![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pinq | Structured version Visualization version GIF version |
Description: The representatives of positive integers as positive fractions. (Contributed by NM, 29-Oct-1995.) (Revised by Mario Carneiro, 6-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pinq | ⊢ (𝐴 ∈ N → 〈𝐴, 1o〉 ∈ Q) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5169 | . . . . 5 ⊢ (𝑥 = 〈𝐴, 1o〉 → (𝑥 ~Q 𝑦 ↔ 〈𝐴, 1o〉 ~Q 𝑦)) | |
2 | fveq2 6920 | . . . . . . 7 ⊢ (𝑥 = 〈𝐴, 1o〉 → (2nd ‘𝑥) = (2nd ‘〈𝐴, 1o〉)) | |
3 | 2 | breq2d 5178 | . . . . . 6 ⊢ (𝑥 = 〈𝐴, 1o〉 → ((2nd ‘𝑦) <N (2nd ‘𝑥) ↔ (2nd ‘𝑦) <N (2nd ‘〈𝐴, 1o〉))) |
4 | 3 | notbid 318 | . . . . 5 ⊢ (𝑥 = 〈𝐴, 1o〉 → (¬ (2nd ‘𝑦) <N (2nd ‘𝑥) ↔ ¬ (2nd ‘𝑦) <N (2nd ‘〈𝐴, 1o〉))) |
5 | 1, 4 | imbi12d 344 | . . . 4 ⊢ (𝑥 = 〈𝐴, 1o〉 → ((𝑥 ~Q 𝑦 → ¬ (2nd ‘𝑦) <N (2nd ‘𝑥)) ↔ (〈𝐴, 1o〉 ~Q 𝑦 → ¬ (2nd ‘𝑦) <N (2nd ‘〈𝐴, 1o〉)))) |
6 | 5 | ralbidv 3184 | . . 3 ⊢ (𝑥 = 〈𝐴, 1o〉 → (∀𝑦 ∈ (N × N)(𝑥 ~Q 𝑦 → ¬ (2nd ‘𝑦) <N (2nd ‘𝑥)) ↔ ∀𝑦 ∈ (N × N)(〈𝐴, 1o〉 ~Q 𝑦 → ¬ (2nd ‘𝑦) <N (2nd ‘〈𝐴, 1o〉)))) |
7 | 1pi 10952 | . . . 4 ⊢ 1o ∈ N | |
8 | opelxpi 5737 | . . . 4 ⊢ ((𝐴 ∈ N ∧ 1o ∈ N) → 〈𝐴, 1o〉 ∈ (N × N)) | |
9 | 7, 8 | mpan2 690 | . . 3 ⊢ (𝐴 ∈ N → 〈𝐴, 1o〉 ∈ (N × N)) |
10 | nlt1pi 10975 | . . . . . 6 ⊢ ¬ (2nd ‘𝑦) <N 1o | |
11 | 1oex 8532 | . . . . . . . 8 ⊢ 1o ∈ V | |
12 | op2ndg 8043 | . . . . . . . 8 ⊢ ((𝐴 ∈ N ∧ 1o ∈ V) → (2nd ‘〈𝐴, 1o〉) = 1o) | |
13 | 11, 12 | mpan2 690 | . . . . . . 7 ⊢ (𝐴 ∈ N → (2nd ‘〈𝐴, 1o〉) = 1o) |
14 | 13 | breq2d 5178 | . . . . . 6 ⊢ (𝐴 ∈ N → ((2nd ‘𝑦) <N (2nd ‘〈𝐴, 1o〉) ↔ (2nd ‘𝑦) <N 1o)) |
15 | 10, 14 | mtbiri 327 | . . . . 5 ⊢ (𝐴 ∈ N → ¬ (2nd ‘𝑦) <N (2nd ‘〈𝐴, 1o〉)) |
16 | 15 | a1d 25 | . . . 4 ⊢ (𝐴 ∈ N → (〈𝐴, 1o〉 ~Q 𝑦 → ¬ (2nd ‘𝑦) <N (2nd ‘〈𝐴, 1o〉))) |
17 | 16 | ralrimivw 3156 | . . 3 ⊢ (𝐴 ∈ N → ∀𝑦 ∈ (N × N)(〈𝐴, 1o〉 ~Q 𝑦 → ¬ (2nd ‘𝑦) <N (2nd ‘〈𝐴, 1o〉))) |
18 | 6, 9, 17 | elrabd 3710 | . 2 ⊢ (𝐴 ∈ N → 〈𝐴, 1o〉 ∈ {𝑥 ∈ (N × N) ∣ ∀𝑦 ∈ (N × N)(𝑥 ~Q 𝑦 → ¬ (2nd ‘𝑦) <N (2nd ‘𝑥))}) |
19 | df-nq 10981 | . 2 ⊢ Q = {𝑥 ∈ (N × N) ∣ ∀𝑦 ∈ (N × N)(𝑥 ~Q 𝑦 → ¬ (2nd ‘𝑦) <N (2nd ‘𝑥))} | |
20 | 18, 19 | eleqtrrdi 2855 | 1 ⊢ (𝐴 ∈ N → 〈𝐴, 1o〉 ∈ Q) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ∈ wcel 2108 ∀wral 3067 {crab 3443 Vcvv 3488 〈cop 4654 class class class wbr 5166 × cxp 5698 ‘cfv 6573 2nd c2nd 8029 1oc1o 8515 Ncnpi 10913 <N clti 10916 ~Q ceq 10920 Qcnq 10921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fv 6581 df-om 7904 df-2nd 8031 df-1o 8522 df-ni 10941 df-lti 10944 df-nq 10981 |
This theorem is referenced by: 1nq 10997 archnq 11049 prlem934 11102 |
Copyright terms: Public domain | W3C validator |