)))) |
| 44 | 36, 40, 43 | 3eqtr4d 2774 | 1 ⊢ (𝜑 → ((𝐵 × 𝐴)𝐸𝐷) = (𝐵 × (𝐴𝐸𝐷))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 .rcmulr 17197 Scalarcsca 17199 ·𝑠 cvsca 17200 -gcsg 18849 Ringcrg 20153 LModclmod 20798 Poly1cpl1 22094 Unic1pcuc1p 26065 quot1pcq1p 26066 rem1pcr1p 26067 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-addf 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-ofr 7634 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-sup 9369 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-fzo 13592 df-seq 13943 df-hash 14272 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-0g 17380 df-gsum 17381 df-prds 17386 df-pws 17388 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-mhm 18692 df-submnd 18693 df-grp 18850 df-minusg 18851 df-sbg 18852 df-mulg 18982 df-subg 19037 df-ghm 19127 df-cntz 19231 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-cring 20156 df-oppr 20257 df-dvdsr 20277 df-unit 20278 df-invr 20308 df-subrng 20466 df-subrg 20490 df-rlreg 20614 df-lmod 20800 df-lss 20870 df-cnfld 21297 df-psr 21851 df-mvr 21852 df-mpl 21853 df-opsr 21855 df-psr1 22097 df-vr1 22098 df-ply1 22099 df-coe1 22100 df-mdeg 25993 df-deg1 25994 df-uc1p 26070 df-q1p 26071 df-r1p 26072 |
| This theorem is referenced by: r1p0 33564 r1plmhm 33568 |
| Copyright terms: Public domain | W3C validator |