![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elpqn | Structured version Visualization version GIF version |
Description: Each positive fraction is an ordered pair of positive integers (the numerator and denominator, in "lowest terms". (Contributed by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elpqn | ⊢ (𝐴 ∈ Q → 𝐴 ∈ (N × N)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nq 10907 | . . 3 ⊢ Q = {𝑦 ∈ (N × N) ∣ ∀𝑥 ∈ (N × N)(𝑦 ~Q 𝑥 → ¬ (2nd ‘𝑥) <N (2nd ‘𝑦))} | |
2 | 1 | ssrab3 4081 | . 2 ⊢ Q ⊆ (N × N) |
3 | 2 | sseli 3979 | 1 ⊢ (𝐴 ∈ Q → 𝐴 ∈ (N × N)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2107 ∀wral 3062 class class class wbr 5149 × cxp 5675 ‘cfv 6544 2nd c2nd 7974 Ncnpi 10839 <N clti 10842 ~Q ceq 10846 Qcnq 10847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-v 3477 df-in 3956 df-ss 3966 df-nq 10907 |
This theorem is referenced by: nqereu 10924 nqerid 10928 enqeq 10929 addpqnq 10933 mulpqnq 10936 ordpinq 10938 addclnq 10940 mulclnq 10942 addnqf 10943 mulnqf 10944 adderpq 10951 mulerpq 10952 addassnq 10953 mulassnq 10954 distrnq 10956 mulidnq 10958 recmulnq 10959 ltsonq 10964 lterpq 10965 ltanq 10966 ltmnq 10967 ltexnq 10970 archnq 10975 wuncn 11165 |
Copyright terms: Public domain | W3C validator |