MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpqn Structured version   Visualization version   GIF version

Theorem elpqn 10920
Description: Each positive fraction is an ordered pair of positive integers (the numerator and denominator, in "lowest terms". (Contributed by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.)
Assertion
Ref Expression
elpqn (𝐴Q𝐴 ∈ (N × N))

Proof of Theorem elpqn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nq 10907 . . 3 Q = {𝑦 ∈ (N × N) ∣ ∀𝑥 ∈ (N × N)(𝑦 ~Q 𝑥 → ¬ (2nd𝑥) <N (2nd𝑦))}
21ssrab3 4081 . 2 Q ⊆ (N × N)
32sseli 3979 1 (𝐴Q𝐴 ∈ (N × N))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2107  wral 3062   class class class wbr 5149   × cxp 5675  cfv 6544  2nd c2nd 7974  Ncnpi 10839   <N clti 10842   ~Q ceq 10846  Qcnq 10847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3434  df-v 3477  df-in 3956  df-ss 3966  df-nq 10907
This theorem is referenced by:  nqereu  10924  nqerid  10928  enqeq  10929  addpqnq  10933  mulpqnq  10936  ordpinq  10938  addclnq  10940  mulclnq  10942  addnqf  10943  mulnqf  10944  adderpq  10951  mulerpq  10952  addassnq  10953  mulassnq  10954  distrnq  10956  mulidnq  10958  recmulnq  10959  ltsonq  10964  lterpq  10965  ltanq  10966  ltmnq  10967  ltexnq  10970  archnq  10975  wuncn  11165
  Copyright terms: Public domain W3C validator