MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltrnq Structured version   Visualization version   GIF version

Theorem ltrnq 10115
Description: Ordering property of reciprocal for positive fractions. Proposition 9-2.6(iv) of [Gleason] p. 120. (Contributed by NM, 9-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltrnq (𝐴 <Q 𝐵 ↔ (*Q𝐵) <Q (*Q𝐴))

Proof of Theorem ltrnq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 10062 . . 3 <Q ⊆ (Q × Q)
21brel 5400 . 2 (𝐴 <Q 𝐵 → (𝐴Q𝐵Q))
31brel 5400 . . 3 ((*Q𝐵) <Q (*Q𝐴) → ((*Q𝐵) ∈ Q ∧ (*Q𝐴) ∈ Q))
4 dmrecnq 10104 . . . . 5 dom *Q = Q
5 0nnq 10060 . . . . 5 ¬ ∅ ∈ Q
64, 5ndmfvrcl 6463 . . . 4 ((*Q𝐵) ∈ Q𝐵Q)
74, 5ndmfvrcl 6463 . . . 4 ((*Q𝐴) ∈ Q𝐴Q)
86, 7anim12ci 609 . . 3 (((*Q𝐵) ∈ Q ∧ (*Q𝐴) ∈ Q) → (𝐴Q𝐵Q))
93, 8syl 17 . 2 ((*Q𝐵) <Q (*Q𝐴) → (𝐴Q𝐵Q))
10 breq1 4875 . . . 4 (𝑥 = 𝐴 → (𝑥 <Q 𝑦𝐴 <Q 𝑦))
11 fveq2 6432 . . . . 5 (𝑥 = 𝐴 → (*Q𝑥) = (*Q𝐴))
1211breq2d 4884 . . . 4 (𝑥 = 𝐴 → ((*Q𝑦) <Q (*Q𝑥) ↔ (*Q𝑦) <Q (*Q𝐴)))
1310, 12bibi12d 337 . . 3 (𝑥 = 𝐴 → ((𝑥 <Q 𝑦 ↔ (*Q𝑦) <Q (*Q𝑥)) ↔ (𝐴 <Q 𝑦 ↔ (*Q𝑦) <Q (*Q𝐴))))
14 breq2 4876 . . . 4 (𝑦 = 𝐵 → (𝐴 <Q 𝑦𝐴 <Q 𝐵))
15 fveq2 6432 . . . . 5 (𝑦 = 𝐵 → (*Q𝑦) = (*Q𝐵))
1615breq1d 4882 . . . 4 (𝑦 = 𝐵 → ((*Q𝑦) <Q (*Q𝐴) ↔ (*Q𝐵) <Q (*Q𝐴)))
1714, 16bibi12d 337 . . 3 (𝑦 = 𝐵 → ((𝐴 <Q 𝑦 ↔ (*Q𝑦) <Q (*Q𝐴)) ↔ (𝐴 <Q 𝐵 ↔ (*Q𝐵) <Q (*Q𝐴))))
18 recclnq 10102 . . . . . 6 (𝑥Q → (*Q𝑥) ∈ Q)
19 recclnq 10102 . . . . . 6 (𝑦Q → (*Q𝑦) ∈ Q)
20 mulclnq 10083 . . . . . 6 (((*Q𝑥) ∈ Q ∧ (*Q𝑦) ∈ Q) → ((*Q𝑥) ·Q (*Q𝑦)) ∈ Q)
2118, 19, 20syl2an 591 . . . . 5 ((𝑥Q𝑦Q) → ((*Q𝑥) ·Q (*Q𝑦)) ∈ Q)
22 ltmnq 10108 . . . . 5 (((*Q𝑥) ·Q (*Q𝑦)) ∈ Q → (𝑥 <Q 𝑦 ↔ (((*Q𝑥) ·Q (*Q𝑦)) ·Q 𝑥) <Q (((*Q𝑥) ·Q (*Q𝑦)) ·Q 𝑦)))
2321, 22syl 17 . . . 4 ((𝑥Q𝑦Q) → (𝑥 <Q 𝑦 ↔ (((*Q𝑥) ·Q (*Q𝑦)) ·Q 𝑥) <Q (((*Q𝑥) ·Q (*Q𝑦)) ·Q 𝑦)))
24 mulcomnq 10089 . . . . . . 7 (((*Q𝑥) ·Q (*Q𝑦)) ·Q 𝑥) = (𝑥 ·Q ((*Q𝑥) ·Q (*Q𝑦)))
25 mulassnq 10095 . . . . . . 7 ((𝑥 ·Q (*Q𝑥)) ·Q (*Q𝑦)) = (𝑥 ·Q ((*Q𝑥) ·Q (*Q𝑦)))
26 mulcomnq 10089 . . . . . . 7 ((𝑥 ·Q (*Q𝑥)) ·Q (*Q𝑦)) = ((*Q𝑦) ·Q (𝑥 ·Q (*Q𝑥)))
2724, 25, 263eqtr2i 2854 . . . . . 6 (((*Q𝑥) ·Q (*Q𝑦)) ·Q 𝑥) = ((*Q𝑦) ·Q (𝑥 ·Q (*Q𝑥)))
28 recidnq 10101 . . . . . . . 8 (𝑥Q → (𝑥 ·Q (*Q𝑥)) = 1Q)
2928oveq2d 6920 . . . . . . 7 (𝑥Q → ((*Q𝑦) ·Q (𝑥 ·Q (*Q𝑥))) = ((*Q𝑦) ·Q 1Q))
30 mulidnq 10099 . . . . . . . 8 ((*Q𝑦) ∈ Q → ((*Q𝑦) ·Q 1Q) = (*Q𝑦))
3119, 30syl 17 . . . . . . 7 (𝑦Q → ((*Q𝑦) ·Q 1Q) = (*Q𝑦))
3229, 31sylan9eq 2880 . . . . . 6 ((𝑥Q𝑦Q) → ((*Q𝑦) ·Q (𝑥 ·Q (*Q𝑥))) = (*Q𝑦))
3327, 32syl5eq 2872 . . . . 5 ((𝑥Q𝑦Q) → (((*Q𝑥) ·Q (*Q𝑦)) ·Q 𝑥) = (*Q𝑦))
34 mulassnq 10095 . . . . . . 7 (((*Q𝑥) ·Q (*Q𝑦)) ·Q 𝑦) = ((*Q𝑥) ·Q ((*Q𝑦) ·Q 𝑦))
