MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpqn Structured version   Visualization version   GIF version

Theorem elpqn 10823
Description: Each positive fraction is an ordered pair of positive integers (the numerator and denominator, in "lowest terms". (Contributed by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.)
Assertion
Ref Expression
elpqn (𝐴Q𝐴 ∈ (N × N))

Proof of Theorem elpqn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nq 10810 . . 3 Q = {𝑦 ∈ (N × N) ∣ ∀𝑥 ∈ (N × N)(𝑦 ~Q 𝑥 → ¬ (2nd𝑥) <N (2nd𝑦))}
21ssrab3 4031 . 2 Q ⊆ (N × N)
32sseli 3926 1 (𝐴Q𝐴 ∈ (N × N))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2113  wral 3048   class class class wbr 5093   × cxp 5617  cfv 6486  2nd c2nd 7926  Ncnpi 10742   <N clti 10745   ~Q ceq 10749  Qcnq 10750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-ss 3915  df-nq 10810
This theorem is referenced by:  nqereu  10827  nqerid  10831  enqeq  10832  addpqnq  10836  mulpqnq  10839  ordpinq  10841  addclnq  10843  mulclnq  10845  addnqf  10846  mulnqf  10847  adderpq  10854  mulerpq  10855  addassnq  10856  mulassnq  10857  distrnq  10859  mulidnq  10861  recmulnq  10862  ltsonq  10867  lterpq  10868  ltanq  10869  ltmnq  10870  ltexnq  10873  archnq  10878  wuncn  11068
  Copyright terms: Public domain W3C validator