| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpqn | Structured version Visualization version GIF version | ||
| Description: Each positive fraction is an ordered pair of positive integers (the numerator and denominator, in "lowest terms". (Contributed by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| elpqn | ⊢ (𝐴 ∈ Q → 𝐴 ∈ (N × N)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nq 10931 | . . 3 ⊢ Q = {𝑦 ∈ (N × N) ∣ ∀𝑥 ∈ (N × N)(𝑦 ~Q 𝑥 → ¬ (2nd ‘𝑥) <N (2nd ‘𝑦))} | |
| 2 | 1 | ssrab3 4062 | . 2 ⊢ Q ⊆ (N × N) |
| 3 | 2 | sseli 3959 | 1 ⊢ (𝐴 ∈ Q → 𝐴 ∈ (N × N)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 ∀wral 3052 class class class wbr 5124 × cxp 5657 ‘cfv 6536 2nd c2nd 7992 Ncnpi 10863 <N clti 10866 ~Q ceq 10870 Qcnq 10871 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-ss 3948 df-nq 10931 |
| This theorem is referenced by: nqereu 10948 nqerid 10952 enqeq 10953 addpqnq 10957 mulpqnq 10960 ordpinq 10962 addclnq 10964 mulclnq 10966 addnqf 10967 mulnqf 10968 adderpq 10975 mulerpq 10976 addassnq 10977 mulassnq 10978 distrnq 10980 mulidnq 10982 recmulnq 10983 ltsonq 10988 lterpq 10989 ltanq 10990 ltmnq 10991 ltexnq 10994 archnq 10999 wuncn 11189 |
| Copyright terms: Public domain | W3C validator |