MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pinq Structured version   Visualization version   GIF version

Theorem pinq 10683
Description: The representatives of positive integers as positive fractions. (Contributed by NM, 29-Oct-1995.) (Revised by Mario Carneiro, 6-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
pinq (𝐴N → ⟨𝐴, 1o⟩ ∈ Q)

Proof of Theorem pinq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5077 . . . . 5 (𝑥 = ⟨𝐴, 1o⟩ → (𝑥 ~Q 𝑦 ↔ ⟨𝐴, 1o⟩ ~Q 𝑦))
2 fveq2 6774 . . . . . . 7 (𝑥 = ⟨𝐴, 1o⟩ → (2nd𝑥) = (2nd ‘⟨𝐴, 1o⟩))
32breq2d 5086 . . . . . 6 (𝑥 = ⟨𝐴, 1o⟩ → ((2nd𝑦) <N (2nd𝑥) ↔ (2nd𝑦) <N (2nd ‘⟨𝐴, 1o⟩)))
43notbid 318 . . . . 5 (𝑥 = ⟨𝐴, 1o⟩ → (¬ (2nd𝑦) <N (2nd𝑥) ↔ ¬ (2nd𝑦) <N (2nd ‘⟨𝐴, 1o⟩)))
51, 4imbi12d 345 . . . 4 (𝑥 = ⟨𝐴, 1o⟩ → ((𝑥 ~Q 𝑦 → ¬ (2nd𝑦) <N (2nd𝑥)) ↔ (⟨𝐴, 1o⟩ ~Q 𝑦 → ¬ (2nd𝑦) <N (2nd ‘⟨𝐴, 1o⟩))))
65ralbidv 3112 . . 3 (𝑥 = ⟨𝐴, 1o⟩ → (∀𝑦 ∈ (N × N)(𝑥 ~Q 𝑦 → ¬ (2nd𝑦) <N (2nd𝑥)) ↔ ∀𝑦 ∈ (N × N)(⟨𝐴, 1o⟩ ~Q 𝑦 → ¬ (2nd𝑦) <N (2nd ‘⟨𝐴, 1o⟩))))
7 1pi 10639 . . . 4 1oN
8 opelxpi 5626 . . . 4 ((𝐴N ∧ 1oN) → ⟨𝐴, 1o⟩ ∈ (N × N))
97, 8mpan2 688 . . 3 (𝐴N → ⟨𝐴, 1o⟩ ∈ (N × N))
10 nlt1pi 10662 . . . . . 6 ¬ (2nd𝑦) <N 1o
11 1oex 8307 . . . . . . . 8 1o ∈ V
12 op2ndg 7844 . . . . . . . 8 ((𝐴N ∧ 1o ∈ V) → (2nd ‘⟨𝐴, 1o⟩) = 1o)
1311, 12mpan2 688 . . . . . . 7 (𝐴N → (2nd ‘⟨𝐴, 1o⟩) = 1o)
1413breq2d 5086 . . . . . 6 (𝐴N → ((2nd𝑦) <N (2nd ‘⟨𝐴, 1o⟩) ↔ (2nd𝑦) <N 1o))
1510, 14mtbiri 327 . . . . 5 (𝐴N → ¬ (2nd𝑦) <N (2nd ‘⟨𝐴, 1o⟩))
1615a1d 25 . . . 4 (𝐴N → (⟨𝐴, 1o⟩ ~Q 𝑦 → ¬ (2nd𝑦) <N (2nd ‘⟨𝐴, 1o⟩)))
1716ralrimivw 3104 . . 3 (𝐴N → ∀𝑦 ∈ (N × N)(⟨𝐴, 1o⟩ ~Q 𝑦 → ¬ (2nd𝑦) <N (2nd ‘⟨𝐴, 1o⟩)))
186, 9, 17elrabd 3626 . 2 (𝐴N → ⟨𝐴, 1o⟩ ∈ {𝑥 ∈ (N × N) ∣ ∀𝑦 ∈ (N × N)(𝑥 ~Q 𝑦 → ¬ (2nd𝑦) <N (2nd𝑥))})
19 df-nq 10668 . 2 Q = {𝑥 ∈ (N × N) ∣ ∀𝑦 ∈ (N × N)(𝑥 ~Q 𝑦 → ¬ (2nd𝑦) <N (2nd𝑥))}
2018, 19eleqtrrdi 2850 1 (𝐴N → ⟨𝐴, 1o⟩ ∈ Q)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2106  wral 3064  {crab 3068  Vcvv 3432  cop 4567   class class class wbr 5074   × cxp 5587  cfv 6433  2nd c2nd 7830  1oc1o 8290  Ncnpi 10600   <N clti 10603   ~Q ceq 10607  Qcnq 10608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fv 6441  df-om 7713  df-2nd 7832  df-1o 8297  df-ni 10628  df-lti 10631  df-nq 10668
This theorem is referenced by:  1nq  10684  archnq  10736  prlem934  10789
  Copyright terms: Public domain W3C validator