Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pinq | Structured version Visualization version GIF version |
Description: The representatives of positive integers as positive fractions. (Contributed by NM, 29-Oct-1995.) (Revised by Mario Carneiro, 6-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pinq | ⊢ (𝐴 ∈ N → 〈𝐴, 1o〉 ∈ Q) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5077 | . . . . 5 ⊢ (𝑥 = 〈𝐴, 1o〉 → (𝑥 ~Q 𝑦 ↔ 〈𝐴, 1o〉 ~Q 𝑦)) | |
2 | fveq2 6774 | . . . . . . 7 ⊢ (𝑥 = 〈𝐴, 1o〉 → (2nd ‘𝑥) = (2nd ‘〈𝐴, 1o〉)) | |
3 | 2 | breq2d 5086 | . . . . . 6 ⊢ (𝑥 = 〈𝐴, 1o〉 → ((2nd ‘𝑦) <N (2nd ‘𝑥) ↔ (2nd ‘𝑦) <N (2nd ‘〈𝐴, 1o〉))) |
4 | 3 | notbid 318 | . . . . 5 ⊢ (𝑥 = 〈𝐴, 1o〉 → (¬ (2nd ‘𝑦) <N (2nd ‘𝑥) ↔ ¬ (2nd ‘𝑦) <N (2nd ‘〈𝐴, 1o〉))) |
5 | 1, 4 | imbi12d 345 | . . . 4 ⊢ (𝑥 = 〈𝐴, 1o〉 → ((𝑥 ~Q 𝑦 → ¬ (2nd ‘𝑦) <N (2nd ‘𝑥)) ↔ (〈𝐴, 1o〉 ~Q 𝑦 → ¬ (2nd ‘𝑦) <N (2nd ‘〈𝐴, 1o〉)))) |
6 | 5 | ralbidv 3112 | . . 3 ⊢ (𝑥 = 〈𝐴, 1o〉 → (∀𝑦 ∈ (N × N)(𝑥 ~Q 𝑦 → ¬ (2nd ‘𝑦) <N (2nd ‘𝑥)) ↔ ∀𝑦 ∈ (N × N)(〈𝐴, 1o〉 ~Q 𝑦 → ¬ (2nd ‘𝑦) <N (2nd ‘〈𝐴, 1o〉)))) |
7 | 1pi 10639 | . . . 4 ⊢ 1o ∈ N | |
8 | opelxpi 5626 | . . . 4 ⊢ ((𝐴 ∈ N ∧ 1o ∈ N) → 〈𝐴, 1o〉 ∈ (N × N)) | |
9 | 7, 8 | mpan2 688 | . . 3 ⊢ (𝐴 ∈ N → 〈𝐴, 1o〉 ∈ (N × N)) |
10 | nlt1pi 10662 | . . . . . 6 ⊢ ¬ (2nd ‘𝑦) <N 1o | |
11 | 1oex 8307 | . . . . . . . 8 ⊢ 1o ∈ V | |
12 | op2ndg 7844 | . . . . . . . 8 ⊢ ((𝐴 ∈ N ∧ 1o ∈ V) → (2nd ‘〈𝐴, 1o〉) = 1o) | |
13 | 11, 12 | mpan2 688 | . . . . . . 7 ⊢ (𝐴 ∈ N → (2nd ‘〈𝐴, 1o〉) = 1o) |
14 | 13 | breq2d 5086 | . . . . . 6 ⊢ (𝐴 ∈ N → ((2nd ‘𝑦) <N (2nd ‘〈𝐴, 1o〉) ↔ (2nd ‘𝑦) <N 1o)) |
15 | 10, 14 | mtbiri 327 | . . . . 5 ⊢ (𝐴 ∈ N → ¬ (2nd ‘𝑦) <N (2nd ‘〈𝐴, 1o〉)) |
16 | 15 | a1d 25 | . . . 4 ⊢ (𝐴 ∈ N → (〈𝐴, 1o〉 ~Q 𝑦 → ¬ (2nd ‘𝑦) <N (2nd ‘〈𝐴, 1o〉))) |
17 | 16 | ralrimivw 3104 | . . 3 ⊢ (𝐴 ∈ N → ∀𝑦 ∈ (N × N)(〈𝐴, 1o〉 ~Q 𝑦 → ¬ (2nd ‘𝑦) <N (2nd ‘〈𝐴, 1o〉))) |
18 | 6, 9, 17 | elrabd 3626 | . 2 ⊢ (𝐴 ∈ N → 〈𝐴, 1o〉 ∈ {𝑥 ∈ (N × N) ∣ ∀𝑦 ∈ (N × N)(𝑥 ~Q 𝑦 → ¬ (2nd ‘𝑦) <N (2nd ‘𝑥))}) |
19 | df-nq 10668 | . 2 ⊢ Q = {𝑥 ∈ (N × N) ∣ ∀𝑦 ∈ (N × N)(𝑥 ~Q 𝑦 → ¬ (2nd ‘𝑦) <N (2nd ‘𝑥))} | |
20 | 18, 19 | eleqtrrdi 2850 | 1 ⊢ (𝐴 ∈ N → 〈𝐴, 1o〉 ∈ Q) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2106 ∀wral 3064 {crab 3068 Vcvv 3432 〈cop 4567 class class class wbr 5074 × cxp 5587 ‘cfv 6433 2nd c2nd 7830 1oc1o 8290 Ncnpi 10600 <N clti 10603 ~Q ceq 10607 Qcnq 10608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fv 6441 df-om 7713 df-2nd 7832 df-1o 8297 df-ni 10628 df-lti 10631 df-nq 10668 |
This theorem is referenced by: 1nq 10684 archnq 10736 prlem934 10789 |
Copyright terms: Public domain | W3C validator |