| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpqn | Structured version Visualization version GIF version | ||
| Description: Each positive fraction is an ordered pair of positive integers (the numerator and denominator, in "lowest terms". (Contributed by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| elpqn | ⊢ (𝐴 ∈ Q → 𝐴 ∈ (N × N)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nq 10800 | . . 3 ⊢ Q = {𝑦 ∈ (N × N) ∣ ∀𝑥 ∈ (N × N)(𝑦 ~Q 𝑥 → ¬ (2nd ‘𝑥) <N (2nd ‘𝑦))} | |
| 2 | 1 | ssrab3 4032 | . 2 ⊢ Q ⊆ (N × N) |
| 3 | 2 | sseli 3930 | 1 ⊢ (𝐴 ∈ Q → 𝐴 ∈ (N × N)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2111 ∀wral 3047 class class class wbr 5091 × cxp 5614 ‘cfv 6481 2nd c2nd 7920 Ncnpi 10732 <N clti 10735 ~Q ceq 10739 Qcnq 10740 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-ss 3919 df-nq 10800 |
| This theorem is referenced by: nqereu 10817 nqerid 10821 enqeq 10822 addpqnq 10826 mulpqnq 10829 ordpinq 10831 addclnq 10833 mulclnq 10835 addnqf 10836 mulnqf 10837 adderpq 10844 mulerpq 10845 addassnq 10846 mulassnq 10847 distrnq 10849 mulidnq 10851 recmulnq 10852 ltsonq 10857 lterpq 10858 ltanq 10859 ltmnq 10860 ltexnq 10863 archnq 10868 wuncn 11058 |
| Copyright terms: Public domain | W3C validator |