35 mulcomnq 10089 . . . . . . . 8 ((*Q𝑦) ·Q 𝑦) = (𝑦 ·Q (*Q𝑦))
3635oveq2i 6915 . . . . . . 7 ((*Q𝑥) ·Q ((*Q𝑦) ·Q 𝑦)) = ((*Q𝑥) ·Q (𝑦 ·Q (*Q𝑦)))
3734, 36eqtri 2848 . . . . . 6 (((*Q𝑥) ·Q (*Q𝑦)) ·Q 𝑦) = ((*Q𝑥) ·Q (𝑦 ·Q (*Q𝑦)))
38 recidnq 10101 . . . . . . . 8 (𝑦Q → (𝑦 ·Q (*Q𝑦)) = 1Q)
3938oveq2d 6920 . . . . . . 7 (𝑦Q → ((*Q𝑥) ·Q (𝑦 ·Q (*Q𝑦))) = ((*Q𝑥) ·Q 1Q))
40 mulidnq 10099 . . . . . . . 8 ((*Q𝑥) ∈ Q → ((*Q𝑥) ·Q 1Q) = (*Q𝑥))
4118, 40syl 17 . . . . . . 7 (𝑥Q → ((*Q𝑥) ·Q 1Q) = (*Q𝑥))
4239, 41sylan9eqr 2882 . . . . . 6 ((𝑥Q𝑦Q) → ((*Q𝑥) ·Q (𝑦 ·Q (*Q𝑦))) = (*Q𝑥))
4337, 42syl5eq 2872 . . . . 5 ((𝑥Q𝑦Q) → (((*Q𝑥) ·Q (*Q𝑦)) ·Q 𝑦) = (*Q𝑥))
4433, 43breq12d 4885 . . . 4 ((𝑥Q𝑦Q) → ((((*Q𝑥) ·Q (*Q𝑦)) ·Q 𝑥) <Q (((*Q𝑥) ·Q (*Q𝑦)) ·Q 𝑦) ↔ (*Q𝑦) <Q (*Q𝑥)))
4523, 44bitrd 271 . . 3 ((𝑥Q𝑦Q) → (𝑥 <Q 𝑦 ↔ (*Q𝑦) <Q (*Q𝑥)))
4613, 17, 45vtocl2ga 3490 . 2 ((𝐴Q𝐵Q) → (𝐴 <Q 𝐵 ↔ (*Q𝐵) <Q (*Q𝐴)))
472, 9, 46pm5.21nii 370 1 (𝐴 <Q 𝐵 ↔ (*Q𝐵) <Q (*Q𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 198  wa 386   = wceq 1658  wcel 2166   class class class wbr 4872  cfv 6122  (class class class)co 6904  Qcnq 9988  1Qc1q 9989   ·Q cmq 9992  *Qcrq 9993   <Q cltq 9994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2390  ax-ext 2802  ax-sep 5004  ax-nul 5012  ax-pow 5064  ax-pr 5126  ax-un 7208
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2604  df-eu 2639  df-clab 2811  df-cleq 2817  df-clel 2820  df-nfc 2957  df-ne 2999  df-ral 3121  df-rex 3122  df-reu 3123  df-rmo 3124  df-rab 3125  df-v 3415  df-sbc 3662  df-csb 3757  df-dif 3800  df-un 3802  df-in 3804  df-ss 3811  df-pss 3813  df-nul 4144  df-if 4306  df-pw 4379  df-sn 4397  df-pr 4399  df-tp 4401  df-op 4403  df-uni 4658  df-iun 4741  df-br 4873  df-opab 4935  df-mpt 4952  df-tr 4975  df-id 5249  df-eprel 5254  df-po 5262  df-so 5263  df-fr 5300  df-we 5302  df-xp 5347  df-rel 5348  df-cnv 5349  df-co 5350  df-dm 5351  df-rn 5352  df-res 5353  df-ima 5354  df-pred 5919  df-ord 5965  df-on 5966  df-lim 5967  df-suc 5968  df-iota 6085  df-fun 6124  df-fn 6125  df-f 6126  df-f1 6127  df-fo 6128  df-f1o 6129  df-fv 6130  df-ov 6907  df-oprab 6908  df-mpt2 6909  df-om 7326  df-1st 7427  df-2nd 7428  df-wrecs 7671  df-recs 7733  df-rdg 7771  df-1o 7825  df-oadd 7829  df-omul 7830  df-er 8008  df-ni 10008  df-mi 10010  df-lti 10011  df-mpq 10045  df-ltpq 10046  df-enq 10047  df-nq 10048  df-erq 10049  df-mq 10051  df-1nq 10052  df-rq 10053  df-ltnq 10054
This theorem is referenced by:  addclprlem1  10152  reclem2pr  10184  reclem3pr  10185
  Copyright terms: Public domain W3C validator