| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pinq | Structured version Visualization version GIF version | ||
| Description: The representatives of positive integers as positive fractions. (Contributed by NM, 29-Oct-1995.) (Revised by Mario Carneiro, 6-May-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pinq | ⊢ (𝐴 ∈ N → 〈𝐴, 1o〉 ∈ Q) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 5113 | . . . . 5 ⊢ (𝑥 = 〈𝐴, 1o〉 → (𝑥 ~Q 𝑦 ↔ 〈𝐴, 1o〉 ~Q 𝑦)) | |
| 2 | fveq2 6861 | . . . . . . 7 ⊢ (𝑥 = 〈𝐴, 1o〉 → (2nd ‘𝑥) = (2nd ‘〈𝐴, 1o〉)) | |
| 3 | 2 | breq2d 5122 | . . . . . 6 ⊢ (𝑥 = 〈𝐴, 1o〉 → ((2nd ‘𝑦) <N (2nd ‘𝑥) ↔ (2nd ‘𝑦) <N (2nd ‘〈𝐴, 1o〉))) |
| 4 | 3 | notbid 318 | . . . . 5 ⊢ (𝑥 = 〈𝐴, 1o〉 → (¬ (2nd ‘𝑦) <N (2nd ‘𝑥) ↔ ¬ (2nd ‘𝑦) <N (2nd ‘〈𝐴, 1o〉))) |
| 5 | 1, 4 | imbi12d 344 | . . . 4 ⊢ (𝑥 = 〈𝐴, 1o〉 → ((𝑥 ~Q 𝑦 → ¬ (2nd ‘𝑦) <N (2nd ‘𝑥)) ↔ (〈𝐴, 1o〉 ~Q 𝑦 → ¬ (2nd ‘𝑦) <N (2nd ‘〈𝐴, 1o〉)))) |
| 6 | 5 | ralbidv 3157 | . . 3 ⊢ (𝑥 = 〈𝐴, 1o〉 → (∀𝑦 ∈ (N × N)(𝑥 ~Q 𝑦 → ¬ (2nd ‘𝑦) <N (2nd ‘𝑥)) ↔ ∀𝑦 ∈ (N × N)(〈𝐴, 1o〉 ~Q 𝑦 → ¬ (2nd ‘𝑦) <N (2nd ‘〈𝐴, 1o〉)))) |
| 7 | 1pi 10843 | . . . 4 ⊢ 1o ∈ N | |
| 8 | opelxpi 5678 | . . . 4 ⊢ ((𝐴 ∈ N ∧ 1o ∈ N) → 〈𝐴, 1o〉 ∈ (N × N)) | |
| 9 | 7, 8 | mpan2 691 | . . 3 ⊢ (𝐴 ∈ N → 〈𝐴, 1o〉 ∈ (N × N)) |
| 10 | nlt1pi 10866 | . . . . . 6 ⊢ ¬ (2nd ‘𝑦) <N 1o | |
| 11 | 1oex 8447 | . . . . . . . 8 ⊢ 1o ∈ V | |
| 12 | op2ndg 7984 | . . . . . . . 8 ⊢ ((𝐴 ∈ N ∧ 1o ∈ V) → (2nd ‘〈𝐴, 1o〉) = 1o) | |
| 13 | 11, 12 | mpan2 691 | . . . . . . 7 ⊢ (𝐴 ∈ N → (2nd ‘〈𝐴, 1o〉) = 1o) |
| 14 | 13 | breq2d 5122 | . . . . . 6 ⊢ (𝐴 ∈ N → ((2nd ‘𝑦) <N (2nd ‘〈𝐴, 1o〉) ↔ (2nd ‘𝑦) <N 1o)) |
| 15 | 10, 14 | mtbiri 327 | . . . . 5 ⊢ (𝐴 ∈ N → ¬ (2nd ‘𝑦) <N (2nd ‘〈𝐴, 1o〉)) |
| 16 | 15 | a1d 25 | . . . 4 ⊢ (𝐴 ∈ N → (〈𝐴, 1o〉 ~Q 𝑦 → ¬ (2nd ‘𝑦) <N (2nd ‘〈𝐴, 1o〉))) |
| 17 | 16 | ralrimivw 3130 | . . 3 ⊢ (𝐴 ∈ N → ∀𝑦 ∈ (N × N)(〈𝐴, 1o〉 ~Q 𝑦 → ¬ (2nd ‘𝑦) <N (2nd ‘〈𝐴, 1o〉))) |
| 18 | 6, 9, 17 | elrabd 3664 | . 2 ⊢ (𝐴 ∈ N → 〈𝐴, 1o〉 ∈ {𝑥 ∈ (N × N) ∣ ∀𝑦 ∈ (N × N)(𝑥 ~Q 𝑦 → ¬ (2nd ‘𝑦) <N (2nd ‘𝑥))}) |
| 19 | df-nq 10872 | . 2 ⊢ Q = {𝑥 ∈ (N × N) ∣ ∀𝑦 ∈ (N × N)(𝑥 ~Q 𝑦 → ¬ (2nd ‘𝑦) <N (2nd ‘𝑥))} | |
| 20 | 18, 19 | eleqtrrdi 2840 | 1 ⊢ (𝐴 ∈ N → 〈𝐴, 1o〉 ∈ Q) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3045 {crab 3408 Vcvv 3450 〈cop 4598 class class class wbr 5110 × cxp 5639 ‘cfv 6514 2nd c2nd 7970 1oc1o 8430 Ncnpi 10804 <N clti 10807 ~Q ceq 10811 Qcnq 10812 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fv 6522 df-om 7846 df-2nd 7972 df-1o 8437 df-ni 10832 df-lti 10835 df-nq 10872 |
| This theorem is referenced by: 1nq 10888 archnq 10940 prlem934 10993 |
| Copyright terms: Public domain | W3C validator |