| Step | Hyp | Ref
| Expression |
| 1 | | ltrelnq 10945 |
. . 3
⊢
<Q ⊆ (Q ×
Q) |
| 2 | 1 | brel 5724 |
. 2
⊢ (𝐴 <Q
𝐵 → (𝐴 ∈ Q ∧ 𝐵 ∈
Q)) |
| 3 | 1 | brel 5724 |
. . 3
⊢
((*Q‘𝐵) <Q
(*Q‘𝐴) →
((*Q‘𝐵) ∈ Q ∧
(*Q‘𝐴) ∈ Q)) |
| 4 | | dmrecnq 10987 |
. . . . 5
⊢ dom
*Q = Q |
| 5 | | 0nnq 10943 |
. . . . 5
⊢ ¬
∅ ∈ Q |
| 6 | 4, 5 | ndmfvrcl 6917 |
. . . 4
⊢
((*Q‘𝐵) ∈ Q → 𝐵 ∈
Q) |
| 7 | 4, 5 | ndmfvrcl 6917 |
. . . 4
⊢
((*Q‘𝐴) ∈ Q → 𝐴 ∈
Q) |
| 8 | 6, 7 | anim12ci 614 |
. . 3
⊢
(((*Q‘𝐵) ∈ Q ∧
(*Q‘𝐴) ∈ Q) → (𝐴 ∈ Q ∧
𝐵 ∈
Q)) |
| 9 | 3, 8 | syl 17 |
. 2
⊢
((*Q‘𝐵) <Q
(*Q‘𝐴) → (𝐴 ∈ Q ∧ 𝐵 ∈
Q)) |
| 10 | | breq1 5127 |
. . . 4
⊢ (𝑥 = 𝐴 → (𝑥 <Q 𝑦 ↔ 𝐴 <Q 𝑦)) |
| 11 | | fveq2 6881 |
. . . . 5
⊢ (𝑥 = 𝐴 →
(*Q‘𝑥) = (*Q‘𝐴)) |
| 12 | 11 | breq2d 5136 |
. . . 4
⊢ (𝑥 = 𝐴 →
((*Q‘𝑦) <Q
(*Q‘𝑥) ↔
(*Q‘𝑦) <Q
(*Q‘𝐴))) |
| 13 | 10, 12 | bibi12d 345 |
. . 3
⊢ (𝑥 = 𝐴 → ((𝑥 <Q 𝑦 ↔
(*Q‘𝑦) <Q
(*Q‘𝑥)) ↔ (𝐴 <Q 𝑦 ↔
(*Q‘𝑦) <Q
(*Q‘𝐴)))) |
| 14 | | breq2 5128 |
. . . 4
⊢ (𝑦 = 𝐵 → (𝐴 <Q 𝑦 ↔ 𝐴 <Q 𝐵)) |
| 15 | | fveq2 6881 |
. . . . 5
⊢ (𝑦 = 𝐵 →
(*Q‘𝑦) = (*Q‘𝐵)) |
| 16 | 15 | breq1d 5134 |
. . . 4
⊢ (𝑦 = 𝐵 →
((*Q‘𝑦) <Q
(*Q‘𝐴) ↔
(*Q‘𝐵) <Q
(*Q‘𝐴))) |
| 17 | 14, 16 | bibi12d 345 |
. . 3
⊢ (𝑦 = 𝐵 → ((𝐴 <Q 𝑦 ↔
(*Q‘𝑦) <Q
(*Q‘𝐴)) ↔ (𝐴 <Q 𝐵 ↔
(*Q‘𝐵) <Q
(*Q‘𝐴)))) |
| 18 | | recclnq 10985 |
. . . . . 6
⊢ (𝑥 ∈ Q →
(*Q‘𝑥) ∈ Q) |
| 19 | | recclnq 10985 |
. . . . . 6
⊢ (𝑦 ∈ Q →
(*Q‘𝑦) ∈ Q) |
| 20 | | mulclnq 10966 |
. . . . . 6
⊢
(((*Q‘𝑥) ∈ Q ∧
(*Q‘𝑦) ∈ Q) →
((*Q‘𝑥) ·Q
(*Q‘𝑦)) ∈ Q) |
| 21 | 18, 19, 20 | syl2an 596 |
. . . . 5
⊢ ((𝑥 ∈ Q ∧
𝑦 ∈ Q)
→ ((*Q‘𝑥) ·Q
(*Q‘𝑦)) ∈ Q) |
| 22 | | ltmnq 10991 |
. . . . 5
⊢
(((*Q‘𝑥) ·Q
(*Q‘𝑦)) ∈ Q → (𝑥 <Q
𝑦 ↔
(((*Q‘𝑥) ·Q
(*Q‘𝑦)) ·Q 𝑥) <Q
(((*Q‘𝑥) ·Q
(*Q‘𝑦)) ·Q 𝑦))) |
| 23 | 21, 22 | syl 17 |
. . . 4
⊢ ((𝑥 ∈ Q ∧
𝑦 ∈ Q)
→ (𝑥
<Q 𝑦 ↔
(((*Q‘𝑥) ·Q
(*Q‘𝑦)) ·Q 𝑥) <Q
(((*Q‘𝑥) ·Q
(*Q‘𝑦)) ·Q 𝑦))) |
| 24 | | mulcomnq 10972 |
. . . . . . 7
⊢
(((*Q‘𝑥) ·Q
(*Q‘𝑦)) ·Q 𝑥) = (𝑥 ·Q
((*Q‘𝑥) ·Q
(*Q‘𝑦))) |
| 25 | | mulassnq 10978 |
. . . . . . 7
⊢ ((𝑥
·Q (*Q‘𝑥))
·Q (*Q‘𝑦)) = (𝑥 ·Q
((*Q‘𝑥) ·Q
(*Q‘𝑦))) |
| 26 | | mulcomnq 10972 |
. . . . . . 7
