Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elpqn | Structured version Visualization version GIF version |
Description: Each positive fraction is an ordered pair of positive integers (the numerator and denominator, in "lowest terms". (Contributed by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elpqn | ⊢ (𝐴 ∈ Q → 𝐴 ∈ (N × N)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nq 10599 | . . 3 ⊢ Q = {𝑦 ∈ (N × N) ∣ ∀𝑥 ∈ (N × N)(𝑦 ~Q 𝑥 → ¬ (2nd ‘𝑥) <N (2nd ‘𝑦))} | |
2 | 1 | ssrab3 4011 | . 2 ⊢ Q ⊆ (N × N) |
3 | 2 | sseli 3913 | 1 ⊢ (𝐴 ∈ Q → 𝐴 ∈ (N × N)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2108 ∀wral 3063 class class class wbr 5070 × cxp 5578 ‘cfv 6418 2nd c2nd 7803 Ncnpi 10531 <N clti 10534 ~Q ceq 10538 Qcnq 10539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 df-nq 10599 |
This theorem is referenced by: nqereu 10616 nqerid 10620 enqeq 10621 addpqnq 10625 mulpqnq 10628 ordpinq 10630 addclnq 10632 mulclnq 10634 addnqf 10635 mulnqf 10636 adderpq 10643 mulerpq 10644 addassnq 10645 mulassnq 10646 distrnq 10648 mulidnq 10650 recmulnq 10651 ltsonq 10656 lterpq 10657 ltanq 10658 ltmnq 10659 ltexnq 10662 archnq 10667 wuncn 10857 |
Copyright terms: Public domain | W3C validator |