MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltrnq Structured version   Visualization version   GIF version

Theorem ltrnq 10666
Description: Ordering property of reciprocal for positive fractions. Proposition 9-2.6(iv) of [Gleason] p. 120. (Contributed by NM, 9-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltrnq (𝐴 <Q 𝐵 ↔ (*Q𝐵) <Q (*Q𝐴))

Proof of Theorem ltrnq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 10613 . . 3 <Q ⊆ (Q × Q)
21brel 5643 . 2 (𝐴 <Q 𝐵 → (𝐴Q𝐵Q))
31brel 5643 . . 3 ((*Q𝐵) <Q (*Q𝐴) → ((*Q𝐵) ∈ Q ∧ (*Q𝐴) ∈ Q))
4 dmrecnq 10655 . . . . 5 dom *Q = Q
5 0nnq 10611 . . . . 5 ¬ ∅ ∈ Q
64, 5ndmfvrcl 6787 . . . 4 ((*Q𝐵) ∈ Q𝐵Q)
74, 5ndmfvrcl 6787 . . . 4 ((*Q𝐴) ∈ Q𝐴Q)
86, 7anim12ci 613 . . 3 (((*Q𝐵) ∈ Q ∧ (*Q𝐴) ∈ Q) → (𝐴Q𝐵Q))
93, 8syl 17 . 2 ((*Q𝐵) <Q (*Q𝐴) → (𝐴Q𝐵Q))
10 breq1 5073 . . . 4 (𝑥 = 𝐴 → (𝑥 <Q 𝑦𝐴 <Q 𝑦))
11 fveq2 6756 . . . . 5 (𝑥 = 𝐴 → (*Q𝑥) = (*Q𝐴))
1211breq2d 5082 . . . 4 (𝑥 = 𝐴 → ((*Q𝑦) <Q (*Q𝑥) ↔ (*Q𝑦) <Q (*Q𝐴)))
1310, 12bibi12d 345 . . 3 (𝑥 = 𝐴 → ((𝑥 <Q 𝑦 ↔ (*Q𝑦) <Q (*Q𝑥)) ↔ (𝐴 <Q 𝑦 ↔ (*Q𝑦) <Q (*Q𝐴))))
14 breq2 5074 . . . 4 (𝑦 = 𝐵 → (𝐴 <Q 𝑦𝐴 <Q 𝐵))
15 fveq2 6756 . . . . 5 (𝑦 = 𝐵 → (*Q𝑦) = (*Q𝐵))
1615breq1d 5080 . . . 4 (𝑦 = 𝐵 → ((*Q𝑦) <Q (*Q𝐴) ↔ (*Q𝐵) <Q (*Q𝐴)))
1714, 16bibi12d 345 . . 3 (𝑦 = 𝐵 → ((𝐴 <Q 𝑦 ↔ (*Q𝑦) <Q (*Q𝐴)) ↔ (𝐴 <Q 𝐵 ↔ (*Q𝐵) <Q (*Q𝐴))))
18 recclnq 10653 . . . . . 6 (𝑥Q → (*Q𝑥) ∈ Q)
19 recclnq 10653 . . . . . 6 (𝑦Q → (*Q𝑦) ∈ Q)
20 mulclnq 10634 . . . . . 6 (((*Q𝑥) ∈ Q ∧ (*Q𝑦) ∈ Q) → ((*Q𝑥) ·Q (*Q𝑦)) ∈ Q)
2118, 19, 20syl2an 595 . . . . 5 ((𝑥Q𝑦Q) → ((*Q𝑥) ·Q (*Q𝑦)) ∈ Q)
22 ltmnq 10659 . . . . 5 (((*Q𝑥) ·Q (*Q𝑦)) ∈ Q → (𝑥 <Q 𝑦 ↔ (((*Q𝑥) ·Q (*Q𝑦)) ·Q 𝑥) <Q (((*Q𝑥) ·Q (*Q𝑦)) ·Q 𝑦)))
2321, 22syl 17 . . . 4 ((𝑥Q𝑦Q) → (𝑥 <Q 𝑦 ↔ (((*Q𝑥) ·Q (*Q𝑦)) ·Q 𝑥) <Q (((*Q𝑥) ·Q (*Q𝑦)) ·Q 𝑦)))
24 mulcomnq 10640 . . . . . . 7 (((*Q𝑥) ·Q (*Q𝑦)) ·Q 𝑥) = (𝑥 ·Q ((*Q𝑥) ·Q (*Q𝑦)))
25 mulassnq 10646 . . . . . . 7 ((𝑥 ·Q (*Q𝑥)) ·Q (*Q𝑦)) = (𝑥 ·Q ((*Q𝑥) ·Q (*Q𝑦)))
26 mulcomnq 10640 . . . . . . 7 ((𝑥 ·Q (*Q𝑥)) ·Q (*Q𝑦)) = ((*Q𝑦) ·Q (𝑥 ·Q (*Q𝑥)))
