![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elpqn | Structured version Visualization version GIF version |
Description: Each positive fraction is an ordered pair of positive integers (the numerator and denominator, in "lowest terms". (Contributed by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elpqn | ⊢ (𝐴 ∈ Q → 𝐴 ∈ (N × N)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nq 10981 | . . 3 ⊢ Q = {𝑦 ∈ (N × N) ∣ ∀𝑥 ∈ (N × N)(𝑦 ~Q 𝑥 → ¬ (2nd ‘𝑥) <N (2nd ‘𝑦))} | |
2 | 1 | ssrab3 4105 | . 2 ⊢ Q ⊆ (N × N) |
3 | 2 | sseli 4004 | 1 ⊢ (𝐴 ∈ Q → 𝐴 ∈ (N × N)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2108 ∀wral 3067 class class class wbr 5166 × cxp 5698 ‘cfv 6573 2nd c2nd 8029 Ncnpi 10913 <N clti 10916 ~Q ceq 10920 Qcnq 10921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-ss 3993 df-nq 10981 |
This theorem is referenced by: nqereu 10998 nqerid 11002 enqeq 11003 addpqnq 11007 mulpqnq 11010 ordpinq 11012 addclnq 11014 mulclnq 11016 addnqf 11017 mulnqf 11018 adderpq 11025 mulerpq 11026 addassnq 11027 mulassnq 11028 distrnq 11030 mulidnq 11032 recmulnq 11033 ltsonq 11038 lterpq 11039 ltanq 11040 ltmnq 11041 ltexnq 11044 archnq 11049 wuncn 11239 |
Copyright terms: Public domain | W3C validator |