MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pinq Structured version   Visualization version   GIF version

Theorem pinq 10147
Description: The representatives of positive integers as positive fractions. (Contributed by NM, 29-Oct-1995.) (Revised by Mario Carneiro, 6-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
pinq (𝐴N → ⟨𝐴, 1o⟩ ∈ Q)

Proof of Theorem pinq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 4932 . . . . 5 (𝑥 = ⟨𝐴, 1o⟩ → (𝑥 ~Q 𝑦 ↔ ⟨𝐴, 1o⟩ ~Q 𝑦))
2 fveq2 6499 . . . . . . 7 (𝑥 = ⟨𝐴, 1o⟩ → (2nd𝑥) = (2nd ‘⟨𝐴, 1o⟩))
32breq2d 4941 . . . . . 6 (𝑥 = ⟨𝐴, 1o⟩ → ((2nd𝑦) <N (2nd𝑥) ↔ (2nd𝑦) <N (2nd ‘⟨𝐴, 1o⟩)))
43notbid 310 . . . . 5 (𝑥 = ⟨𝐴, 1o⟩ → (¬ (2nd𝑦) <N (2nd𝑥) ↔ ¬ (2nd𝑦) <N (2nd ‘⟨𝐴, 1o⟩)))
51, 4imbi12d 337 . . . 4 (𝑥 = ⟨𝐴, 1o⟩ → ((𝑥 ~Q 𝑦 → ¬ (2nd𝑦) <N (2nd𝑥)) ↔ (⟨𝐴, 1o⟩ ~Q 𝑦 → ¬ (2nd𝑦) <N (2nd ‘⟨𝐴, 1o⟩))))
65ralbidv 3148 . . 3 (𝑥 = ⟨𝐴, 1o⟩ → (∀𝑦 ∈ (N × N)(𝑥 ~Q 𝑦 → ¬ (2nd𝑦) <N (2nd𝑥)) ↔ ∀𝑦 ∈ (N × N)(⟨𝐴, 1o⟩ ~Q 𝑦 → ¬ (2nd𝑦) <N (2nd ‘⟨𝐴, 1o⟩))))
7 1pi 10103 . . . 4 1oN
8 opelxpi 5444 . . . 4 ((𝐴N ∧ 1oN) → ⟨𝐴, 1o⟩ ∈ (N × N))
97, 8mpan2 678 . . 3 (𝐴N → ⟨𝐴, 1o⟩ ∈ (N × N))
10 nlt1pi 10126 . . . . . 6 ¬ (2nd𝑦) <N 1o
11 1oex 7913 . . . . . . . 8 1o ∈ V
12 op2ndg 7514 . . . . . . . 8 ((𝐴N ∧ 1o ∈ V) → (2nd ‘⟨𝐴, 1o⟩) = 1o)
1311, 12mpan2 678 . . . . . . 7 (𝐴N → (2nd ‘⟨𝐴, 1o⟩) = 1o)
1413breq2d 4941 . . . . . 6 (𝐴N → ((2nd𝑦) <N (2nd ‘⟨𝐴, 1o⟩) ↔ (2nd𝑦) <N 1o))
1510, 14mtbiri 319 . . . . 5 (𝐴N → ¬ (2nd𝑦) <N (2nd ‘⟨𝐴, 1o⟩))
1615a1d 25 . . . 4 (𝐴N → (⟨𝐴, 1o⟩ ~Q 𝑦 → ¬ (2nd𝑦) <N (2nd ‘⟨𝐴, 1o⟩)))
1716ralrimivw 3134 . . 3 (𝐴N → ∀𝑦 ∈ (N × N)(⟨𝐴, 1o⟩ ~Q 𝑦 → ¬ (2nd𝑦) <N (2nd ‘⟨𝐴, 1o⟩)))
186, 9, 17elrabd 3599 . 2 (𝐴N → ⟨𝐴, 1o⟩ ∈ {𝑥 ∈ (N × N) ∣ ∀𝑦 ∈ (N × N)(𝑥 ~Q 𝑦 → ¬ (2nd𝑦) <N (2nd𝑥))})
19 df-nq 10132 . 2 Q = {𝑥 ∈ (N × N) ∣ ∀𝑦 ∈ (N × N)(𝑥 ~Q 𝑦 → ¬ (2nd𝑦) <N (2nd𝑥))}
2018, 19syl6eleqr 2878 1 (𝐴N → ⟨𝐴, 1o⟩ ∈ Q)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1507  wcel 2050  wral 3089  {crab 3093  Vcvv 3416  cop 4447   class class class wbr 4929   × cxp 5405  cfv 6188  2nd c2nd 7500  1oc1o 7898  Ncnpi 10064   <N clti 10067   ~Q ceq 10071  Qcnq 10072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2751  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ne 2969  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3418  df-sbc 3683  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-pss 3846  df-nul 4180  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fv 6196  df-om 7397  df-2nd 7502  df-1o 7905  df-ni 10092  df-lti 10095  df-nq 10132
This theorem is referenced by:  1nq  10148  archnq  10200  prlem934  10253
  Copyright terms: Public domain W3C validator