| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpqn | Structured version Visualization version GIF version | ||
| Description: Each positive fraction is an ordered pair of positive integers (the numerator and denominator, in "lowest terms". (Contributed by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| elpqn | ⊢ (𝐴 ∈ Q → 𝐴 ∈ (N × N)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nq 10825 | . . 3 ⊢ Q = {𝑦 ∈ (N × N) ∣ ∀𝑥 ∈ (N × N)(𝑦 ~Q 𝑥 → ¬ (2nd ‘𝑥) <N (2nd ‘𝑦))} | |
| 2 | 1 | ssrab3 4035 | . 2 ⊢ Q ⊆ (N × N) |
| 3 | 2 | sseli 3933 | 1 ⊢ (𝐴 ∈ Q → 𝐴 ∈ (N × N)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 ∀wral 3044 class class class wbr 5095 × cxp 5621 ‘cfv 6486 2nd c2nd 7930 Ncnpi 10757 <N clti 10760 ~Q ceq 10764 Qcnq 10765 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-ss 3922 df-nq 10825 |
| This theorem is referenced by: nqereu 10842 nqerid 10846 enqeq 10847 addpqnq 10851 mulpqnq 10854 ordpinq 10856 addclnq 10858 mulclnq 10860 addnqf 10861 mulnqf 10862 adderpq 10869 mulerpq 10870 addassnq 10871 mulassnq 10872 distrnq 10874 mulidnq 10876 recmulnq 10877 ltsonq 10882 lterpq 10883 ltanq 10884 ltmnq 10885 ltexnq 10888 archnq 10893 wuncn 11083 |
| Copyright terms: Public domain | W3C validator |