⊢ ((𝑥
·Q (*Q‘𝑥))
·Q (*Q‘𝑦)) =
((*Q‘𝑦) ·Q (𝑥
·Q (*Q‘𝑥))) |
| 27 | 24, 25, 26 | 3eqtr2i 2765 |
. . . . . 6
⊢
(((*Q‘𝑥) ·Q
(*Q‘𝑦)) ·Q 𝑥) =
((*Q‘𝑦) ·Q (𝑥
·Q (*Q‘𝑥))) |
| 28 | | recidnq 10984 |
. . . . . . . 8
⊢ (𝑥 ∈ Q →
(𝑥
·Q (*Q‘𝑥)) =
1Q) |
| 29 | 28 | oveq2d 7426 |
. . . . . . 7
⊢ (𝑥 ∈ Q →
((*Q‘𝑦) ·Q (𝑥
·Q (*Q‘𝑥))) =
((*Q‘𝑦) ·Q
1Q)) |
| 30 | | mulidnq 10982 |
. . . . . . . 8
⊢
((*Q‘𝑦) ∈ Q →
((*Q‘𝑦) ·Q
1Q) = (*Q‘𝑦)) |
| 31 | 19, 30 | syl 17 |
. . . . . . 7
⊢ (𝑦 ∈ Q →
((*Q‘𝑦) ·Q
1Q) = (*Q‘𝑦)) |
| 32 | 29, 31 | sylan9eq 2791 |
. . . . . 6
⊢ ((𝑥 ∈ Q ∧
𝑦 ∈ Q)
→ ((*Q‘𝑦) ·Q (𝑥
·Q (*Q‘𝑥))) =
(*Q‘𝑦)) |
| 33 | 27, 32 | eqtrid 2783 |
. . . . 5
⊢ ((𝑥 ∈ Q ∧
𝑦 ∈ Q)
→ (((*Q‘𝑥) ·Q
(*Q‘𝑦)) ·Q 𝑥) =
(*Q‘𝑦)) |
| 34 | | mulassnq 10978 |
. . . . . . 7
⊢
(((*Q‘𝑥) ·Q
(*Q‘𝑦)) ·Q 𝑦) =
((*Q‘𝑥) ·Q
((*Q‘𝑦) ·Q 𝑦)) |
| 35 | | mulcomnq 10972 |
. . . . . . . 8
⊢
((*Q‘𝑦) ·Q 𝑦) = (𝑦 ·Q
(*Q‘𝑦)) |
| 36 | 35 | oveq2i 7421 |
. . . . . . 7
⊢
((*Q‘𝑥) ·Q
((*Q‘𝑦) ·Q 𝑦)) =
((*Q‘𝑥) ·Q (𝑦
·Q (*Q‘𝑦))) |
| 37 | 34, 36 | eqtri 2759 |
. . . . . 6
⊢
(((*Q‘𝑥) ·Q
(*Q‘𝑦)) ·Q 𝑦) =
((*Q‘𝑥) ·Q (𝑦
·Q (*Q‘𝑦))) |
| 38 | | recidnq 10984 |
. . . . . . . 8
⊢ (𝑦 ∈ Q →
(𝑦
·Q (*Q‘𝑦)) =
1Q) |
| 39 | 38 | oveq2d 7426 |
. . . . . . 7
⊢ (𝑦 ∈ Q →
((*Q‘𝑥) ·Q (𝑦
·Q (*Q‘𝑦))) =
((*Q‘𝑥) ·Q
1Q)) |
| 40 | | mulidnq 10982 |
. . . . . . . 8
⊢
((*Q‘𝑥) ∈ Q →
((*Q‘𝑥) ·Q
1Q) = (*Q‘𝑥)) |
| 41 | 18, 40 | syl 17 |
. . . . . . 7
⊢ (𝑥 ∈ Q →
((*Q‘𝑥) ·Q
1Q) = (*Q‘𝑥)) |
| 42 | 39, 41 | sylan9eqr 2793 |
. . . . . 6
⊢ ((𝑥 ∈ Q ∧
𝑦 ∈ Q)
→ ((*Q‘𝑥) ·Q (𝑦
·Q (*Q‘𝑦))) =
(*Q‘𝑥)) |
| 43 | 37, 42 | eqtrid 2783 |
. . . . 5
⊢ ((𝑥 ∈ Q ∧
𝑦 ∈ Q)
→ (((*Q‘𝑥) ·Q
(*Q‘𝑦)) ·Q 𝑦) =
(*Q‘𝑥)) |
| 44 | 33, 43 | breq12d 5137 |
. . . 4
⊢ ((𝑥 ∈ Q ∧
𝑦 ∈ Q)
→ ((((*Q‘𝑥) ·Q
(*Q‘𝑦)) ·Q 𝑥) <Q
(((*Q‘𝑥) ·Q
(*Q‘𝑦)) ·Q 𝑦) ↔
(*Q‘𝑦) <Q
(*Q‘𝑥))) |
| 45 | 23, 44 | bitrd 279 |
. . 3
⊢ ((𝑥 ∈ Q ∧
𝑦 ∈ Q)
→ (𝑥
<Q 𝑦 ↔
(*Q‘𝑦) <Q
(*Q‘𝑥))) |
| 46 | 13, 17, 45 | vtocl2ga 3562 |
. 2
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ (𝐴
<Q 𝐵 ↔
(*Q‘𝐵) <Q
(*Q‘𝐴))) |
| 47 | 2, 9, 46 | pm5.21nii 378 |
1
⊢ (𝐴 <Q
𝐵 ↔
(*Q‘𝐵) <Q
(*Q‘𝐴)) |