| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpqn | Structured version Visualization version GIF version | ||
| Description: Each positive fraction is an ordered pair of positive integers (the numerator and denominator, in "lowest terms". (Contributed by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| elpqn | ⊢ (𝐴 ∈ Q → 𝐴 ∈ (N × N)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nq 10810 | . . 3 ⊢ Q = {𝑦 ∈ (N × N) ∣ ∀𝑥 ∈ (N × N)(𝑦 ~Q 𝑥 → ¬ (2nd ‘𝑥) <N (2nd ‘𝑦))} | |
| 2 | 1 | ssrab3 4031 | . 2 ⊢ Q ⊆ (N × N) |
| 3 | 2 | sseli 3926 | 1 ⊢ (𝐴 ∈ Q → 𝐴 ∈ (N × N)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2113 ∀wral 3048 class class class wbr 5093 × cxp 5617 ‘cfv 6486 2nd c2nd 7926 Ncnpi 10742 <N clti 10745 ~Q ceq 10749 Qcnq 10750 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-ss 3915 df-nq 10810 |
| This theorem is referenced by: nqereu 10827 nqerid 10831 enqeq 10832 addpqnq 10836 mulpqnq 10839 ordpinq 10841 addclnq 10843 mulclnq 10845 addnqf 10846 mulnqf 10847 adderpq 10854 mulerpq 10855 addassnq 10856 mulassnq 10857 distrnq 10859 mulidnq 10861 recmulnq 10862 ltsonq 10867 lterpq 10868 ltanq 10869 ltmnq 10870 ltexnq 10873 archnq 10878 wuncn 11068 |
| Copyright terms: Public domain | W3C validator |