| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pinq | Structured version Visualization version GIF version | ||
| Description: The representatives of positive integers as positive fractions. (Contributed by NM, 29-Oct-1995.) (Revised by Mario Carneiro, 6-May-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pinq | ⊢ (𝐴 ∈ N → 〈𝐴, 1o〉 ∈ Q) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 5110 | . . . . 5 ⊢ (𝑥 = 〈𝐴, 1o〉 → (𝑥 ~Q 𝑦 ↔ 〈𝐴, 1o〉 ~Q 𝑦)) | |
| 2 | fveq2 6858 | . . . . . . 7 ⊢ (𝑥 = 〈𝐴, 1o〉 → (2nd ‘𝑥) = (2nd ‘〈𝐴, 1o〉)) | |
| 3 | 2 | breq2d 5119 | . . . . . 6 ⊢ (𝑥 = 〈𝐴, 1o〉 → ((2nd ‘𝑦) <N (2nd ‘𝑥) ↔ (2nd ‘𝑦) <N (2nd ‘〈𝐴, 1o〉))) |
| 4 | 3 | notbid 318 | . . . . 5 ⊢ (𝑥 = 〈𝐴, 1o〉 → (¬ (2nd ‘𝑦) <N (2nd ‘𝑥) ↔ ¬ (2nd ‘𝑦) <N (2nd ‘〈𝐴, 1o〉))) |
| 5 | 1, 4 | imbi12d 344 | . . . 4 ⊢ (𝑥 = 〈𝐴, 1o〉 → ((𝑥 ~Q 𝑦 → ¬ (2nd ‘𝑦) <N (2nd ‘𝑥)) ↔ (〈𝐴, 1o〉 ~Q 𝑦 → ¬ (2nd ‘𝑦) <N (2nd ‘〈𝐴, 1o〉)))) |
| 6 | 5 | ralbidv 3156 | . . 3 ⊢ (𝑥 = 〈𝐴, 1o〉 → (∀𝑦 ∈ (N × N)(𝑥 ~Q 𝑦 → ¬ (2nd ‘𝑦) <N (2nd ‘𝑥)) ↔ ∀𝑦 ∈ (N × N)(〈𝐴, 1o〉 ~Q 𝑦 → ¬ (2nd ‘𝑦) <N (2nd ‘〈𝐴, 1o〉)))) |
| 7 | 1pi 10836 | . . . 4 ⊢ 1o ∈ N | |
| 8 | opelxpi 5675 | . . . 4 ⊢ ((𝐴 ∈ N ∧ 1o ∈ N) → 〈𝐴, 1o〉 ∈ (N × N)) | |
| 9 | 7, 8 | mpan2 691 | . . 3 ⊢ (𝐴 ∈ N → 〈𝐴, 1o〉 ∈ (N × N)) |
| 10 | nlt1pi 10859 | . . . . . 6 ⊢ ¬ (2nd ‘𝑦) <N 1o | |
| 11 | 1oex 8444 | . . . . . . . 8 ⊢ 1o ∈ V | |
| 12 | op2ndg 7981 | . . . . . . . 8 ⊢ ((𝐴 ∈ N ∧ 1o ∈ V) → (2nd ‘〈𝐴, 1o〉) = 1o) | |
| 13 | 11, 12 | mpan2 691 | . . . . . . 7 ⊢ (𝐴 ∈ N → (2nd ‘〈𝐴, 1o〉) = 1o) |
| 14 | 13 | breq2d 5119 | . . . . . 6 ⊢ (𝐴 ∈ N → ((2nd ‘𝑦) <N (2nd ‘〈𝐴, 1o〉) ↔ (2nd ‘𝑦) <N 1o)) |
| 15 | 10, 14 | mtbiri 327 | . . . . 5 ⊢ (𝐴 ∈ N → ¬ (2nd ‘𝑦) <N (2nd ‘〈𝐴, 1o〉)) |
| 16 | 15 | a1d 25 | . . . 4 ⊢ (𝐴 ∈ N → (〈𝐴, 1o〉 ~Q 𝑦 → ¬ (2nd ‘𝑦) <N (2nd ‘〈𝐴, 1o〉))) |
| 17 | 16 | ralrimivw 3129 | . . 3 ⊢ (𝐴 ∈ N → ∀𝑦 ∈ (N × N)(〈𝐴, 1o〉 ~Q 𝑦 → ¬ (2nd ‘𝑦) <N (2nd ‘〈𝐴, 1o〉))) |
| 18 | 6, 9, 17 | elrabd 3661 | . 2 ⊢ (𝐴 ∈ N → 〈𝐴, 1o〉 ∈ {𝑥 ∈ (N × N) ∣ ∀𝑦 ∈ (N × N)(𝑥 ~Q 𝑦 → ¬ (2nd ‘𝑦) <N (2nd ‘𝑥))}) |
| 19 | df-nq 10865 | . 2 ⊢ Q = {𝑥 ∈ (N × N) ∣ ∀𝑦 ∈ (N × N)(𝑥 ~Q 𝑦 → ¬ (2nd ‘𝑦) <N (2nd ‘𝑥))} | |
| 20 | 18, 19 | eleqtrrdi 2839 | 1 ⊢ (𝐴 ∈ N → 〈𝐴, 1o〉 ∈ Q) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3405 Vcvv 3447 〈cop 4595 class class class wbr 5107 × cxp 5636 ‘cfv 6511 2nd c2nd 7967 1oc1o 8427 Ncnpi 10797 <N clti 10800 ~Q ceq 10804 Qcnq 10805 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fv 6519 df-om 7843 df-2nd 7969 df-1o 8434 df-ni 10825 df-lti 10828 df-nq 10865 |
| This theorem is referenced by: 1nq 10881 archnq 10933 prlem934 10986 |
| Copyright terms: Public domain | W3C validator |