MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pinq Structured version   Visualization version   GIF version

Theorem pinq 10965
Description: The representatives of positive integers as positive fractions. (Contributed by NM, 29-Oct-1995.) (Revised by Mario Carneiro, 6-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
pinq (𝐴N → ⟨𝐴, 1o⟩ ∈ Q)

Proof of Theorem pinq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5151 . . . . 5 (𝑥 = ⟨𝐴, 1o⟩ → (𝑥 ~Q 𝑦 ↔ ⟨𝐴, 1o⟩ ~Q 𝑦))
2 fveq2 6907 . . . . . . 7 (𝑥 = ⟨𝐴, 1o⟩ → (2nd𝑥) = (2nd ‘⟨𝐴, 1o⟩))
32breq2d 5160 . . . . . 6 (𝑥 = ⟨𝐴, 1o⟩ → ((2nd𝑦) <N (2nd𝑥) ↔ (2nd𝑦) <N (2nd ‘⟨𝐴, 1o⟩)))
43notbid 318 . . . . 5 (𝑥 = ⟨𝐴, 1o⟩ → (¬ (2nd𝑦) <N (2nd𝑥) ↔ ¬ (2nd𝑦) <N (2nd ‘⟨𝐴, 1o⟩)))
51, 4imbi12d 344 . . . 4 (𝑥 = ⟨𝐴, 1o⟩ → ((𝑥 ~Q 𝑦 → ¬ (2nd𝑦) <N (2nd𝑥)) ↔ (⟨𝐴, 1o⟩ ~Q 𝑦 → ¬ (2nd𝑦) <N (2nd ‘⟨𝐴, 1o⟩))))
65ralbidv 3176 . . 3 (𝑥 = ⟨𝐴, 1o⟩ → (∀𝑦 ∈ (N × N)(𝑥 ~Q 𝑦 → ¬ (2nd𝑦) <N (2nd𝑥)) ↔ ∀𝑦 ∈ (N × N)(⟨𝐴, 1o⟩ ~Q 𝑦 → ¬ (2nd𝑦) <N (2nd ‘⟨𝐴, 1o⟩))))
7 1pi 10921 . . . 4 1oN
8 opelxpi 5726 . . . 4 ((𝐴N ∧ 1oN) → ⟨𝐴, 1o⟩ ∈ (N × N))
97, 8mpan2 691 . . 3 (𝐴N → ⟨𝐴, 1o⟩ ∈ (N × N))
10 nlt1pi 10944 . . . . . 6 ¬ (2nd𝑦) <N 1o
11 1oex 8515 . . . . . . . 8 1o ∈ V
12 op2ndg 8026 . . . . . . . 8 ((𝐴N ∧ 1o ∈ V) → (2nd ‘⟨𝐴, 1o⟩) = 1o)
1311, 12mpan2 691 . . . . . . 7 (𝐴N → (2nd ‘⟨𝐴, 1o⟩) = 1o)
1413breq2d 5160 . . . . . 6 (𝐴N → ((2nd𝑦) <N (2nd ‘⟨𝐴, 1o⟩) ↔ (2nd𝑦) <N 1o))
1510, 14mtbiri 327 . . . . 5 (𝐴N → ¬ (2nd𝑦) <N (2nd ‘⟨𝐴, 1o⟩))
1615a1d 25 . . . 4 (𝐴N → (⟨𝐴, 1o⟩ ~Q 𝑦 → ¬ (2nd𝑦) <N (2nd ‘⟨𝐴, 1o⟩)))
1716ralrimivw 3148 . . 3 (𝐴N → ∀𝑦 ∈ (N × N)(⟨𝐴, 1o⟩ ~Q 𝑦 → ¬ (2nd𝑦) <N (2nd ‘⟨𝐴, 1o⟩)))
186, 9, 17elrabd 3697 . 2 (𝐴N → ⟨𝐴, 1o⟩ ∈ {𝑥 ∈ (N × N) ∣ ∀𝑦 ∈ (N × N)(𝑥 ~Q 𝑦 → ¬ (2nd𝑦) <N (2nd𝑥))})
19 df-nq 10950 . 2 Q = {𝑥 ∈ (N × N) ∣ ∀𝑦 ∈ (N × N)(𝑥 ~Q 𝑦 → ¬ (2nd𝑦) <N (2nd𝑥))}
2018, 19eleqtrrdi 2850 1 (𝐴N → ⟨𝐴, 1o⟩ ∈ Q)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1537  wcel 2106  wral 3059  {crab 3433  Vcvv 3478  cop 4637   class class class wbr 5148   × cxp 5687  cfv 6563  2nd c2nd 8012  1oc1o 8498  Ncnpi 10882   <N clti 10885   ~Q ceq 10889  Qcnq 10890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fv 6571  df-om 7888  df-2nd 8014  df-1o 8505  df-ni 10910  df-lti 10913  df-nq 10950
This theorem is referenced by:  1nq  10966  archnq  11018  prlem934  11071
  Copyright terms: Public domain W3C validator