2724, 25, 263eqtr2i 2772 . . . . . 6 (((*Q𝑥) ·Q (*Q𝑦)) ·Q 𝑥) = ((*Q𝑦) ·Q (𝑥 ·Q (*Q𝑥)))
28 recidnq 10652 . . . . . . . 8 (𝑥Q → (𝑥 ·Q (*Q𝑥)) = 1Q)
2928oveq2d 7271 . . . . . . 7 (𝑥Q → ((*Q𝑦) ·Q (𝑥 ·Q (*Q𝑥))) = ((*Q𝑦) ·Q 1Q))
30 mulidnq 10650 . . . . . . . 8 ((*Q𝑦) ∈ Q → ((*Q𝑦) ·Q 1Q) = (*Q𝑦))
3119, 30syl 17 . . . . . . 7 (𝑦Q → ((*Q𝑦) ·Q 1Q) = (*Q𝑦))
3229, 31sylan9eq 2799 . . . . . 6 ((𝑥Q𝑦Q) → ((*Q𝑦) ·Q (𝑥 ·Q (*Q𝑥))) = (*Q𝑦))
3327, 32eqtrid 2790 . . . . 5 ((𝑥Q𝑦Q) → (((*Q𝑥) ·Q (*Q𝑦)) ·Q 𝑥) = (*Q𝑦))
34 mulassnq 10646 . . . . . . 7 (((*Q𝑥) ·Q (*Q𝑦)) ·Q 𝑦) = ((*Q𝑥) ·Q ((*Q𝑦) ·Q 𝑦))
35 mulcomnq 10640 . . . . . . . 8 ((*Q𝑦) ·Q 𝑦) = (𝑦 ·Q (*Q𝑦))
3635oveq2i 7266 . . . . . . 7 ((*Q𝑥) ·Q ((*Q𝑦) ·Q 𝑦)) = ((*Q𝑥) ·Q (𝑦 ·Q (*Q𝑦)))
3734, 36eqtri 2766 . . . . . 6 (((*Q𝑥) ·Q (*Q𝑦)) ·Q 𝑦) = ((*Q𝑥) ·Q (𝑦 ·Q (*Q𝑦)))
38 recidnq 10652 . . . . . . . 8 (𝑦Q → (𝑦 ·Q (*Q𝑦)) = 1Q)
3938oveq2d 7271 . . . . . . 7 (𝑦Q → ((*Q𝑥) ·Q (𝑦 ·Q (*Q𝑦))) = ((*Q𝑥) ·Q 1Q))
40 mulidnq 10650 . . . . . . . 8 ((*Q𝑥) ∈ Q → ((*Q𝑥) ·Q 1Q) = (*Q𝑥))
4118, 40syl 17 . . . . . . 7 (𝑥Q → ((*Q𝑥) ·Q 1Q) = (*Q𝑥))
4239, 41sylan9eqr 2801 . . . . . 6 ((𝑥Q𝑦Q) → ((*Q𝑥) ·Q (𝑦 ·Q (*Q𝑦))) = (*Q𝑥))
4337, 42eqtrid 2790 . . . . 5 ((𝑥Q𝑦Q) → (((*Q𝑥) ·Q (*Q𝑦)) ·Q 𝑦) = (*Q𝑥))
4433, 43breq12d 5083 . . . 4 ((𝑥Q𝑦Q) → ((((*Q𝑥) ·Q (*Q𝑦)) ·Q 𝑥) <Q (((*Q𝑥) ·Q (*Q𝑦)) ·Q 𝑦) ↔ (*Q𝑦) <Q (*Q𝑥)))
4523, 44bitrd 278 . . 3 ((𝑥Q𝑦Q) → (𝑥 <Q 𝑦 ↔ (*Q𝑦) <Q (*Q𝑥)))
4613, 17, 45vtocl2ga 3504 . 2 ((𝐴Q𝐵Q) → (𝐴 <Q 𝐵 ↔ (*Q𝐵) <Q (*Q𝐴)))
472, 9, 46pm5.21nii 379 1 (𝐴 <Q 𝐵 ↔ (*Q𝐵) <Q (*Q𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wcel 2108   class class class wbr 5070  cfv 6418  (class class class)co 7255  Qcnq 10539  1Qc1q 10540   ·Q cmq 10543  *Qcrq 10544   <Q cltq 10545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-omul 8272  df-er 8456  df-ni 10559  df-mi 10561  df-lti 10562  df-mpq 10596  df-ltpq 10597  df-enq 10598  df-nq 10599  df-erq 10600  df-mq 10602  df-1nq 10603  df-rq 10604  df-ltnq 10605
This theorem is referenced by:  addclprlem1  10703  reclem2pr  10735  reclem3pr  10736
  Copyright terms: Public domain W3C validator