| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpqn | Structured version Visualization version GIF version | ||
| Description: Each positive fraction is an ordered pair of positive integers (the numerator and denominator, in "lowest terms". (Contributed by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| elpqn | ⊢ (𝐴 ∈ Q → 𝐴 ∈ (N × N)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nq 10865 | . . 3 ⊢ Q = {𝑦 ∈ (N × N) ∣ ∀𝑥 ∈ (N × N)(𝑦 ~Q 𝑥 → ¬ (2nd ‘𝑥) <N (2nd ‘𝑦))} | |
| 2 | 1 | ssrab3 4045 | . 2 ⊢ Q ⊆ (N × N) |
| 3 | 2 | sseli 3942 | 1 ⊢ (𝐴 ∈ Q → 𝐴 ∈ (N × N)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 ∀wral 3044 class class class wbr 5107 × cxp 5636 ‘cfv 6511 2nd c2nd 7967 Ncnpi 10797 <N clti 10800 ~Q ceq 10804 Qcnq 10805 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-ss 3931 df-nq 10865 |
| This theorem is referenced by: nqereu 10882 nqerid 10886 enqeq 10887 addpqnq 10891 mulpqnq 10894 ordpinq 10896 addclnq 10898 mulclnq 10900 addnqf 10901 mulnqf 10902 adderpq 10909 mulerpq 10910 addassnq 10911 mulassnq 10912 distrnq 10914 mulidnq 10916 recmulnq 10917 ltsonq 10922 lterpq 10923 ltanq 10924 ltmnq 10925 ltexnq 10928 archnq 10933 wuncn 11123 |
| Copyright terms: Public domain | W3C validator |