Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elpqn | Structured version Visualization version GIF version |
Description: Each positive fraction is an ordered pair of positive integers (the numerator and denominator, in "lowest terms". (Contributed by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elpqn | ⊢ (𝐴 ∈ Q → 𝐴 ∈ (N × N)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nq 10668 | . . 3 ⊢ Q = {𝑦 ∈ (N × N) ∣ ∀𝑥 ∈ (N × N)(𝑦 ~Q 𝑥 → ¬ (2nd ‘𝑥) <N (2nd ‘𝑦))} | |
2 | 1 | ssrab3 4015 | . 2 ⊢ Q ⊆ (N × N) |
3 | 2 | sseli 3917 | 1 ⊢ (𝐴 ∈ Q → 𝐴 ∈ (N × N)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2106 ∀wral 3064 class class class wbr 5074 × cxp 5587 ‘cfv 6433 2nd c2nd 7830 Ncnpi 10600 <N clti 10603 ~Q ceq 10607 Qcnq 10608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-in 3894 df-ss 3904 df-nq 10668 |
This theorem is referenced by: nqereu 10685 nqerid 10689 enqeq 10690 addpqnq 10694 mulpqnq 10697 ordpinq 10699 addclnq 10701 mulclnq 10703 addnqf 10704 mulnqf 10705 adderpq 10712 mulerpq 10713 addassnq 10714 mulassnq 10715 distrnq 10717 mulidnq 10719 recmulnq 10720 ltsonq 10725 lterpq 10726 ltanq 10727 ltmnq 10728 ltexnq 10731 archnq 10736 wuncn 10926 |
Copyright terms: Public domain | W3C validator |