MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pinq Structured version   Visualization version   GIF version

Theorem pinq 10872
Description: The representatives of positive integers as positive fractions. (Contributed by NM, 29-Oct-1995.) (Revised by Mario Carneiro, 6-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
pinq (𝐴N → ⟨𝐴, 1o⟩ ∈ Q)

Proof of Theorem pinq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5113 . . . . 5 (𝑥 = ⟨𝐴, 1o⟩ → (𝑥 ~Q 𝑦 ↔ ⟨𝐴, 1o⟩ ~Q 𝑦))
2 fveq2 6847 . . . . . . 7 (𝑥 = ⟨𝐴, 1o⟩ → (2nd𝑥) = (2nd ‘⟨𝐴, 1o⟩))
32breq2d 5122 . . . . . 6 (𝑥 = ⟨𝐴, 1o⟩ → ((2nd𝑦) <N (2nd𝑥) ↔ (2nd𝑦) <N (2nd ‘⟨𝐴, 1o⟩)))
43notbid 317 . . . . 5 (𝑥 = ⟨𝐴, 1o⟩ → (¬ (2nd𝑦) <N (2nd𝑥) ↔ ¬ (2nd𝑦) <N (2nd ‘⟨𝐴, 1o⟩)))
51, 4imbi12d 344 . . . 4 (𝑥 = ⟨𝐴, 1o⟩ → ((𝑥 ~Q 𝑦 → ¬ (2nd𝑦) <N (2nd𝑥)) ↔ (⟨𝐴, 1o⟩ ~Q 𝑦 → ¬ (2nd𝑦) <N (2nd ‘⟨𝐴, 1o⟩))))
65ralbidv 3170 . . 3 (𝑥 = ⟨𝐴, 1o⟩ → (∀𝑦 ∈ (N × N)(𝑥 ~Q 𝑦 → ¬ (2nd𝑦) <N (2nd𝑥)) ↔ ∀𝑦 ∈ (N × N)(⟨𝐴, 1o⟩ ~Q 𝑦 → ¬ (2nd𝑦) <N (2nd ‘⟨𝐴, 1o⟩))))
7 1pi 10828 . . . 4 1oN
8 opelxpi 5675 . . . 4 ((𝐴N ∧ 1oN) → ⟨𝐴, 1o⟩ ∈ (N × N))
97, 8mpan2 689 . . 3 (𝐴N → ⟨𝐴, 1o⟩ ∈ (N × N))
10 nlt1pi 10851 . . . . . 6 ¬ (2nd𝑦) <N 1o
11 1oex 8427 . . . . . . . 8 1o ∈ V
12 op2ndg 7939 . . . . . . . 8 ((𝐴N ∧ 1o ∈ V) → (2nd ‘⟨𝐴, 1o⟩) = 1o)
1311, 12mpan2 689 . . . . . . 7 (𝐴N → (2nd ‘⟨𝐴, 1o⟩) = 1o)
1413breq2d 5122 . . . . . 6 (𝐴N → ((2nd𝑦) <N (2nd ‘⟨𝐴, 1o⟩) ↔ (2nd𝑦) <N 1o))
1510, 14mtbiri 326 . . . . 5 (𝐴N → ¬ (2nd𝑦) <N (2nd ‘⟨𝐴, 1o⟩))
1615a1d 25 . . . 4 (𝐴N → (⟨𝐴, 1o⟩ ~Q 𝑦 → ¬ (2nd𝑦) <N (2nd ‘⟨𝐴, 1o⟩)))
1716ralrimivw 3143 . . 3 (𝐴N → ∀𝑦 ∈ (N × N)(⟨𝐴, 1o⟩ ~Q 𝑦 → ¬ (2nd𝑦) <N (2nd ‘⟨𝐴, 1o⟩)))
186, 9, 17elrabd 3650 . 2 (𝐴N → ⟨𝐴, 1o⟩ ∈ {𝑥 ∈ (N × N) ∣ ∀𝑦 ∈ (N × N)(𝑥 ~Q 𝑦 → ¬ (2nd𝑦) <N (2nd𝑥))})
19 df-nq 10857 . 2 Q = {𝑥 ∈ (N × N) ∣ ∀𝑦 ∈ (N × N)(𝑥 ~Q 𝑦 → ¬ (2nd𝑦) <N (2nd𝑥))}
2018, 19eleqtrrdi 2843 1 (𝐴N → ⟨𝐴, 1o⟩ ∈ Q)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wcel 2106  wral 3060  {crab 3405  Vcvv 3446  cop 4597   class class class wbr 5110   × cxp 5636  cfv 6501  2nd c2nd 7925  1oc1o 8410  Ncnpi 10789   <N clti 10792   ~Q ceq 10796  Qcnq 10797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5261  ax-nul 5268  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3406  df-v 3448  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fv 6509  df-om 7808  df-2nd 7927  df-1o 8417  df-ni 10817  df-lti 10820  df-nq 10857
This theorem is referenced by:  1nq  10873  archnq  10925  prlem934  10978
  Copyright terms: Public domain W3C validator